Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Rozměr: px
Začít zobrazení ze stránky:

Download "Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál"

Transkript

1 Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky

2 Obsah přednášky 1 Literatura 2 Funkce a zobrazení Funkce více proměnných Topologie euklidovských prostorů Křivky v euklidovských prostorech Zobrazení 3 Parciální derivace a diferenciál Derivace ve směru vektoru Totální diferenciál Tečná nadrovina ke grafu funkce

3 Plán přednášky 1 Literatura 2 Funkce a zobrazení Funkce více proměnných Topologie euklidovských prostorů Křivky v euklidovských prostorech Zobrazení 3 Parciální derivace a diferenciál Derivace ve směru vektoru Totální diferenciál Tečná nadrovina ke grafu funkce

4 Kde je dobré číst? Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s programem Maple, MU Brno, 1999, 273 s.

5 Kde je dobré číst? Zuzana Došlá, Roman Plch, Petr Sojka, Diferenciální počet funkcí více proměnných s programem Maple, MU Brno, 1999, 273 s. Riley, K.F., Hobson, M.P., Bence, S.J. Mathematical Methods for Physics and Engineering, second edition, Cambridge University Press, Cambridge 2004, ISBN , xxiii pp.

6 Plán přednášky 1 Literatura 2 Funkce a zobrazení Funkce více proměnných Topologie euklidovských prostorů Křivky v euklidovských prostorech Zobrazení 3 Parciální derivace a diferenciál Derivace ve směru vektoru Totální diferenciál Tečná nadrovina ke grafu funkce

7 Zobrazení f (x 1, x 2,..., x n ) : R n R nazýváme funkce více proměnných. Pro n = 2 nebo n = 3 často místo číslovaných proměnných používáme písmena x, y, z. To znamená, že funkce f definované v rovině E 2 = R 2 budou značeny a podobně v prostoru E 3 = R 3 f : R 2 (x, y) f (x, y) R f : R 3 (x, y, z) f (x, y, z) R.

8 Zobrazení f (x 1, x 2,..., x n ) : R n R nazýváme funkce více proměnných. Pro n = 2 nebo n = 3 často místo číslovaných proměnných používáme písmena x, y, z. To znamená, že funkce f definované v rovině E 2 = R 2 budou značeny a podobně v prostoru E 3 = R 3 f : R 2 (x, y) f (x, y) R f : R 3 (x, y, z) f (x, y, z) R. Definiční obor A R n množina, kde je funkce definována. (Hříčkou pro písemky a úlohy bývá úkol k dané formuli pro funkci najít co největší definiční obor, na kterém má tato formule smysl.)

9 Graf funkce více proměnných je podmnožina G f R n R = R n+1 definová vztahem G f = {(x 1,..., x n, f (x 1,..., x n )); (x 1,..., x n ) A}, kde A je definiční obor f.

10 Graf funkce více proměnných je podmnožina G f R n R = R n+1 definová vztahem G f = {(x 1,..., x n, f (x 1,..., x n )); (x 1,..., x n ) A}, kde A je definiční obor f. Grafem funkce definované v E 2 f (x, y) = x + y x 2 + y je plocha na obrázku, maximálním definičním oborem je E 2 \ {(0, 0)} x y

11 Euklidovský prostor E n je množina bodů (bez volby souřadnic) spolu se zaměřením R n, což je vektorový prostor možných přírůstků, které umíme k bodům prostoru E n přičítat.

12 Euklidovský prostor E n je množina bodů (bez volby souřadnic) spolu se zaměřením R n, což je vektorový prostor možných přírůstků, které umíme k bodům prostoru E n přičítat. Navíc je na R n standardní skalární součin u v = n i=1 x iy i, kde u = (x 1,..., x n ) a v = (y 1,..., y n ) jsou libovolné vektory.

