Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení"

Transkript

1 Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky

2 Obsah přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

3 Plán přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

4 Kde je dobré číst? Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s programem Maple, MU Brno, 999, 73 s.

5 Kde je dobré číst? Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s programem Maple, MU Brno, 999, 73 s. Riley, K.F., Hobson, M.P., Bence, S.J. Mathematical Methods for Physics and Engineering, second edition, Cambridge University Press, Cambridge 4, ISBN , xxiii + 3 pp.

6 Plán přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

7 Definition Funkce f : R n R je diferencovatelná v bodě x, jestliže v bodě x existují všechny směrové derivace d v f (x), v R n, d v f (x) je lineární v závislosti na přírůstku v a 3 = lim v v ( f (x + v) f (x) dv f (x) ).

8 Definition Funkce f : R n R je diferencovatelná v bodě x, jestliže v bodě x existují všechny směrové derivace d v f (x), v R n, d v f (x) je lineární v závislosti na přírůstku v a 3 = lim v v ( f (x + v) f (x) dv f (x) ). Theorem Nechť f : E n R je funkce n proměnných, která má v okolí bodu x E n spojité parciální derivace. Pak existuje její diferenciál df v bodě x a jeho souřadné vyjádření je dáno rovnicí df = f x dx + f x dx + + f x n dx n. ( )

9 Diferenciál zadává tečné (nad)roviny funkce n proměnných y x y x Graf funkce f (x, y) = sin(x) cos(y), červená čára je obrazem křivky c(t) = (t, t, f (t, t)).

10 Diferenciál zadává tečné (nad)roviny funkce n proměnných y x y x Graf funkce f (x, y) = sin(x) cos(y), červená čára je obrazem křivky c(t) = (t, t, f (t, t)). Diferencovatelná funkce f na E n v bodě x E n má nulový diferenciál tehdy a jen tehdy, když její složení s libovolnou křivkou procházející tímto bodem zde má stacionární bod.

11 Diferenciál zadává tečné (nad)roviny funkce n proměnných y x y x Graf funkce f (x, y) = sin(x) cos(y), červená čára je obrazem křivky c(t) = (t, t, f (t, t)). Diferencovatelná funkce f na E n v bodě x E n má nulový diferenciál tehdy a jen tehdy, když její složení s libovolnou křivkou procházející tímto bodem zde má stacionární bod. To ovšem neznamená, že v takovém bodě musí mít f aspoň lokálně buď maximum nebo minimum. Stejně jako u funkcí jedné proměnné můžeme rozhodovat teprve podle derivací vyšších.

12 Pro pevný přírůstek v R n je vyčíslení diferenciálů na tomto přírůstku opět (diferenciální) operace na funkcích f : E n R f d v f = df (v). Výsledkem je df (v) : E n R. Jestliže je tato funkce opět diferencovatelná, můžeme iterovat.

13 Pro pevný přírůstek v R n je vyčíslení diferenciálů na tomto přírůstku opět (diferenciální) operace na funkcích f : E n R f d v f = df (v). Výsledkem je df (v) : E n R. Jestliže je tato funkce opět diferencovatelná, můžeme iterovat. Pro parciální derivace druhého řádu píšeme ( x j x i )f = x i x j f = v případě opakované volby i = j píšeme také ( x i x i )f = x i f f = f x i x i x j.

14 Úplně stejně postupujeme při dalších iteracích a hovoříme o parciálních derivacích k-tého řádu k f x i... x ik. Theorem Nechť f : E n R je k-krát diferencovatelná funkce se spojitými parciálními derivacemi až do řádu k včetně v okolí bodu x R n. Pak všechny parciální derivace nezávisí na pořadí derivování.

15 Definition Je-li f : R n R libovolná dvakrát diferencovatelná funkce, nazýváme symetrickou matici funkcí ( ) f x f x (x)... f x x n (x) Hf (x) = (x) =. x i x j.... f x n x (x)... f x n x n (x) Hessián funkce f v bodě x.

