FILOZOFII A TECHNIKU. Podpora přednášky kurzu Mezioborové dimenze vědy

Rozměr: px
Začít zobrazení ze stránky:

Download "FILOZOFII A TECHNIKU. Podpora přednášky kurzu Mezioborové dimenze vědy"

Transkript

1 FYZIKA, JAKO VĚDA SJEDNOCUJÍCÍ PŘÍRODNÍ VĚDY, FILOZOFII A TECHNIKU prof. Ing. Bohumil Vybíral, CSc. Podpora přednášky kurzu Mezioborové dimenze vědy

2 Fyzika jako věda v sjednocující filosofii, přírodní vědy a techniku Prof. Ing. Bohumil Vybíral, CSc. katedra fyziky PřírodovP rodovědecké fakulty UHK

3 Osnova přednášky Fyzika jako věda (s důrazem na experiment ve fyzice) O poznatelnosti světa gnoseologie Fyzika v toku dějin a) Klasická mechanika b) Klasická teorie gravitace c) Teorie elektromagnetického pole d) Speciální teorii relativity e) Obecná teorie relativity f) Kvantová fyzika g) Atomová a jaderná fyzika Fyzika jako základ ostatních přírodních věd Fyzika jako základ technických aplikací Problémy, trendy a perspektivy současné fyziky

4 1. Fyzika jako vědav 1.1 Fyzika a její role ve společnosti Fyzika je přírodní věda, která zkoumá nejobecnější zákonitosti jevů přírody, stav látek a jejich změn, stavbu a vlastnosti hmoty a zákony jejího pohybu. Fyzikální poznávání je členitý, složitý proces, jež poskytuje modely chování objektů a modely struktur a směřuje kvytváření co nejúplnějšího obrazu světa a jeho změn. Je to proces, v němž hraje rozhodující roli člověk fyzik, který přírodu pozoruje, experimentuje, měří a formuluje fyzikální zákony ve formě matematic. modelů dějů a stavů. Je nesprávné tvrdit, že příroda se řídí přírodními zákony. Příroda se řídí sama podle sebe, člověk ji pozoruje dějů a stavů látek, matematicky popsat fyzikálními zákony.

5 . Vlastností člověka, která jej odlišuje od ostatních živých tvorů, je jeho touha poznávat svět, v němž žije a využívat dosažených poznatků pro svou existenci. Role fyziky, jako vědy je tedy nejen poskytovat modely, nýbrž a především hledat pragmatické vyústění zákonitostí v technických aplikacích - to již nedělá fyzik, nýbrž technik. Důsledkem výsledků tohoto procesu poznávání a aplikací však bývá i jeho zneužívání určitými skupinami lidí pro mocenské, kořistnické i zločinecké cíle. Fyzika a aplikace přírodních zákonů člověkem v technice má velký zpětný vliv na vývoj celé společnosti (viz století páry, století elektřiny, nyní století informačních technologií počítačová gramotnost).

6 1.2 Stupně fyzikáln lního poznávání Fyzikální poznávání je členitý, složitý proces, který lze rozložit na několik etap: experiment, hypotéza (pořadí zde bývá často obrácené), fyzikální zákon, obecný (fyzikální) princip, fyzikální teorie. Kritérium správnosti fyzikální teorie je fyzikální experiment

7 1.3 Fyzikáln lní experiment Starověk k (Aristoteles) experiment odmítal (jako umělé zasahování do dějůd v přírodp rodě) 16. století,, renesance G. Galilei na experimentu buduje vědeckou metodu zkoumání: Vytvořit hypotézu na základz kladě dosavadní zkušenosti, intuice nebo vrozených pravd. ( ) Ověř ěřit hypotézu smyslovou zkušenost eností nebo experimentem entem. Provést dedukci hypotézy na jevy dosud neznámé.

8 Vědecké experimenty: 1. Heuristické (objevné) kdy účelem je nalézt dosud neznámou zákonitost. z 2. Verifikační (ověř ěřovací) kdy účelem je ověř ěřit platnost zákona, z který byl získz skán deduktivním m teoretickým postupem, anebo ověř ěřit meze platnosti zákona z pro jiné podmínky.

9 Vědecké experimenty z jiného hlediska: 1. Re 2. My 3. Po Reálné sledujeme reáln lně probíhaj hající fyzikáln lní děje a měříme je reálnými přístroji p v reáln lném čase. Myšlenkové myšlenkov lenkově navozujeme podmínky a postup, očeko ekávané výsledky se neměř ěří,, avšak ak deduktivně se odvozují ze známých zákonz konů za idealizovaných podmínek. PřinP ináší nové poznatky bez ohledu na to, zda je skutečně realizovatelný. Počítačové matematicky se simuluje průběh možných jevů postavený na aplikaci známých fyz. zákonů.

10 Fundamentáln lní experimenty Experimenty, které tvoří základní východiska pro utvářen ení fyzikáln lní teorie anebo ověř ěřují jejich významné teoretické dedukce se označuj ují jako fundamentální experimenty. Patří k nim jak významné experimenty heuristické,, tak některn které experimenty verifikační.

11 Vývoj náron ročnosti experimentu Někdejší romantika fyzikáln lního bádání. b Příkl.. ze 17. stol.: Otto v. Guericke experimentuje r.1672 s třect ecím elektrickým strojem :

12 Současn asné experimenty jsou náron ročné materiálov lově i lidsky (Americký urychlovač TEVATRON, 2 vědev dečtí asistenti uvnitř trubice 6,7 km dlouhé)

13 2. O poznatelnosti světa gnoseologie Gnoseologie (noetika, teorie poznání) ) jako filosofická disciplína, se vymezila jako nauka o poznání,, jeho zdrojích a příslup slušných podmínk nkách. Poznání je proces, při p i němžn subjekt (člověk jako pozorovatel nebo experimentátor tor) získává informace o objektu (předmětu poznávání), přičemp emž dochází k reflexi,, k vytvářen ení pokud možno věrnv rného (pravdivého) obrazu o objektu.

