Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Rozměr: px
Začít zobrazení ze stránky:

Download "Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení"

Transkript

1 Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky

2 Obsah přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

3 Plán přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

4 Kde je dobré číst? Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s programem Maple, MU Brno, 999, 73 s.

5 Kde je dobré číst? Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s programem Maple, MU Brno, 999, 73 s. Riley, K.F., Hobson, M.P., Bence, S.J. Mathematical Methods for Physics and Engineering, second edition, Cambridge University Press, Cambridge 4, ISBN , xxiii + 3 pp.

6 Plán přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

7 Definition Funkce f : R n R je diferencovatelná v bodě x, jestliže v bodě x existují všechny směrové derivace d v f (x), v R n, d v f (x) je lineární v závislosti na přírůstku v a 3 = lim v v ( f (x + v) f (x) dv f (x) ).

8 Definition Funkce f : R n R je diferencovatelná v bodě x, jestliže v bodě x existují všechny směrové derivace d v f (x), v R n, d v f (x) je lineární v závislosti na přírůstku v a 3 = lim v v ( f (x + v) f (x) dv f (x) ). Theorem Nechť f : E n R je funkce n proměnných, která má v okolí bodu x E n spojité parciální derivace. Pak existuje její diferenciál df v bodě x a jeho souřadné vyjádření je dáno rovnicí df = f x dx + f x dx + + f x n dx n. ( )

9 Diferenciál zadává tečné (nad)roviny funkce n proměnných y x y x Graf funkce f (x, y) = sin(x) cos(y), červená čára je obrazem křivky c(t) = (t, t, f (t, t)).

10 Diferenciál zadává tečné (nad)roviny funkce n proměnných y x y x Graf funkce f (x, y) = sin(x) cos(y), červená čára je obrazem křivky c(t) = (t, t, f (t, t)). Diferencovatelná funkce f na E n v bodě x E n má nulový diferenciál tehdy a jen tehdy, když její složení s libovolnou křivkou procházející tímto bodem zde má stacionární bod.

11 Diferenciál zadává tečné (nad)roviny funkce n proměnných y x y x Graf funkce f (x, y) = sin(x) cos(y), červená čára je obrazem křivky c(t) = (t, t, f (t, t)). Diferencovatelná funkce f na E n v bodě x E n má nulový diferenciál tehdy a jen tehdy, když její složení s libovolnou křivkou procházející tímto bodem zde má stacionární bod. To ovšem neznamená, že v takovém bodě musí mít f aspoň lokálně buď maximum nebo minimum. Stejně jako u funkcí jedné proměnné můžeme rozhodovat teprve podle derivací vyšších.

12 Pro pevný přírůstek v R n je vyčíslení diferenciálů na tomto přírůstku opět (diferenciální) operace na funkcích f : E n R f d v f = df (v). Výsledkem je df (v) : E n R. Jestliže je tato funkce opět diferencovatelná, můžeme iterovat.

13 Pro pevný přírůstek v R n je vyčíslení diferenciálů na tomto přírůstku opět (diferenciální) operace na funkcích f : E n R f d v f = df (v). Výsledkem je df (v) : E n R. Jestliže je tato funkce opět diferencovatelná, můžeme iterovat. Pro parciální derivace druhého řádu píšeme ( x j x i )f = x i x j f = v případě opakované volby i = j píšeme také ( x i x i )f = x i f f = f x i x i x j.

14 Úplně stejně postupujeme při dalších iteracích a hovoříme o parciálních derivacích k-tého řádu k f x i... x ik. Theorem Nechť f : E n R je k-krát diferencovatelná funkce se spojitými parciálními derivacemi až do řádu k včetně v okolí bodu x R n. Pak všechny parciální derivace nezávisí na pořadí derivování.

15 Definition Je-li f : R n R libovolná dvakrát diferencovatelná funkce, nazýváme symetrickou matici funkcí ( ) f x f x (x)... f x x n (x) Hf (x) = (x) =. x i x j.... f x n x (x)... f x n x n (x) Hessián funkce f v bodě x.

16 Pro křivku c(t) = (x(t), y(t)) = (x + ξt, y + ηt) mají funkce α(t) = f (x(t), y(t)) ( f β(t) = f (x, y ) + t x (x, y )ξ + f ) y (x, y )η + ( ) t f xx (x, y )ξ + f xy (x, y )ξη + f yy (x, y )η stejné derivace do druhého řádu včetně.