16 Pro křivku c(t) = (x(t), y(t)) = (x + ξt, y + ηt) mají funkce α(t) = f (x(t), y(t)) ( f β(t) = f (x, y ) + t x (x, y )ξ + f ) y (x, y )η + ( ) t f xx (x, y )ξ + f xy (x, y )ξη + f yy (x, y )η stejné derivace do druhého řádu včetně.

17 Pro křivku c(t) = (x(t), y(t)) = (x + ξt, y + ηt) mají funkce α(t) = f (x(t), y(t)) ( f β(t) = f (x, y ) + t x (x, y )ξ + f ) y (x, y )η + ( ) t f xx (x, y )ξ + f xy (x, y )ξη + f yy (x, y )η stejné derivace do druhého řádu včetně. Funkci β píšeme vektorově: ( ) ξ β(t) = f (x, y ) + tdf (x, y ) + ( ) ξ η t (ξ η) Hf (x, y ) η

18 Pro křivku c(t) = (x(t), y(t)) = (x + ξt, y + ηt) mají funkce α(t) = f (x(t), y(t)) ( f β(t) = f (x, y ) + t x (x, y )ξ + f ) y (x, y )η + ( ) t f xx (x, y )ξ + f xy (x, y )ξη + f yy (x, y )η stejné derivace do druhého řádu včetně. Funkci β píšeme vektorově: ( ) ξ β(t) = f (x, y ) + tdf (x, y ) + ( ) ξ η t (ξ η) Hf (x, y ) η nebo β(t) = f (x, y ) + tdf (x, y )(v) + t Hf (x, y )(v, v), kde v = (ξ, η) = c (t) je přírůstek zadaný derivací křivky c(t) a Hessián symetrická forma.

19 Použití Hessiánu připomíná Taylorovu větu funkcí jedné proměnné! y 4 x y 4 x 3 Tečná rovina je vynesena spolu s kvadratickým přiblížením pro funkci f (x, y) = sin(x) cos(y).

20 Použití Hessiánu připomíná Taylorovu větu funkcí jedné proměnné! y 4 x y 4 x 3 Tečná rovina je vynesena spolu s kvadratickým přiblížením pro funkci f (x, y) = sin(x) cos(y). Obecně pro funkce f : E n R, body x = (x,..., x ) E n a přírůstky v = (ξ,..., ξ n ) klademe D k f (x)(v) = i,...,i k n k f x i... x ik (x,..., x n ) ξ i ξ ik.

21 Ukažme ve dvou proměnných:

22 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y )

23 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y ) Aproximace pomocí hesiánu: f (x, y ) + D (x, y )(x x, y y ) + D (x, y )f (x x, y y )

24 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y ) Aproximace pomocí hesiánu: f (x, y ) + D (x, y )(x x, y y ) + D (x, y )f (x x, y y ) výraz třetího řádu D 3 f (x, y)(ξ, η) = 3 f x 3 ξ f x y ξ η f x y ξη + 3 f y 3 η3

25 Ukažme ve dvou proměnných: Tečná rovina: f (x, y ) + D (x, y )(x x, y y ) Aproximace pomocí hesiánu: f (x, y ) + D (x, y )(x x, y y ) + D (x, y )f (x x, y y ) výraz třetího řádu D 3 f (x, y)(ξ, η) = 3 f x 3 ξ f x y ξ η f x y ξη + 3 f y 3 η3 a obecně D k f (x, y)(ξ, η) = k l= ( ) k k f l x k l y l ξk l η l.