14 Otázka poznatelnosti objektu 1. Při i poznávání nesmí docházet k ovlivňov ování objektu subjektem, a tím t m ke zkreslení získávaných poznatků o něm. n 2. Oblast fyziky: Objekty megafyzikáln lní (k ovlivňov ování z principu docházet nemůž ůže) Objekty makrofyzikáln lní (ovlivňov ování je principu možné přizpůsobit podmínky experimentu, aby k němu nedocházelo) Objekty mikrofyzikáln lní (v důsledku d platnosti Heisenbergovy relace neurčitosti pro polohu a hybnost, resp. pro energii a časový interval, vznikají pochybnosti o možnosti úplného poznání mikrosvěta ta).

15 Filosofové a fyzici Od vlastní filosofie postupně oddělily disciplíny, které byly původnp vodně chápány jako filosofické - psychologie, logika, filosofie jazyka, filosofie vědyv a do jisté míry i fyzika (fyzika se např.. ještě ve 20.letech 20. stol. studovala na UK v Praze na filosofické fakultě). Odtržen ení fyziky od filosofie fyzikáln lnímu oboru do jisté míry pomohlo,, protože e ve 20. stol. došlo k prudkému rozvoji fyziky s četnými aplikacemi. Avšak citelně chybí těsnější interakce mezi obecnými fyzikáln lními obory a filosofií.. Trpí tím m jak filosofie (navíc filosofové často nejsou sto do hloubky chápat nejnovější fyzikáln lní poznatky), tak i fyzika (filosofie( pro ni vytváří potřebnou obecnou metodologii, a to právě v rámci gnoseologie).

16 Proces fyzikáln lního poznávání Čtyři i hypotézy o poznávání 1. Proces poznávání světa je neomezený. 2. Každý kvalitativně nový prostředek vytváří podmínky pro kvantitativní pokrok v procesu poznávání. 3. Relativní přírůstek poznatků o světě je úměrný časovému intervalu, v němž poznávac vací proces probíhá. 4. Získané fyzikáln lní poznatky o světě člověk cílevědomě využívá pro svou další činnost.

17 Neomezenost poznávání Člověk k je schopen poznat zejména vše v e to, co potřebuje poznat. Poznání bude vždy v pouze 1. částečné, 2. přibližné (závisl vislé na rozlišovac ovací schopnosti našich smyslových orgánů a přístrojp strojů), 3. relativní (podmíněné jak nedokonalostí smyslových orgánů člověka a použitých přístrojů,, tak i dosaženým stupněm m vývoje společnosti nosti).

18 O impulsech poznávání Kvalitativně nový prostředek (přístroj), zkonstruovaný na základz kladě aplikace dosavadních fyzikáln lních poznatků, vyvolá kvantitativní pokrok v další ším procesu poznávání. Několik příkladp kladů:

19 Dalekohled Příklady: G. Galilei (1609) Hubbleův kosmický dalekohled (1990) VLT (Very( Large Telescope) - chilské Andy (2004)

20 Hubbleův kosmický dalekohled schéma Hl. zrcadlo Ø2,4m dl. 13,1 m hmotnost 11,6 t

21 Hubbleův kosmický dalekohled provozní snímek

22 VLT (Very Large Telescope) 2004, chilské Andy 2635 m n.m.

23 VLT (Very Large Telescope) 4 dalekohledy, zrcadla Ø 8,2m, každé 45t

24 Mikroskop (1590 Z. Jansen) Elektronový mikroskop (1937) Dosahuje zvětšení až 10 5, (až 100krát větší než u optického mikroskopu). Rastrovacím elektronovým mikroskopem se podařilo zobrazit i jednotlivé atomy Kontura povrchu grafitu zobrazená na rastrovacím tunelovém elektronovém mikroskopu

25 Optická spektráln lní analýza Polarograf Cyklotron Laser (1960) (1859 W. R. Bunsen a G. Kirchhoff) ( ,, J. Heyrovský,, M. Shikata) (1930 E. O. Lawrence) Družice Země,, kosmické sondy a lodi (od roku 1957) Všechny tyto prostředky vedou ke zrychlování procesu poznávání

26 3. Fyzika v toku dějind Cesty fyzikáln lního poznávání nebývají přímé. Fyzikové často museli provést řadu dílčích d pozorování a experimentů než mohli provést jeden experiment fundamentáln lní. Hodnocení vývoje významných ých fyzikáln lních oborů: a) Klasická mechanika, b) Klasická teorie gravitace, c) Teorie elektromagnetického pole, d) Speciáln lní teorii relativity, e) Obecná teorie relativity, f) Kvantová fyzika, g) Atomová a jaderná fyzika.

27 Klasická mechanika Přednewtonovské období (L. da Vinci, G. B. Benedetti,, G. Galilei,, V. Viviani, G. A. Borelli,, R. Hooke,, M. Marci, Ch. Huygens). Newtonova syntéza (1687). Nelze označit určitý experiment za fundamentáln lní - s výjimkou Galileových pokusů s volným pádem p a pohybem po nakloněné rovině (Pisa, kolem r. 1590).