17 Pro křivku c(t) = (x(t), y(t)) = (x + ξt, y + ηt) mají funkce α(t) = f (x(t), y(t)) ( f β(t) = f (x, y ) + t x (x, y )ξ + f ) y (x, y )η + ( ) t f xx (x, y )ξ + f xy (x, y )ξη + f yy (x, y )η stejné derivace do druhého řádu včetně. Funkci β píšeme vektorově: ( ) ξ β(t) = f (x, y ) + tdf (x, y ) + ( ) ξ η t (ξ η) Hf (x, y ) η

18 Pro křivku c(t) = (x(t), y(t)) = (x + ξt, y + ηt) mají funkce α(t) = f (x(t), y(t)) ( f β(t) = f (x, y ) + t x (x, y )ξ + f ) y (x, y )η + ( ) t f xx (x, y )ξ + f xy (x, y )ξη + f yy (x, y )η stejné derivace do druhého řádu včetně. Funkci β píšeme vektorově: ( ) ξ β(t) = f (x, y ) + tdf (x, y ) + ( ) ξ η t (ξ η) Hf (x, y ) η nebo β(t) = f (x, y ) + tdf (x, y )(v) + t Hf (x, y )(v, v), kde v = (ξ, η) = c (t) je přírůstek zadaný derivací křivky c(t) a Hessián symetrická forma.

19 Použití Hessiánu připomíná Taylorovu větu funkcí jedné proměnné! y 4 x y 4 x 3 Tečná rovina je vynesena spolu s kvadratickým přiblížením pro funkci f (x, y) = sin(x) cos(y).

20 Použití Hessiánu připomíná Taylorovu větu funkcí jedné proměnné! y 4 x y 4 x 3 Tečná rovina je vynesena spolu s kvadratickým přiblížením pro funkci f (x, y) = sin(x) cos(y). Obecně pro funkce f : E n R, body x = (x,..., x ) E n a přírůstky v = (ξ,..., ξ n ) klademe D k f (x)(v) = i,...,i k n k f x i... x ik (x,..., x n ) ξ i ξ ik.

21 Ukažme ve dvou proměnných:

22 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y )

23 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y ) Aproximace pomocí hesiánu: f (x, y ) + D (x, y )(x x, y y ) + D (x, y )f (x x, y y )

24 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y ) Aproximace pomocí hesiánu: f (x, y ) + D (x, y )(x x, y y ) + D (x, y )f (x x, y y ) výraz třetího řádu D 3 f (x, y)(ξ, η) = 3 f x 3 ξ f x y ξ η f x y ξη + 3 f y 3 η3

25 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y ) Aproximace pomocí hesiánu: f (x, y ) + D (x, y )(x x, y y ) + D (x, y )f (x x, y y ) výraz třetího řádu D 3 f (x, y)(ξ, η) = 3 f x 3 ξ f x y ξ η f x y ξη + 3 f y 3 η3 a obecně D k f (x, y)(ξ, η) = k l= ( ) k k f l x k l y l ξk l η l.

26 Theorem Nechť f : E n R je k krát diferencovatelná funkce v okolí O δ (x) bodu x E n. Pro každý přírůstek v R n s velikostí v < δ pak existuje číslo θ takové, že f (x + v) = f (x) + D f (x)(v) k! Dk f (x + θ v)(v). (k )! Dk f (x)(v)

27 Theorem Nechť f : E n R je k krát diferencovatelná funkce v okolí O δ (x) bodu x E n. Pro každý přírůstek v R n s velikostí v < δ pak existuje číslo θ takové, že f (x + v) = f (x) + D f (x)(v) k! Dk f (x + θ v)(v). (k )! Dk f (x)(v) Náznak důkazu: Pro přírůstek v R n volíme c(t) = x + tv v E n a zkoumáme ϕ : R R definovanou složením ϕ(t) = f c(t). Taylorova věta pro funkce jedné proměnné říká: ϕ(t) = ϕ() + ϕ ()t + + (k )! ϕ(k ) ()t k + k! ϕ(k) (θ)t k. Zbývá nám tedy jen ověřit, že postupným derivováním složené funkce ϕ dostaneme právě požadovaný vztah. To lze provést indukcí přes řád k.

28 Definition Vnitřní bod x E n definičního oboru funkce f je (lokálním) maximem nebo minimem, jestliže existuje jeho okolí U takové, že pro všechny body x U splňuje funkční hodnota f (x) f (x ) nebo f (x) f (x ). Pokud nastává v předchozích nerovnostech ostrá nerovnost pro všechny x x, hovoříme o ostrém extrému. Vnitřní bod x E n definičního oboru funkce f, ve kterém je diferenciál df (x) nulový nazýváme stacionární bod funkce f.