13 Euklidovský prostor E n je množina bodů (bez volby souřadnic) spolu se zaměřením R n, což je vektorový prostor možných přírůstků, které umíme k bodům prostoru E n přičítat. Navíc je na R n standardní skalární součin u v = n i=1 x iy i, kde u = (x 1,..., x n ) a v = (y 1,..., y n ) jsou libovolné vektory. Proto je na E n dána metrika, tj. funkce vzdálenosti P Q dvojic bodů P, Q předpisem P Q 2 = u 2 = n xi 2, i=1 kde u je vektor, jehož přičtením k P obdržíme Q. Např. E 2 je vzdálenost bodů P 1 = (x 1, y 1 ) a P 2 = (x 2, y 2 ) dána P 1 P 2 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2.

14 Euklidovský prostor E n je množina bodů (bez volby souřadnic) spolu se zaměřením R n, což je vektorový prostor možných přírůstků, které umíme k bodům prostoru E n přičítat. Navíc je na R n standardní skalární součin u v = n i=1 x iy i, kde u = (x 1,..., x n ) a v = (y 1,..., y n ) jsou libovolné vektory. Proto je na E n dána metrika, tj. funkce vzdálenosti P Q dvojic bodů P, Q předpisem P Q 2 = u 2 = n xi 2, i=1 kde u je vektor, jehož přičtením k P obdržíme Q. Např. E 2 je vzdálenost bodů P 1 = (x 1, y 1 ) a P 2 = (x 2, y 2 ) dána P 1 P 2 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2. Trojúhelníková nerovnost pro každé tři body P, Q, R P R = (P Q) + (Q R) (P Q) + (Q R).

15 Rozšíření pojmů topologie R pro body P i libovolného Euklidovského E n :

16 Rozšíření pojmů topologie R pro body P i libovolného Euklidovského E n : Cauchyovská posloupnost P i P j < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j,

17 Rozšíření pojmů topologie R pro body P i libovolného Euklidovského E n : Cauchyovská posloupnost P i P j < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, konvergentní posloupnost P i P < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, bod P pak nazýváme limitou posloupnosti P i,

18 Rozšíření pojmů topologie R pro body P i libovolného Euklidovského E n : Cauchyovská posloupnost P i P j < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, konvergentní posloupnost P i P < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, bod P pak nazýváme limitou posloupnosti P i, hromadný bod P množiny A E n existuje posloupnost bodů v A konvergující k P a vesměs různých od P,

19 Rozšíření pojmů topologie R pro body P i libovolného Euklidovského E n : Cauchyovská posloupnost P i P j < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, konvergentní posloupnost P i P < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, bod P pak nazýváme limitou posloupnosti P i, hromadný bod P množiny A E n existuje posloupnost bodů v A konvergující k P a vesměs různých od P, uzavřená množina obsahuje všechny své hromadné body,

20 Rozšíření pojmů topologie R pro body P i libovolného Euklidovského E n : Cauchyovská posloupnost P i P j < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, konvergentní posloupnost P i P < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, bod P pak nazýváme limitou posloupnosti P i, hromadný bod P množiny A E n existuje posloupnost bodů v A konvergující k P a vesměs různých od P, uzavřená množina obsahuje všechny své hromadné body, otevřená množina její doplněk je uzavřený,

21 Rozšíření pojmů topologie R pro body P i libovolného Euklidovského E n : Cauchyovská posloupnost P i P j < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, konvergentní posloupnost P i P < ɛ, pro každé pevně zvolené ɛ > 0 až na konečně mnoho výjimečných hodnot i, j, bod P pak nazýváme limitou posloupnosti P i, hromadný bod P množiny A E n existuje posloupnost bodů v A konvergující k P a vesměs různých od P, uzavřená množina obsahuje všechny své hromadné body, otevřená množina její doplněk je uzavřený, otevřené δ okolí bodu P množina O δ (P) = {Q E n ; P Q < δ},

22 hraniční bod P množiny A každé δ okolí bodu P má neprázdný průnik s A i s komplementem E n \ A,

23 hraniční bod P množiny A každé δ okolí bodu P má neprázdný průnik s A i s komplementem E n \ A, vnitřní bod P množiny A existuje δ okolí bodu P, které celé leží uvnitř A,