26 Theorem Nechť f : E n R je k krát diferencovatelná funkce v okolí O δ (x) bodu x E n. Pro každý přírůstek v R n s velikostí v < δ pak existuje číslo θ takové, že f (x + v) = f (x) + D f (x)(v) k! Dk f (x + θ v)(v). (k )! Dk f (x)(v)

27 Theorem Nechť f : E n R je k krát diferencovatelná funkce v okolí O δ (x) bodu x E n. Pro každý přírůstek v R n s velikostí v < δ pak existuje číslo θ takové, že f (x + v) = f (x) + D f (x)(v) k! Dk f (x + θ v)(v). (k )! Dk f (x)(v) Náznak důkazu: Pro přírůstek v R n volíme c(t) = x + tv v E n a zkoumáme ϕ : R R definovanou složením ϕ(t) = f c(t). Taylorova věta pro funkce jedné proměnné říká: ϕ(t) = ϕ() + ϕ ()t + + (k )! ϕ(k ) ()t k + k! ϕ(k) (θ)t k. Zbývá nám tedy jen ověřit, že postupným derivováním složené funkce ϕ dostaneme právě požadovaný vztah. To lze provést indukcí přes řád k.

28 Definition Vnitřní bod x E n definičního oboru funkce f je (lokálním) maximem nebo minimem, jestliže existuje jeho okolí U takové, že pro všechny body x U splňuje funkční hodnota f (x) f (x ) nebo f (x) f (x ). Pokud nastává v předchozích nerovnostech ostrá nerovnost pro všechny x x, hovoříme o ostrém extrému. Vnitřní bod x E n definičního oboru funkce f, ve kterém je diferenciál df (x) nulový nazýváme stacionární bod funkce f.

29 Definition Vnitřní bod x E n definičního oboru funkce f je (lokálním) maximem nebo minimem, jestliže existuje jeho okolí U takové, že pro všechny body x U splňuje funkční hodnota f (x) f (x ) nebo f (x) f (x ). Pokud nastává v předchozích nerovnostech ostrá nerovnost pro všechny x x, hovoříme o ostrém extrému. Vnitřní bod x E n definičního oboru funkce f, ve kterém je diferenciál df (x) nulový nazýváme stacionární bod funkce f. Nutnou podmínkou pro existenci maxima nebo minima v bodě x je vymizení diferenciálu v tomto bodě, tj. df (x ) =. Skutečně, pokud je df (x ), pak existuje směr v, ve kterém je d v f (x ). Pak ovšem nutně je podél přímky x + tv na jednu stranu od bodu x hodnota funkce roste a na druhou klesá.

30 Uvažme funkci f (x, y) = sin(x) cos(y), která připomíná známá kartonová plata na vajíčka,5 -,

31 Spočtěme si první a poté druhé derivace: f x (x, y) = cos(x) cos(y), f y (x, y) = sin(x) sin(y), takže obě derivace budou nulové pro dvě sady bodů cos(x) =, sin(y) =, to je (x, y) = ( k+ π, lπ), pro libovolné k, l Z cos(x) =, sin(y) =, to je (x, y) = (kπ, l+ π), pro libovolné k, l Z.

32 Spočtěme si první a poté druhé derivace: f x (x, y) = cos(x) cos(y), f y (x, y) = sin(x) sin(y), takže obě derivace budou nulové pro dvě sady bodů cos(x) =, sin(y) =, to je (x, y) = ( k+ π, lπ), pro libovolné k, l Z cos(x) =, sin(y) =, to je (x, y) = (kπ, l+ π), pro libovolné k, l Z. Druhé parciální derivace jsou ( ) ( ) fxx f Hf (x, y) = xy sin(x) cos(y) cos(x) sin(y) (x, y) = cos(x) sin(y) sin(x) cos(y) f xy f yy

33 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro.

34 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro. Taylorova věta pro řád k = dává okolí stacionárních bodů (x, y ) f (x, y) = f (x, y )+ Hf (x +θ(x x ), y +θ(y y ))(x x, y y ), kde Hf nyní vnímáme jako kvadratickou formu vyčíslenou na přírůstku (x x, y y ).

35 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro. Taylorova věta pro řád k = dává okolí stacionárních bodů (x, y ) f (x, y) = f (x, y )+ Hf (x +θ(x x ), y +θ(y y ))(x x, y y ), kde Hf nyní vnímáme jako kvadratickou formu vyčíslenou na přírůstku (x x, y y ). Protože naše funkce má spojitý hessián, který je nedegenerovaný, nastane lokální maximum tehdy a jen tehdy, když náš bod (x, y ) patří do první skupiny se stejnými paritami k a l. Když budou parity opačné, pak bod z první skupiny bude naopak bodem lokálního minima.