28 Klasická teorie gravitace Přednewtonovské období (přelom stol.): pozorování planet T. Brahem, analýza Joh. Keplerem - formulace třít zákonů o pohybu planet (1609, 1619). Zákon všeobecnv eobecné gravitace (Newton, 1686). Verifikace a měřm ěření gravitační konstanty - (Cavendish,, 1798).

29 Isaac Newton ( )

30 Cavendishovy torzní váhy (r. 1798, přesnost p 1%) m = 730 g M = 158 kg

31 Klasická teorie elektromagnetického pole Do konce 18. stol. byly známy jen některn které jevy z elektřiny a magnetismu, a to pouze kvalitativně a bez vzájemn jemné souvislosti. Roku 1785 provedl Coulomb fundamentáln lní experiment, při p i němžn měřil elektrostatické sily na torzních vahách. Kvantitativně forumuje silové půsovbení mezi dvěma bodovými náboji. n (Coulombova magnetostatická měření,, která předcházela, byla rovněž historicky významná).

32 Experimentáln lní počátky nauky o elektřin ině a magnetismu 1628: William Gilbert: Nová fyzika o magnetech, zmagnetizovaných tělesech a o velkém magnetu Zemi Shrnuje základnz kladní kvalitativní poznatky o elektřin ině a magnetismu své doby

33

34

35 Fundamentální Coulombův elektrostatický experiment (1785)

36 Fundamentáln lní Coulombův elektrostatický experiment

37 Coulombův zákon elektrostatiky (1785) Charles Augustin de Coulomb ( ) Popisuje silové působení mezi dvěma bodovými náboji v izolujícím m prostřed edí Fundamentáln lní zákon elektromagnetického pole

38 Zdroj stejnosměrn rného proudu Voltův článek (1800)

39 Elektrodynamika Roku 1820 provádí Oersted jednoduchý fundamentáln lní heuristický experiment

40 HANS CHRISTIAN OERSTED ( ) 1851) zahájil sérii s objevů o vzájemn jemné souvislosti elektrických a magnetických jevů

41 Biotův Savartův přístroj (1820)

42 Pierre Simon Marquis de Laplace ( ) Byl vynikajícím matematikem, fyzikem, astronomem. Na doporučení d Alemberta se stal profesorem na vojenské škole v Paříži. Jeho posluchačem byl také Napoleon Bonaparte Jeho největším přínosem je teorie pravděpodobnosti, teorie parciálních diferenciálních rovnic a teorie potenciálů. Elektromagnetismem se zabýval jen okrajově, ale přesto významně přispěl k jeho jasnému matematickému vyjádření.

43 André Mária Ampère ( ) Ampèr r inspirován Oertedovými pokusy, o kterých se dozvěděl l již 11. záříz 1820 na zasedání Akademie věd, v se pustil do intenzivní experimentátorsk torské a matematické práce a již za týden předlop edložil Akademii novou, jednotnou soustavu elektromagnetických zákonz konů,, které nazval elektrodynamika. Ampèr r zjišťoval, jak prostřednictv ednictvím magnetismu na sebe působp sobí dva proudovodiče.

44 Ampérův zákon o silovém m působenp sobení mg. pole na proudový element

45 Michael Faraday ( ) Ve 13ti letech se stal poslíčkem jednoho londýnského knihkupectví. Zde se později vyučil knihařem a jak sám říkal, knihy, které před den vázal po nocích, četl a to hlavně pojednání o elektřině v Britské encyklopedii. Od jednoho zákazníka vstupenku na cyklus přednášek z fyziky a chemie slavného vědce sira Humphreye Davyho ( ). Faraday tato přednášky nadšeně navštěvoval a zaujali ho natolik, že po ukončení cyklu v roce1813 požádal Davyho o přijetí za asistenta. Faraday měl geniální intuici a své výzkumy prováděl výhradně experimentálně. Protože neměl matematické vzdělání, nepoužíval matematiku a vyjadřoval se jen verbálně.

46 Michael Faraday - experiment Origináln lní kresby, kterými Faraday doplnil své poznámky: Skutečné provedení cívky:

47 Faradayovy experimenty s elektromagnetickou indukcí (1831)

48 Faradayovy experimenty s elektromagnetickou indukcí (1831) - schémata

49 Čtyři experimentální pilíře elektromagnetismu 1. Coulombův zákon kon elektrostatiky základní pilíř 2. Na základz kladě experimentů Biota, Savarta formuluje roku 1821 Laplace zákon - druhý pilíř elektromagnetismu zákon o magnetických účincích ch el. proudu. etí pilíř zákon o silovém m působenp sobení mg. pole na proudový element - formuluje Ampère na z 3. Třet na základě svého fundamentáln lního experimentu z roku Roku 1831 objevuje M. Faraday - zákon elektro- magnetické indukce.. K němu dospívá po sedmiletém experimentování (zákon lze z části teoreticky odvodit z předchozích zákonz konů) pak jde o fundamentáln lní experimenty verifikační.

50 Wilhelm Eduard Weber ( ) Po habilitaci vyučoval na univerzitě v Göttingenu. Zde navázal na osobní přátelství s Gaussem a spolupracoval s ním, zejména na teorii geomagnetismu. Poté působil na univerzitě v Lipsku. V 19. století byl v Německu považován za nejvyšší autoritu v elektromagnetismu. Weber vycházel z Ampèrovy elektrodynamiky a snažil se odstranit některé její nedostatky. Pokusil se přeformulovat Ampèrův zákon tak, aby zahrnoval i Coulombův zákon (formuloval zákon o silovém působení mezi dvěma pohybujícími se náboji).