24 hraniční bod P množiny A každé δ okolí bodu P má neprázdný průnik s A i s komplementem E n \ A, vnitřní bod P množiny A existuje δ okolí bodu P, které celé leží uvnitř A, ohraničená množina leží celá v nějakém δ okolí některého svého bodu (pro dostatečně velké δ),

25 hraniční bod P množiny A každé δ okolí bodu P má neprázdný průnik s A i s komplementem E n \ A, vnitřní bod P množiny A existuje δ okolí bodu P, které celé leží uvnitř A, ohraničená množina leží celá v nějakém δ okolí některého svého bodu (pro dostatečně velké δ), kompaktní množina uzavřená a ohraničená množina.

26 Theorem Pro podmnožiny A E n v euklidovských prostorech platí: 1 A je otevřená, právě když je sjednocením nejvýše spočetného systému δ okolí,

27 Theorem Pro podmnožiny A E n v euklidovských prostorech platí: 1 A je otevřená, právě když je sjednocením nejvýše spočetného systému δ okolí, 2 každý bod a A je buď vnitřní nebo hraniční,

28 Theorem Pro podmnožiny A E n v euklidovských prostorech platí: 1 A je otevřená, právě když je sjednocením nejvýše spočetného systému δ okolí, 2 každý bod a A je buď vnitřní nebo hraniční, 3 každý hraniční bod je buď izolovaným nebo hromadným bodem A,

29 Theorem Pro podmnožiny A E n v euklidovských prostorech platí: 1 A je otevřená, právě když je sjednocením nejvýše spočetného systému δ okolí, 2 každý bod a A je buď vnitřní nebo hraniční, 3 každý hraniční bod je buď izolovaným nebo hromadným bodem A, 4 A je kompaktní, právě když každá v ní obsažená nekonečná posloupnost má podposloupnost konvergující k bodu v A,

30 Theorem Pro podmnožiny A E n v euklidovských prostorech platí: 1 A je otevřená, právě když je sjednocením nejvýše spočetného systému δ okolí, 2 každý bod a A je buď vnitřní nebo hraniční, 3 každý hraniční bod je buď izolovaným nebo hromadným bodem A, 4 A je kompaktní, právě když každá v ní obsažená nekonečná posloupnost má podposloupnost konvergující k bodu v A, 5 A je kompaktní, právě když každé její otevřené pokrytí obsahuje konečné pokrytí.

31 Křivka je zobrazení c : R E n.

32 Křivka je zobrazení c : R E n. Analogicky k funkcím v jedné proměnné: Limita: lim t t0 c(t) E n

33 Křivka je zobrazení c : R E n. Analogicky k funkcím v jedné proměnné: Limita: lim t t0 c(t) E n Derivace: c (t 0 ) = lim t t0 1 t t 0 (c(t) c(t 0)) R n

34 Křivka je zobrazení c : R E n. Analogicky k funkcím v jedné proměnné: Limita: lim t t0 c(t) E n Derivace: c (t 0 ) = lim t t0 1 t t 0 (c(t) c(t 0)) R n Integrál: b a c(t)dt Rn.

35 Křivka je zobrazení c : R E n. Analogicky k funkcím v jedné proměnné: Limita: lim t t0 c(t) E n Derivace: c (t 0 ) = lim t t0 1 t t 0 (c(t) c(t 0)) R n Integrál: b a c(t)dt Rn.

36 Křivka je zobrazení c : R E n. Analogicky k funkcím v jedné proměnné: Limita: lim t t0 c(t) E n Derivace: c (t 0 ) = lim t t0 1 t t 0 (c(t) c(t 0)) R n Integrál: b a c(t)dt Rn. Výrok o integrálu má smysl i pro křivku ve vektorovém prostoru R n!

37 Křivka je zobrazení c : R E n. Analogicky k funkcím v jedné proměnné: Limita: lim t t0 c(t) E n Derivace: c (t 0 ) = lim t t0 1 t t 0 (c(t) c(t 0)) R n Integrál: b a c(t)dt Rn. Výrok o integrálu má smysl i pro křivku ve vektorovém prostoru R n! Limity, derivace i integrály lze spočíst po jednotlivých n souřadných složkách v R n a stejně se rozpozná i jejich existence.