36 V našich dvou sadách bodů ( tedy ) dostáváme následující hessiány: Hf (kπ + π, lπ) = ±, přičemž znaménko + nastává, když parity k a l jsou ( stejné ) a naopak pro, Hf (kπ, lπ + π ) = ±, přičemž znaménko + nastává, když parity k a l jsou stejné a naopak pro. Taylorova věta pro řád k = dává okolí stacionárních bodů (x, y ) f (x, y) = f (x, y )+ Hf (x +θ(x x ), y +θ(y y ))(x x, y y ), kde Hf nyní vnímáme jako kvadratickou formu vyčíslenou na přírůstku (x x, y y ). Protože naše funkce má spojitý hessián, který je nedegenerovaný, nastane lokální maximum tehdy a jen tehdy, když náš bod (x, y ) patří do první skupiny se stejnými paritami k a l. Když budou parity opačné, pak bod z první skupiny bude naopak bodem lokálního minima. Naopak, hessián u druhé skupiny bodů se vyčíslí kladně na některých přírůstcích a záporně na jiných. Stejně se proto bude chovat i celá funkce f v okolí.

37 Definition Kvadratická forma h : E n R je positivně definitní, je-li h(u) > pro všechny u positivně semidefinitní, je-li h(u) pro všechny u V negativně definitní, je-li h(u) < pro všechny u negativně semidefinitní, je-li h(u) pro všechny u V indefinitní, je-li h(u) > a f (v) < pro vhodné u, v V.. semestr metody, které umožňují přímo zjistit, zda daná forma má některou z těchto vlastností.

38 Theorem Nechť f : E n R je dvakrát spojitě diferencovatelná funkce a x E n nechť je stacionární bod funkce f. Potom f má v x ostré lokální minimum, je-li Hf (x) positivně definitní, f má v x ostré lokální maximum, je-li Hf (x) negativně definitní, 3 f nemá v bodě x lokální extrém je-li Hf (x) indefinitní.

39 Theorem Nechť f : E n R je dvakrát spojitě diferencovatelná funkce a x E n nechť je stacionární bod funkce f. Potom f má v x ostré lokální minimum, je-li Hf (x) positivně definitní, f má v x ostré lokální maximum, je-li Hf (x) negativně definitní, 3 f nemá v bodě x lokální extrém je-li Hf (x) indefinitní. Všimněme si, že věta nedává žádný výsledek, pokud je hessián funkce ve zkoumaném bodě degenerovaný a přitom není indefinitní. Důvod je opět stejný jako u funkcí jedné proměnné. V takových případech totiž existují směry, ve kterých první i druhá derivace zmizí a my proto v tomto řádu přiblížení neumíme poznat, zda se funkce bude chovat jako t 3 nebo jako ±t 4 dokud nespočteme alespoň v potřebných směrech derivace vyšší.

40 Plán přednášky Literatura Derivace vyšších řádů Iterované parciální derivace Hessián aproximace. řádu Lokální extrémy funkcí více proměnných 3 Zobrazení mezi euklidovskými prostory Zobrazení a transformace Chain Rule Věta o inverzním zobrazení

41 Zobrazení F : E n E m je při zvolených kartézských souřadnicích na obou stranách obyčejná m tice F (x,..., x n ) = (f (x,..., x n ),..., f m (x,..., x n )) funkcí f i : E n R. Řekneme, že F je diferencovatelné nebo spojitě diferencovatelné zobrazení, jestliže tuto vlastnost mají všechny funkce f,..., f m.

42 Zobrazení F : E n E m je při zvolených kartézských souřadnicích na obou stranách obyčejná m tice F (x,..., x n ) = (f (x,..., x n ),..., f m (x,..., x n )) funkcí f i : E n R. Řekneme, že F je diferencovatelné nebo spojitě diferencovatelné zobrazení, jestliže tuto vlastnost mají všechny funkce f,..., f m. Diferencovatelná zobrazení F : E n E n, která mají inverzní zobrazení G : E n E n definované na celém svém obrazu, se nazývají (diferencovatelné) transformace. Příkladem transformace byl přechod mezi kartézkými a polárními souřadnicemi.