51 Historický fundamentáln lní Weberův v exp. (1852( 1852) můstek mezi klasickou teorií elektromagnetického pole a teorií relativity

52 James Cleark Maxwell ( ) Narodil se v Edinburgu v rodině skotské šlechty (právě v roce 1831 Faraday elektromagnetickou indukci). nižší objevil Od roku 1850 studoval na univerzitě v Cambridge. V roce 1855 složil zkoušky ky učitelsku itelské způsobilosti na Trinity College a přednp ednáší hydrostatiku a optiku. V pedagogické práci však v přílip liš nevynikal a proto se vrátil domů do Skotska a do Cambridge se již nevrátil. Svůj čas tráví na svém m statku v Glenlairu,, kde jako soukromý vědec v dovršil svoji teorii elektromagnetismu, která roku 1873 vyšla pod názvem n A Treatise on Electricity nad Magnetism (Pojednání o elektřin ině a magnetismu) ve 2 svazcích ch mám dílo přes p 1000 stran.

53

54 Maxwellova syntéza (1873) vznik teorie elektromagnetického pole Maxwellovy rovnice elektromagnetického pole zobecňuj ují experimentáln lní poznatky elektrodynamiky Významným intuitivním Maxwellovým doplněním m bylo zavedení posuvného (Maxwellova( Maxwellova) proudu v dielektriku, který mám rovněž magnetické účinky. Jedním m z nejvýznamnější ších důsledkd sledků Maxwellovy teorie byl poznatek, že e rozruchy elektromagnetického pole se šíří formou transverzáln lních elektromagnetických vln. Maxwell také vypočítal šířen ení těchto vln - je shodná s rychlostí šířen ení světla ve vakuu.. Z toho vyvodil, že e světlo je elektromagnetické vlnění. Teoreticky odvodil vlastnosti elmg.. vln na rozhraní dvou různých r prostřed edí - platí stejné zákony jako pro světlo (zákon odrazu, Snelův zákon, polarizace) vytvořil pak elektromagnetickou teorii světla tla. Bohužel převzal p i éterovou teorii světla z r Experimentáln lního potvrzení své teorie šířen ení elektromagnetických vln se nedožil (smrt ve 48 letech) provedl je aža 9 r. poté (1888) Hertz.

55 ( ) Heinrich Rudolf Hertz - experiment

56 Speciáln lní teorie relativity Michelsonův-Morley Morleyův fundamentáln lní experiment (1881, 1887)

57 Speciáln lní teorie relativity Albert Einstein (1879 ( ) STR vytvořil v květnu červnu 1905 za 6 týdnů

58 Speciáln lní teorie relativity má hluboké kořeny vychází ze 120letého vývoje nauky o elektřin ině a magnetismu. Osobnosti: Maxwell (1872), Poincaré, Lorentz ( ) 1905) pokusy o řešení krize vyplývající ze zavedení éteru teru -neopustili éter ter princip STR Maxwell Poincaré Lorentz

59 Zur Elektrodynamik bewegter Körper, Einstenův čl. uveřejněný v Annalen der Physik 9/1905

60 Obecná teorie relativity - teorie gravitace Spec. teor.. relativity STR STR (Einstein, 1905) úspěchy (přehodnocen ehodnocení pohledu na prostor a čas s důsledky d v mechanice a elektrodynam.); - nedostatek (nezahrnuje gravitaci). Obecná teor.. relativity OTR OTR (Einstein, ) 1. východisko: rozší šíření na neinerciáln lní soustavy 2. východisko: Machův v princip (1872) o původu p setrvačných sil 3. východisko: rovnost setrvačné a gravitační hmotnosti (zkoumání trvající 300 let od Galilea (1590) a vrcholící velmi přesnými p měřeními R. Eötwöse (1896)

61 Kvantová fyzika Fotoelektrický jev Fotoelektrický jev je jev který nastává při i ozářen ení kovové destičky světlem určit ité vlnové délky. Dopadající světlo emituje z povrchu kovu elektrony a obvodem prochází proud (bez dopadu světla proud neproch tla proud neprochází).

62 Rovnice pro fotoelektrický jev E k je kinetická energie vyletujícího elektronu, h f energie dopadajícího fotonu a W 0 výstupní práce (tj. energie nutná k uvolněni ni elektronu z atomu). Max Planck ( ,, objevitel kvanta pro výklad zářenz ení černého tělesa) Albert Einstein ( ,, autor kvantového výkladu fotoefektu fyzikáln lní obsah kvanta a jeho fyzikáln lní využit ití)

63 Comptonův rozptyl (1923) Compton vysvětlil své pozorování interakce fotonu rtg.. zářenz ení s elektronem představou p o světle jako proudu fotonů. Změnu vlnové délky přisoudil p interakci fotonu s elektronem ze vzorku uhlíku. Foton předp edá část své energie a hybnosti elektronu a tento úbytek se projeví změnou jeho vlnové délky přesně podle kvantové a relativistické teorie: Arthur Holly Compton

64 4. Fyzika jako základ z ostatních přírodních věd v d a medicíny 4.1 Chemie, biologie Chemie, biologie Historický základ obou oborů empirický a nezávislý na fyzice, avšak vývoj poznání ve fyzice, chemii a biologii ukázal kontinuitu a vzájemnou provázanost poznatků. Fyzika se zabývá především atomem a jeho jádrem, avšak i stavbou atomů do molekul Hlavním zájmem chemie je molekula (v dnešní době především makromolekula), avšak soustřeďuje se i na atom (viz slavnou Mendělejevovu tabulku). Předmětem biologie je molekula a její stavba do neživé a především živé přírodní makrostruktury. Viz např. současné poznatky při rozluštění složitého genu DNA.