29 Definition Vnitřní bod x E n definičního oboru funkce f je (lokálním) maximem nebo minimem, jestliže existuje jeho okolí U takové, že pro všechny body x U splňuje funkční hodnota f (x) f (x ) nebo f (x) f (x ). Pokud nastává v předchozích nerovnostech ostrá nerovnost pro všechny x x, hovoříme o ostrém extrému. Vnitřní bod x E n definičního oboru funkce f, ve kterém je diferenciál df (x) nulový nazýváme stacionární bod funkce f. Nutnou podmínkou pro existenci maxima nebo minima v bodě x je vymizení diferenciálu v tomto bodě, tj. df (x ) =. Skutečně, pokud je df (x ), pak existuje směr v, ve kterém je d v f (x ). Pak ovšem nutně je podél přímky x + tv na jednu stranu od bodu x hodnota funkce roste a na druhou klesá.

30 Uvažme funkci f (x, y) = sin(x) cos(y), která připomíná známá kartonová plata na vajíčka,5 -,

31 Spočtěme si první a poté druhé derivace: f x (x, y) = cos(x) cos(y), f y (x, y) = sin(x) sin(y), takže obě derivace budou nulové pro dvě sady bodů cos(x) =, sin(y) =, to je (x, y) = ( k+ π, lπ), pro libovolné k, l Z cos(x) =, sin(y) =, to je (x, y) = (kπ, l+ π), pro libovolné k, l Z.

32 Spočtěme si první a poté druhé derivace: f x (x, y) = cos(x) cos(y), f y (x, y) = sin(x) sin(y), takže obě derivace budou nulové pro dvě sady bodů cos(x) =, sin(y) =, to je (x, y) = ( k+ π, lπ), pro libovolné k, l Z cos(x) =, sin(y) =, to je (x, y) = (kπ, l+ π), pro libovolné k, l Z. Druhé parciální derivace jsou ( ) ( ) fxx f Hf (x, y) = xy sin(x) cos(y) cos(x) sin(y) (x, y) = cos(x) sin(y) sin(x) cos(y) f xy f yy

33 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro.

34 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro. Taylorova věta pro řád k = dává okolí stacionárních bodů (x, y ) f (x, y) = f (x, y )+ Hf (x +θ(x x ), y +θ(y y ))(x x, y y ), kde Hf nyní vnímáme jako kvadratickou formu vyčíslenou na přírůstku (x x, y y ).

35 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro. Taylorova věta pro řád k = dává okolí stacionárních bodů (x, y ) f (x, y) = f (x, y )+ Hf (x +θ(x x ), y +θ(y y ))(x x, y y ), kde Hf nyní vnímáme jako kvadratickou formu vyčíslenou na přírůstku (x x, y y ). Protože naše funkce má spojitý hessián, který je nedegenerovaný, nastane lokální maximum tehdy a jen tehdy, když náš bod (x, y ) patří do první skupiny se stejnými paritami k a l. Když budou parity opačné, pak bod z první skupiny bude naopak bodem lokálního minima.

36 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro. Taylorova věta pro řád k = dává okolí stacionárních bodů (x, y ) f (x, y) = f (x, y )+ Hf (x +θ(x x ), y +θ(y y ))(x x, y y ), kde Hf nyní vnímáme jako kvadratickou formu vyčíslenou na přírůstku (x x, y y ). Protože naše funkce má spojitý hessián, který je nedegenerovaný, nastane lokální maximum tehdy a jen tehdy, když náš bod (x, y ) patří do první skupiny se stejnými paritami k a l. Když budou parity opačné, pak bod z první skupiny bude naopak bodem lokálního minima. Naopak, hessián u druhé skupiny bodů se vyčíslí kladně na některých přírůstcích a záporně na jiných. Stejně se proto bude chovat i celá funkce f v okolí.

37 Definition Kvadratická forma h : E n R je positivně definitní, je-li h(u) > pro všechny u positivně semidefinitní, je-li h(u) pro všechny u V negativně definitní, je-li h(u) < pro všechny u negativně semidefinitní, je-li h(u) pro všechny u V indefinitní, je-li h(u) > a f (v) < pro vhodné u, v V.. semestr metody, které umožňují přímo zjistit, zda daná forma má některou z těchto vlastností.

38 Theorem Nechť f : E n R je dvakrát spojitě diferencovatelná funkce a x E n nechť je stacionární bod funkce f. Potom f má v x ostré lokální minimum, je-li Hf (x) positivně definitní, f má v x ostré lokální maximum, je-li Hf (x) negativně definitní, 3 f nemá v bodě x lokální extrém je-li Hf (x) indefinitní.