43 Zobrazení F : E n E m je při zvolených kartézských souřadnicích na obou stranách obyčejná m tice F (x,..., x n ) = (f (x,..., x n ),..., f m (x,..., x n )) funkcí f i : E n R. Řekneme, že F je diferencovatelné nebo spojitě diferencovatelné zobrazení, jestliže tuto vlastnost mají všechny funkce f,..., f m. Diferencovatelná zobrazení F : E n E n, která mají inverzní zobrazení G : E n E n definované na celém svém obrazu, se nazývají (diferencovatelné) transformace. Příkladem transformace byl přechod mezi kartézkými a polárními souřadnicemi. Lineární zobrazení D f i (x) : R n R lineárně aproximují přírůstky f i.

44 Definition df (x) D df (x) F (x) =. =. df m (x) f f x f f x f m x f x n f x n x... x f m x... f m x n (x) se nazývá Jacobiho matice zobrazení F v bodě x. Lineární zobrazení D F (x) definované na přírůstcích v = (v,..., v n ) pomocí stejně značené Jacobiho matice nazýváme diferenciál zobrazení F v bodě x z definičního oboru, jestliže lim v ( F (x + v) F (x) D F (x)(v) ) =. v

45 Důsledek Věty o existenci diferenciálu pro funkce n proměnných je: Theorem Nechť F : E n E m je zobrazení, jehož všechny souřadné funkce mají spojité parciální derivace v okolí bodu x E n. Pak existuje diferenciál D F (x) zadaný Jacobiho maticí.

46 Theorem Nechť F : E n E m a G : E m E r jsou dvě diferencovatelná zobrazení, přičemž definiční obor G obsahuje celý obor hodnot F. Pak také složené zobrazení G F je diferencovatelné a jeho diferenciál je v každém bodě z definičního obodu F kompozicí diferenciálů D (G F )(x) = D G(F (x)) D F (x). Příslušná Jacobiho matice je dána součinem příslušných Jacobiho matic.

47 Polární souřadnice vzniknou z kartézských transformací F : R R, kterou v souřadnicích (x, y) a (r, ϕ) zapíšeme: r = x + y, ϕ = arctan y x.

48 Polární souřadnice vzniknou z kartézských transformací F : R R, kterou v souřadnicích (x, y) a (r, ϕ) zapíšeme: r = x + y, ϕ = arctan y x. Funkci g t : E R v polárních souřadnicích g(r, ϕ, t) = sin(r-t). Funkce nám docela dobře přibližuje vlnění povrchu hladiny po bodovém vzruchu v počátku v čase t:

49 Derivace v kartézských souřadnicích: g x g r g (x, y, t) = (r, ϕ) (x, y) + r x ϕ (r, ϕ) ϕ(x, y) x = cos( x + y x t) x + y + a podobně g y g r g (x, y, t) = (r, ϕ) (x, y) + r y ϕ (r, ϕ) ϕ(x, y) y = cos( x + y y t) x + y.

50 Theorem Nechť F : E n E n je spojitě diferencovatelné zobrazení na nějakém okolí bodu x E n a nechť je Jacobiho matice D f (x ) invertibilní. Pak na nějakém okolí bodu x existuje inverzní zobrazení F a jeho diferenciál v bodě F (x ) je inverzním zobrazením k D F (x ), tzn. je zadán inverzní maticí k Jacobiho matici zobrazení F v bodě x.