65 4.2 Matematika Matematiku současná klasifikace věd za přírodní vědu nepovažuje. Historicky jednotlivé matematické obory vznikaly a rozvíjely se dle potřeb především fyziky (avšak i geometrie např. diferenciální počet). Nejlépe je to vidět na životní cestě L. Eulera ( ), původně vojenského inženýra, poté fyzika a nakonec největšího matematika všech dob. Některé matematické obory vznikaly bez bezprostředních potřeb praxe ( uměle na základě intelektuálních tužeb svých tvůrců). Příkladem je neeuklidovská geometrie a s ní související tenzorový počet, které se rozvíjely celé 19. stol. až Nebýt této intelektuální iniciativy matematiků tak by A. Einstein vprůběhu let 1907 až 1915 zřejmě nebyl schopen vytvořit obecnou teorii relativity.

66 4.3 Moderní medicína Moderní medicína se bez poznatků fyziky neobejde, např.: Rentgen (fyzikálně 1895) CT zobrazení (fyzikálně 1958), Laserový skalpel (fyzikálně 1960) Radioterapie (fyzikálně 30. léta) Hadronová terapie (konec 20. stol.)

67 5. Fyzika jako základ techniky Fyzika, jako věda poskytující modely chování fyzikálních objektů a modely jejich struktur, má především velmi pragmatické vyústění v technických aplikacích. V historii společnosti lze najít řadu příkladů, kdy aplikace výsledků poznávání silně zasáhla do dalšího vývoje a chování celé společnosti. Zmíním např. Mechaniku proudění tekutin, Elektrotechniku, Aplikaci elektromagnetického vlnění v telekomunikacích, Mikroelektroniku, Jadernou energetiku.

68 Mikroelektronika, výpočetn etní technika, IT Na počátku vývoje mikroelektroniky stáli fyzikové s objevem a použitím tranzistoru. Tranzistor byl teoreticky popsán již roku 1928 J. Lilienfeldem a roku 1934 O. Heilem. Avšak až objev PN-přechodu na polovodičích, který učinil roku 1939 W. Schottky, umožnil v roce 1948 konstrukci funkčního tranzistoru (Bardeen, Brattain, Shockley). Od 60. let následoval intenzivní aplikovaný výzkum a poté hromadná výroba. Začaly se vyrábět integrované obvody se stále větší hustotou integrace. Od 80. let mikroprocesory určené zejména do stolních počítačů. Např. mikroprocesor Intel Pentium-M (Banias) o plošném obsahu asi cm2, používaný pro svou nízkou spotřebu zejména v noteboocích, obsahuje 77 milionů tranzistorů, pracuje s frekvencí 1,6 GHz a má 1 MB vyrovnávací paměti.

69 Mikroprocesor Power PC 620 Motorola 7 milionů tranzistorů v několika vrstvách

70 Historie techniky a fyziky jako motivační činitel pro mláde dež Technicky a umělecky dokonalé přístroje: Rovníkové sluneční hodiny (1764), NTM Praha Magnetometr (1850), Deutsches Museum Mnichov

71 Dopravní hala v NTM v Praze (2011); sportovní automobil WIKOV (Prostějov) 1929; motocykl LAURIN & KLEMENT 1905

72 6. Problémy, trendy a perspektivy současn asné fyziky 6.1 Obecná teorie relativity detektory gravitačních vln Italský laserový interferometr VIRGO, r. 2003, Pisa, délka d ramen 3 km

73 Vesmírný interferometr LISA (2012)? (délka stran : 5 milionů km)

74 6.2 Fyzika mikrosvěta standardní model Standardní model -tři generace fundamentálních fermionů (částic se spinem 1/2), které se dále dělí na: kvarky (u up, d down, s strange, c charm, t top, b bottom), každý ve třech stavech jako barvy. leptony. (e elektron, μ - mion, τ - tau a příslušná neutrina ν e, ν μ, ν τ ). Ke všem těmto částicím přísluší ještě antičástice. Mezi kvarky působí čtyři druhy sil: gravitační, elektromagnetické, slabé a silné:

75 Problémy standardního modelu Na leptony silná interakce nepůsobí. Silná interakce umožňuje např. existenci jader atomů, slabá interakce způsobuje např. radioaktivní rozpad beta. Na přelomu 60. a 70. let se podařilo najít sjednocení elektromagnetické a slabé interakce (Weinbergova-Salamova- Glashowova teorie). Současný výzkum se mj. soustřeďuje na nalezení teorie velkého sjednocení (GUT Grand Unified Theory), která by sjednocovala zatím tři uvedené interakce (mimo gravitační interakci). Aktuální je problém Higgsova bosonu (H) a jeho intenzivní hledání. Jeho pravděpodobná existence vyplývá z teorie sjednocené elektroslabé interakce a dá se jím např. vysvětlit proč elektromagnetická interakce má velký dosah a slabá interakce jen velmi malý dosah. Také vysvětluje proč intermediální částice vektorové bosony W +, W - a Z 0 jsou těžké a intermediální fotony mají nulovou klidovou hmotnost.