39 Theorem Nechť f : E n R je dvakrát spojitě diferencovatelná funkce a x E n nechť je stacionární bod funkce f. Potom f má v x ostré lokální minimum, je-li Hf (x) positivně definitní, f má v x ostré lokální maximum, je-li Hf (x) negativně definitní, 3 f nemá v bodě x lokální extrém je-li Hf (x) indefinitní. Všimněme si, že věta nedává žádný výsledek, pokud je hessián funkce ve zkoumaném bodě degenerovaný a přitom není indefinitní. Důvod je opět stejný jako u funkcí jedné proměnné. V takových případech totiž existují směry, ve kterých první i druhá derivace zmizí a my proto v tomto řádu přiblížení neumíme poznat, zda se funkce bude chovat jako t 3 nebo jako ±t 4 dokud nespočteme alespoň v potřebných směrech derivace vyšší.

40 Plán přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

41 Zobrazení F : E n E m je při zvolených kartézských souřadnicích na obou stranách obyčejná m tice F (x,..., x n ) = (f (x,..., x n ),..., f m (x,..., x n )) funkcí f i : E n R. Řekneme, že F je diferencovatelné nebo spojitě diferencovatelné zobrazení, jestliže tuto vlastnost mají všechny funkce f,..., f m.

42 Zobrazení F : E n E m je při zvolených kartézských souřadnicích na obou stranách obyčejná m tice F (x,..., x n ) = (f (x,..., x n ),..., f m (x,..., x n )) funkcí f i : E n R. Řekneme, že F je diferencovatelné nebo spojitě diferencovatelné zobrazení, jestliže tuto vlastnost mají všechny funkce f,..., f m. Diferencovatelná zobrazení F : E n E n, která mají inverzní zobrazení G : E n E n definované na celém svém obrazu, se nazývají (diferencovatelné) transformace. Příkladem transformace byl přechod mezi kartézkými a polárními souřadnicemi.

43 Zobrazení F : E n E m je při zvolených kartézských souřadnicích na obou stranách obyčejná m tice F (x,..., x n ) = (f (x,..., x n ),..., f m (x,..., x n )) funkcí f i : E n R. Řekneme, že F je diferencovatelné nebo spojitě diferencovatelné zobrazení, jestliže tuto vlastnost mají všechny funkce f,..., f m. Diferencovatelná zobrazení F : E n E n, která mají inverzní zobrazení G : E n E n definované na celém svém obrazu, se nazývají (diferencovatelné) transformace. Příkladem transformace byl přechod mezi kartézkými a polárními souřadnicemi. Lineární zobrazení D f i (x) : R n R lineárně aproximují přírůstky f i.

44 Definition df (x) D df (x) F (x) =. =. df m (x) f f x f f x f m x f x n f x n x... x f m x... f m x n (x) se nazývá Jacobiho matice zobrazení F v bodě x. Lineární zobrazení D F (x) definované na přírůstcích v = (v,..., v n ) pomocí stejně značené Jacobiho matice nazýváme diferenciál zobrazení F v bodě x z definičního oboru, jestliže lim v ( F (x + v) F (x) D F (x)(v) ) =. v

45 Důsledek Věty o existenci diferenciálu pro funkce n proměnných je: Theorem Nechť F : E n E m je zobrazení, jehož všechny souřadné funkce mají spojité parciální derivace v okolí bodu x E n. Pak existuje diferenciál D F (x) zadaný Jacobiho maticí.

46 Theorem Nechť F : E n E m a G : E m E r jsou dvě diferencovatelná zobrazení, přičemž definiční obor G obsahuje celý obor hodnot F. Pak také složené zobrazení G F je diferencovatelné a jeho diferenciál je v každém bodě z definičního obodu F kompozicí diferenciálů D (G F )(x) = D G(F (x)) D F (x). Příslušná Jacobiho matice je dána součinem příslušných Jacobiho matic.

47 Polární souřadnice vzniknou z kartézských transformací F : R R, kterou v souřadnicích (x, y) a (r, ϕ) zapíšeme: r = x + y, ϕ = arctan y x.

48 Polární souřadnice vzniknou z kartézských transformací F : R R, kterou v souřadnicích (x, y) a (r, ϕ) zapíšeme: r = x + y, ϕ = arctan y x. Funkci g t : E R v polárních souřadnicích g(r, ϕ, t) = sin(r-t). Funkce nám docela dobře přibližuje vlnění povrchu hladiny po bodovém vzruchu v počátku v čase t:

49 Derivace v kartézských souřadnicích: g x g r g (x, y, t) = (r, ϕ) (x, y) + r x ϕ (r, ϕ) ϕ(x, y) x = cos( x + y x t) x + y + a podobně g y g r g (x, y, t) = (r, ϕ) (x, y) + r y ϕ (r, ϕ) ϕ(x, y) y = cos( x + y y t) x + y.