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Drsná matematika. Martin Panák, Jan Slovák

Drsná matematika. Martin Panák, Jan Slovák Drsná matematika Martin Panák, Jan Slovák Pokus o učební text pro začínající studenty informatiky přibližující podstatnou část matematiky v rozsahu čtyř semestrálních přednášek. Prozatím jsou zaznamenány

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Matematická analýza pro informatiky I. Extrémy funkcí více proměnných

Matematická analýza pro informatiky I. Extrémy funkcí více proměnných Matematická analýza pro informatiky I. 12. přednáška Extrémy funkcí více proměnných Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 12. dubna 2011

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Vlastnosti lineárních zobrazení a velikost vektorů

Vlastnosti lineárních zobrazení a velikost vektorů Drsná matematika I 8. přednáška Vlastnosti lineárních zobrazení a velikost vektorů Jan Slovák Masarykova univerzita Fakulta informatiky 15. 11. 2010 Obsah přednášky 1 Literatura 2 Matice zobrazení 3 Vlastní

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

CHOVÁNÍ FUNKCÍ VÍCE PROMĚNNÝCH Z HLEDISKA EXTRÉMŮ

CHOVÁNÍ FUNKCÍ VÍCE PROMĚNNÝCH Z HLEDISKA EXTRÉMŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS CHOVÁNÍ FUNKCÍ VÍCE PROMĚNNÝCH Z HLEDISKA

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z Diferenciální počet příklad Napište rovnici tečné roviny ke grafu funkce fx, y) = xy, která je kolmá na přímku x + = y + = 1 z Řešení: Směrový vektor dané přímky je n p =, 1, 1). Na ploše dané rovnicí

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky Jiří Bečvář; Miloslav Nekvinda Poznámka o extrémech funkcí dvou a více proměnných Časopis pro pěstování matematiky, Vol. 81 (1956), No. 3, 267--271 Persistent URL: http://dml.cz/dmlcz/117194

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212 Matematika I Funkce jedné proměnné Funkce jedné proměnné Matematika I 1 / 212 1. Množiny a zobrazení Funkce jedné proměnné Matematika I 2 / 212 Množiny Definice 1.1.1: Množinou rozumíme soubor prvků se

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

M. Hojdarová, J. Krejčová, M. Zámková

M. Hojdarová, J. Krejčová, M. Zámková VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Matematika IV 10. týden Kódování

Matematika IV 10. týden Kódování Matematika IV 10. týden Kódování Jan Slovák Masarykova univerzita Fakulta informatiky 22. 26. 4. 2013 Obsah přednášky 1 (n, k) kódy 2 Polynomiální kódy 3 Lineární kódy Kde je dobré číst? připravovaná učebnice

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1 1 Úvod Vázané extrémy funkcí více proměnných verze 1. Následující text popisuje hledání vázaných extrémů funkcí více proměnných. Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

PŘÍKLADY K MATEMATICE 2

PŘÍKLADY K MATEMATICE 2 PŘÍKLADY K MATEMATICE ZDENĚK ŠIBRAVA. Funkce více proměnných.. Základní pojmy funkce více proměnných. Příklad.. Určeme definiční obor funkce tří proměnných f(x, y, z) = x y + x z. Řešení: Definičním oborem

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Diferenciální a integrální počet funkcí více proměnných

Diferenciální a integrální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální a integrální počet funkcí více proměnných RNDr. Jiří Klaška, Dr. Učební text předmětu Matematika II pro profesní a kombinovanou

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

Matematika 2. Prof. RNDr. Jan Chvalina, DrSc. RNDr. Zdeněk Svoboda, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY

Matematika 2. Prof. RNDr. Jan Chvalina, DrSc. RNDr. Zdeněk Svoboda, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Matematika 2 Prof. RNDr. Jan Chvalina, DrSc. RNDr. Zdeněk Svoboda, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Matematika 2 1 Obsah 1 Funkce více proměnných 3 1.1 Definice a základní pojmy...........................

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Diferenciální geometrie

Diferenciální geometrie Diferenciální geometrie Pomocný učební text díl I. František Ježek Plzeň, červen 2005 Obsah 1 Křivky 4 1.1 Vyjádření křivky......................... 4 1.2 Transformace parametru..................... 5

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Matematika II: Pracovní listy

Matematika II: Pracovní listy Matematika II: Pracovní listy Zuzana Morávková, Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava K M D G ISBN 978-80-48-334-8

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více