76 6.3 Obří urychlovače částic v úsilí za poznáním mikrosvěta a megasvěta Tevatron energie protonů až 2 TeV Fermilab u Chicaga, průměr dráhy 2 km

77 LHC urychlovač CERN CERN - Ženeva,, 2008

78 LHC urychlovač CERN - Ženeva r. 2008, délka d obvodu trubice 27 km, energie 2x7 TeV

79 LHC urychlovač CERN - Ženeva detektor ATLAS

80 LHC urychlovač CERN-Ženeva nádrže e s tekutým heliem

81 6.4 Výkonové lasery na cestě za poznáním hmoty v extrémních podmínkách Hned po roce 1960, kdy byl objeven generátor koherentního světla, laser, se nabízela řada fyzikálních aplikací, mezi nimiž zaujalo místo zejména zkoumání plazmatu za extrémních teplot a možnost uskutečnění fúze lehkých jader na těžší. Jeden ze tří obřích evropských laserů pracuje od r ve Fyzikálním ústavu a v Ústavu plazmatu AV v Praze pod názvem PALS. Jeho trubice o délce 160 m, lomená do 5 částí, generuje záření o vlnové délce 1315 nm. Je to pulsní laser na bázi plynného jódu, který má výstupní energii o hustotě asi W/cm 2 s opakovacími pulsy po 22 min.

82 PALS AV Praha: : sál s LASERu

83 PALS AV Praha: terčov ová zařízen zení,, interakční komory

84 PALS AV Praha: : velín n a měřm ěřicí komora

85 ELI Česká republika Výkon 20 až 50 PW (1 PetaW = W) v časových intervalech 20 fs s opakovací frekvencí 10Hz.

86 6.5 Cesty k uskutečnění řízené termojaderné fúze Jaderná energetika využívá vazební energie nukleonů (protonů a neutronů) ) v jádře. j Dvě možnosti: 1) štěpení těžkých jader (uran 235) 2) fúze lehkých jader (vodík k na helium)

87 Jaderná elektrárna rna

88 Problémy jaderné energetiky a perspektivy Jaderná energetika, založená na štěpení jádra není perspektivní: zdůvodu omezených zásob štěpného materiálu, pro ekologické problémy, které provoz JE přináší. Východiskem se jeví zvládnutí řízené fúze lehkých jader, která je energeticky asi 7krát výhodnější než štěpná reakce a neprovází ji ekologické problémy. Zásoby deuteria na Zemi jsou značné v mořské vodě (uvádí se, že 1 km 3 mořské vody obsahuje v přítomné těžké vodě tolik deuteria, že jeho syntézou na helium se získá tolik energie jako spálením všech zbývajících světových zásob ropy).

89 Fúze deuteria pomocí tokamaku Je nutné dosáhnout tlak teploty jaká panuje na Slunci (především vytvořit nesmírně vysokou teplotu řádu 10 8 K) Pokusný tokamak Univerzity v Princetonu, USA:

90 Projekt EU laserového zařízení HiPER (měl by uskutečňovat fúzi o výkonu 500 MW)

91 Závěr Fyzika je krásn sná a užiteu itečná věda stojí za to ji studovat a pěstovatp stovat. Poznání světa a proces jeho technických i jiných aplikací je proces neukončený ený a neukončitelný itelný. Na úplný závěr z r jeden citát t Alberta Einsteina, z něhož je cítit c optimistický pohled vědce v do budoucna: Nejnepochopitelnější věcí na světě je, že e svět t je pochopitelný.

92 Děkuji za pozornost! Videoprezentace o perspektivách perspektiva uskutečnění jaderné fúze pomocí laseru (14 min.)

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

Maturitní otázky z předmětu FYZIKA

Maturitní otázky z předmětu FYZIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákon Relativnost klidu a pohybu, klasifikace pohybů z hlediska

Více

Maturitní témata profilová část

Maturitní témata profilová část SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně

Více

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

postaven náš svět CERN

postaven náš svět CERN Standardní model elementárních částic a jejich interakcí aneb Cihly a malta, ze kterých je postaven náš svět CERN Jiří Rameš, Fyzikální ústav AV ČR, v.v.i. Czech Teachers Programme, CERN, 3.-7. 3. 2008

Více

ELEKTROMAGNETICKÁ INTERAKCE

ELEKTROMAGNETICKÁ INTERAKCE ELEKTROMAGNETICKÁ INTERAKCE Základní informace Působení výběrové (na Q e 0) Dosah Symetrie IM částice nekonečný U(1) loc γ - foton Působení interakce: Elektromagnetická interakce je výběrová interakce.

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Maturitní otázky z fyziky Vyučující: Třída: Školní rok:

Maturitní otázky z fyziky Vyučující: Třída: Školní rok: Maturitní otázky z fyziky Vyučující: Třída: Školní rok: 1) Trajektorie, dráha, dráha 2) Rychlost 3) Zrychlení 4) Intenzita 5) Práce, výkon 6) Energie 7) Částice a vlny; dualita 8) Síla 9) Náboj 10) Proudění,

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II.

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II. Předmět: Technická fyzika III.- Jaderná fyzika Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY Jméno:Martin Fiala Obor:MVT Ročník:II. Datum:16.5.2003 OBECNÁ TEORIE RELATIVITY Ekvivalence

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 9. ročník M.Macháček : Fyzika 8/1 (Prometheus ), M.Macháček : Fyzika 8/2 (Prometheus ) J.Bohuněk : Pracovní sešit k učebnici fyziky 8

Více

FRANĚK A., FENDRYCHOVÁ K.: TEORIE STRUN, SUPERSTRUN A M-TEORIE

FRANĚK A., FENDRYCHOVÁ K.: TEORIE STRUN, SUPERSTRUN A M-TEORIE TEORIE STRUN, SUPERSTRUN A M-TEORIE Aleš Franěk, Kristýna Fendrychová 4. A, Gymnázium Na Vítězné pláni 1160, Praha 4, 140 00, šk. rok 2005/2006 Abstrakt: Tento článek by měl přiblížit základní myšlenku

Více

Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti"