50 Theorem Nechť F : E n E n je spojitě diferencovatelné zobrazení na nějakém okolí bodu x E n a nechť je Jacobiho matice D f (x ) invertibilní. Pak na nějakém okolí bodu x existuje inverzní zobrazení F a jeho diferenciál v bodě F (x ) je inverzním zobrazením k D F (x ), tzn. je zadán inverzní maticí k Jacobiho matici zobrazení F v bodě x.

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších

Více

Michal Bulant. Masarykova univerzita Fakulta informatiky

Michal Bulant. Masarykova univerzita Fakulta informatiky Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

Drsná matematika. Martin Panák, Jan Slovák

Drsná matematika. Martin Panák, Jan Slovák Drsná matematika Martin Panák, Jan Slovák Pokus o učební text pro začínající studenty informatiky přibližující podstatnou část matematiky v rozsahu čtyř semestrálních přednášek. Prozatím jsou zaznamenány

Více

Drsná matematika. Martin Panák, Jan Slovák

Drsná matematika. Martin Panák, Jan Slovák Drsná matematika Martin Panák, Jan Slovák Pokus o učební text pro začínající studenty informatiky přibližující podstatnou část matematiky v rozsahu čtyř semestrálních přednášek. Prozatím jsou zaznamenány

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Matematická analýza pro informatiky I. Extrémy funkcí více proměnných

Matematická analýza pro informatiky I. Extrémy funkcí více proměnných Matematická analýza pro informatiky I. 12. přednáška Extrémy funkcí více proměnných Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 12. dubna 2011

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematická analýza pro informatiky I. Derivace funkce

Matematická analýza pro informatiky I. Derivace funkce Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Vlastnosti lineárních zobrazení a velikost vektorů

Vlastnosti lineárních zobrazení a velikost vektorů Drsná matematika I 8. přednáška Vlastnosti lineárních zobrazení a velikost vektorů Jan Slovák Masarykova univerzita Fakulta informatiky 15. 11. 2010 Obsah přednášky 1 Literatura 2 Matice zobrazení 3 Vlastní

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální

Více

Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření

Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření Jan Slovák Masarykova univerzita Fakulta informatiky 12. 12. 2007 Obsah přednášky 1 Literatura 2 Kvadratické formy a kvadriky 3 Projektivní

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Derivace funkce Otázky

Derivace funkce Otázky funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu

Více

1/15. Kapitola 2: Reálné funkce více proměnných

1/15. Kapitola 2: Reálné funkce více proměnných 1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z Diferenciální počet příklad Napište rovnici tečné roviny ke grafu funkce fx, y) = xy, která je kolmá na přímku x + = y + = 1 z Řešení: Směrový vektor dané přímky je n p =, 1, 1). Na ploše dané rovnicí

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

CHOVÁNÍ FUNKCÍ VÍCE PROMĚNNÝCH Z HLEDISKA EXTRÉMŮ

CHOVÁNÍ FUNKCÍ VÍCE PROMĚNNÝCH Z HLEDISKA EXTRÉMŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS CHOVÁNÍ FUNKCÍ VÍCE PROMĚNNÝCH Z HLEDISKA

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Ortogonální projekce a ortogonální zobrazení

Ortogonální projekce a ortogonální zobrazení Drsná matematika I 9. přednáška Ortogonální projekce a ortogonální zobrazení Jan Slovák Masarykova univerzita Fakulta informatiky 27. 4. 2010 Obsah přednášky 1 Literatura 2 Projekce a ortogonální zobrazení

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

12. Funkce více proměnných

12. Funkce více proměnných 12. Funkce více proměnných 12.1 Parciální derivace a totální diferenciál Definice Necht f je reálná funkce n proměnných, a 2 R n a 1 i n. 12.1 Parciální derivace a totální diferenciál Definice Necht f

Více

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky Jiří Bečvář; Miloslav Nekvinda Poznámka o extrémech funkcí dvou a více proměnných Časopis pro pěstování matematiky, Vol. 81 (1956), No. 3, 267--271 Persistent URL: http://dml.cz/dmlcz/117194

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21 Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Matematika II: Pracovní listy Funkce dvou proměnných

Matematika II: Pracovní listy Funkce dvou proměnných Matematika II: Pracovní listy Funkce dvou proměnných Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Ostrava 8 Obsah Funkce dvou proměnných.

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více