Evropský sociální fond Praha a EU: Investujeme do vaší budoucnosti Střední škola umělecká a řemeslná Projekt Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Fyzika Obory nástavbového studia

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika. 4.8.13. Fyzikální seminář Předmět Fyzikální seminář je vyučován v sextě, septimě a v oktávě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Fyzikální seminář vychází ze vzdělávací oblasti

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

5.5 Vzdělávací oblast - Člověk a příroda 5.5.1.1 Fyzika 5.5.1.2 Blok přírodovědných předmětů - Fyzika

5.5 Vzdělávací oblast - Člověk a příroda 5.5.1.1 Fyzika 5.5.1.2 Blok přírodovědných předmětů - Fyzika 5.5 Vzdělávací oblast - Člověk a příroda 5.5.1 Fyzika 5.5.2 Blok přírodovědných předmětů - Fyzika Ročník 3. 4. Hodinová dotace Fyzika 2 2 0 0 Hodinová dotace Blok přírodovědných předmětů - fyzika 0 0 R

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

Látka a těleso skupenství látek atomy, molekuly a jejich vlastnosti. Fyzikální veličiny a jejich měření fyzikální veličiny a jejich jednotky

Látka a těleso skupenství látek atomy, molekuly a jejich vlastnosti. Fyzikální veličiny a jejich měření fyzikální veličiny a jejich jednotky Vyučovací předmět Fyzika Týdenní hodinová dotace 1 hodina Ročník Prima Roční hodinová dotace 36 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy prakticky rozeznává vlastnosti látek a těles

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

Fyzika pro 6.ročník. mezipředmětové vztahy. výstupy okruh učivo dílčí kompetence. poznámky. Ch8 - atom

Fyzika pro 6.ročník. mezipředmětové vztahy. výstupy okruh učivo dílčí kompetence. poznámky. Ch8 - atom Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektrostatika: Elektřina pro bakalářské obory Souvislost a analogie s mechanikou. Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, UK.LF Elektrostatika: Souvislost a analogie s mechanikou. Elektron

Více

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19 Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 7. 1. 2013 Pořadové číslo 10 1 Astronomie Předmět: Ročník: Jméno autora: Fyzika

Více

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení

Více

Podmínky pro hodnocení žáka v předmětu fyzika

Podmínky pro hodnocení žáka v předmětu fyzika Podmínky pro hodnocení žáka v předmětu fyzika Obecná pravidla: Při klasifikaci písemných prací bude brán jako zaklad tento klasifikační systém: pro stupeň výborný 100% až 90% chvalitebný do 70% dobrý do

Více

Charakteristika předmětu:

Charakteristika předmětu: Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací

Více

Vzdělávací obor fyzika

Vzdělávací obor fyzika Kompetence sociální a personální Člověk a měření síly 5. technika 1. LÁTKY A TĚLESA Žák umí měřit některé fyz. veličiny, Měření veličin Neživá měření hmotnosti,objemu, 4. zná některé jevy o pohybu částic,

Více

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie Kvarta 2 hodiny týdně Pomůcky, které

Více

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI?

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? FYZIKA na LF MU cvičná 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? A. kandela, sekunda, kilogram, joule B. metr, joule, kalorie, newton C. sekunda,

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM.

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Ondřej Grover 3. minikonference projektu Cesta k vědě, 11.1.2011 Osnova prezentace 1 Motivace Jaderná fúze Jak udržet plazma Měření

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Magnetismus 1. ročník Učební obor: Kuchař číšník Kadeřník 2 - magnetické pole, magnetické pole elektrického proudu, elektromagnetická

Více

OSMILETÉ GYMNÁZIUM BUĎÁNKA, o.p.s. TEMATICKÉ PLÁNY TEMATICKÝ PLÁN (ŠR 2010/11)

OSMILETÉ GYMNÁZIUM BUĎÁNKA, o.p.s. TEMATICKÉ PLÁNY TEMATICKÝ PLÁN (ŠR 2010/11) TEMATICKÝ PLÁN (ŠR 20/11) (UČEBNÍ MATERIÁLY Prima Macháček M., Rojko M. a kol. kolem nás 1, Scientia Motivace ke studiu fyziky Motivace ke studiu fyziky 4 Vlastnosti látek Rozlišení kapalin a plynů, odlišnosti

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Mechanika úvodní přednáška

Mechanika úvodní přednáška Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Fyzika 7. ročník Vzdělávací obsah

Fyzika 7. ročník Vzdělávací obsah Fyzika 7. ročník Druhy látek a jejich vlastnosti Pohyb a síla Skupenství látek Vlastnosti pevných látek Vlastnosti kapalin Vlastnosti plynů Tlak v kapalinách a plynech Hydrostatický a atmosférický tlak

Více

4.5 VZDĚLÁVACÍ OBLAST ČLOVĚK A PŘÍRODA 4.5.1 Fyzika

4.5 VZDĚLÁVACÍ OBLAST ČLOVĚK A PŘÍRODA 4.5.1 Fyzika 4.5 VZDĚLÁVACÍ OBLAST ČLOVĚK A PŘÍRODA 4.5.1 Fyzika 1. 2. 3. 4. Hodinová dotace 2 2 2 1 Realizuje obsah vzdělávacích oborů RVP ZV. Při vyučování mají žáci získat základní přehled o zákonitostech fyzikálních

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ĆLOVĚK A PŘÍRODA FYZIKA Mgr. Zdeněk Kettner

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ĆLOVĚK A PŘÍRODA FYZIKA Mgr. Zdeněk Kettner CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ĆLOVĚK A PŘÍRODA FYZIKA Mgr. Zdeněk Kettner Vyučovací předmět fyzika je zařazen samostatně v 6. 9. ročníku v těchto hodinových dotacích: 6.

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o. POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku

Více

Pracovní list: Opakování učiva sedmého ročníku. Fyzikální veličiny. Fyzikální jednotky. Fyzikální zákony. Vzorce pro výpočty 100 200.

Pracovní list: Opakování učiva sedmého ročníku. Fyzikální veličiny. Fyzikální jednotky. Fyzikální zákony. Vzorce pro výpočty 100 200. Pracovní list: Opakování učiva sedmého ročníku 1. Odpovězte na otázky: Fyzikální veličiny Fyzikální jednotky Fyzikální zákony Měřidla Vysvětli pojmy Převody jednotek Vzorce pro výpočty Slavné osobnosti

Více

Charakteristika vyučovacího předmětu Fyzika ŠVP LMP

Charakteristika vyučovacího předmětu Fyzika ŠVP LMP Charakteristika vyučovacího předmětu Fyzika ŠVP LMP Obsahové, časové a organizační vymezení vyučovacího předmětu Fyzika Vyučovací předmět Fyzika je tvořen z obsahu vzdělávacího oboru ze vzdělávací oblasti

Více

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární

Více

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty Známe už definitivní iti model vesmíru? Michael Prouza Klasický pohled na vývoj vesmíru Fid Fridmanovo řešení š í Einsteinových rovnic podle množství hmoty (a energie) se dá snadno určit osud vesmíru tři

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem je zprostředkovat základní fyzikální poznatky potřebné v odborném i dalším vzdělání a praktickém životě a také naučit žáky

Více

Obsah: 0. Modul 1 MECHANIKA 10

Obsah: 0. Modul 1 MECHANIKA 10 Obsah: 0 Informace o projektu 5 Úvod 6 Pokyny ke studiu 7 Literatura 9 Modul 1 MECHANIKA 10 1.1 Úvodní pojmy 10 1.1.1. Soustava fyzikálních veličin s jednotek 11 1.1.2. Skalární a vektorové fyzikální veličiny

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Elektrostatické urychlovače Indukční urychlovače Rezonanční urychlovače

Více

VY_32_INOVACE_G 19 01

VY_32_INOVACE_G 19 01 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

Název: Elektromagnetismus 1. část (Oerstedův pokus)

Název: Elektromagnetismus 1. část (Oerstedův pokus) Výukové materiály Název: Elektromagnetismus 1. část (Oerstedův pokus) Téma: Magnetické pole vodiče s proudem, magnetické pole cívky Úroveň: 2. stupeň ZŠ, případně SŠ Tematický celek: Vidět a poznat neviditelné

Více

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami. L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Studenti SOŠ a SOU Kuřim s.r.o. na fyzikálních praktikách na Přírodovědecké fakultě Masarykovy univerzity

Studenti SOŠ a SOU Kuřim s.r.o. na fyzikálních praktikách na Přírodovědecké fakultě Masarykovy univerzity Studenti SOŠ a SOU Kuřim s.r.o. na fyzikálních praktikách na Přírodovědecké fakultě Masarykovy univerzity Dne 20.12.2012 se studenti prvních ročníků maturitních oborů SOŠ a SOU Kuřim s.r.o. informační

Více

5.6. Člověk a jeho svět

5.6. Člověk a jeho svět 5.6. Člověk a jeho svět 5.6.1. Fyzika ŠVP ZŠ Luštěnice, okres Mladá Boleslav verze 2012/2013 Charakteristika vyučujícího předmětu FYZIKA I. Obsahové vymezení Vyučovací předmět Fyzika vychází z obsahu vzdělávacího

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV Filozofické problémy přírodních věd Teorie a zákon Lukáš Richterek Katedra experimentální fyziky PF UP, 17 listopadu 1192/12, 771 46 Olomouc lukasrichterek@upolcz Podklad k předmětu KEF/FPPV 2 / 10 Logické

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

A Large Ion Collider Experiment

A Large Ion Collider Experiment LHC není pouze Large Hadron Collider ATLAS ALICE CMS LHCb A Large Ion Collider Experiment Alenka v krajině ě velmi horké a husté éjaderné éhmoty a na počátku našeho vesmíru Díky posledním pokrokům se v

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek Fyzika 6. ročník Očekávaný výstup Školní výstup Učivo Mezipředmětové vztahy, průřezová témata Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí.

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

VÝUKA FYZIKY NA FAKULTĚ ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VUT V BRNĚ. Pavel Koktavý

VÝUKA FYZIKY NA FAKULTĚ ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VUT V BRNĚ. Pavel Koktavý VÝUKA FYZIKY NA FAKULTĚ ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VUT V BRNĚ Pavel Koktavý Ústav fyziky Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně Představení FEKT

Více

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita

Více

MATURITNÍ OKRUHY Z FYZIKY

MATURITNÍ OKRUHY Z FYZIKY MATURITNÍ OKRUHY Z FYZIKY 1.a) Kinematika hmotného bodu Hmotný bod, poloha hmotného bodu, vztažná soustava. Trajektorie a dráha, hm. bodu, průměrná a okamžitá rychlost, okamžité zrychlení. Klasifikace

Více

100 let od vzniku speciální teorie relativity

100 let od vzniku speciální teorie relativity Natura 20. května 2005 100 let od vzniku speciální teorie relativity zpracoval: Jiří Svršek 1 podle článku Romana Ya. Kezerashviliho Abstract V roce 2005 uplynulo 100 let od zformulování speciální teorie

Více