38 Analogie souvislosti Riemannova integrálu a antiderivace pro křivky:

39 Analogie souvislosti Riemannova integrálu a antiderivace pro křivky: Theorem Je-li c : R R n křivka spojitá na intervalu [a, b], pak existuje její Riemannův integrál b a c(t)dt. Navíc je křivka C(t) = t a c(s)ds R n dobře definovaná, diferencovatelná a platí C (t) = c(t) pro všechny hodnoty t [a, b].

40 Analogie souvislosti Riemannova integrálu a antiderivace pro křivky: Theorem Je-li c : R R n křivka spojitá na intervalu [a, b], pak existuje její Riemannův integrál b a c(t)dt. Navíc je křivka C(t) = t a c(s)ds R n dobře definovaná, diferencovatelná a platí C (t) = c(t) pro všechny hodnoty t [a, b]. Věta o střední hodnotě dává existenci čísel t i takových, že c i (b) c i (a) = (b a) c i (t i ). Tato čísla ale budou obecně různá, nemůžeme proto vyjádřit rozdílový vektor koncových bodů c(b) c(a) jako násobek derivace křivky v jediném bodě.

41 Např. v rovině E 2 pro c(t) = (x(t), y(t)) takto dostáváme c(b) c(a) = (x (ξ)(b a), y (η)(b a)) = (b a) (x (ξ), y (η)) pro dvě (obecně různé) hodnoty ξ, η [a, b].

42 Např. v rovině E 2 pro c(t) = (x(t), y(t)) takto dostáváme c(b) c(a) = (x (ξ)(b a), y (η)(b a)) = (b a) (x (ξ), y (η)) pro dvě (obecně různé) hodnoty ξ, η [a, b]. Pořád nám ale úvaha stačí na následující odhad Theorem Je-li c křivka v E n se spojitou derivací na kompaktním intervalu [a, b], pak pro všechny a s t b platí c(t) c(s) n max r [a,b] c (r) t s.

43 Např. v rovině E 2 pro c(t) = (x(t), y(t)) takto dostáváme c(b) c(a) = (x (ξ)(b a), y (η)(b a)) = (b a) (x (ξ), y (η)) pro dvě (obecně různé) hodnoty ξ, η [a, b]. Pořád nám ale úvaha stačí na následující odhad Theorem Je-li c křivka v E n se spojitou derivací na kompaktním intervalu [a, b], pak pro všechny a s t b platí c(t) c(s) n max r [a,b] c (r) t s. Derivace zadává tečný vektor ke křivce c : R E n v bodě c(t 0 ) E n vektor c (t 0 ) R n v prostoru zaměření R n daný derivací. Přímka zadaná parametricky T : c(t 0 ) + τ c (t 0 ) je tečna ke křivce c v bodě t 0, nezávisí na parametrizaci křivky c.

44 Křivky a funkce jsou speciální případy zobrazení F : E m E n. Stejně jako u vektorových prostorů, volba souřadnic, tj. našeho pohledu na věc, může zjednodušit nebo zhoršit naše vnímání. Změna souřadnic invertibilní zobrazení R n R n.

45 Křivky a funkce jsou speciální případy zobrazení F : E m E n. Stejně jako u vektorových prostorů, volba souřadnic, tj. našeho pohledu na věc, může zjednodušit nebo zhoršit naše vnímání. Změna souřadnic invertibilní zobrazení R n R n. 2/3*Pi 1/2*Pi 1/3*Pi Příklad: polohu P zadáváme jako vzdálenost od počátku souřadnic r a úhel ϕ mezi spojnicí s počátkem a osou x. 5/6*Pi Pi 7/6*Pi 1/6*Pi 0 0 1/6 1/3 1/2 2/3 5/6 12*Pi 11/6*Pi 4/3*Pi 3/2*Pi 5/3*Pi

46 Křivky a funkce jsou speciální případy zobrazení F : E m E n. Stejně jako u vektorových prostorů, volba souřadnic, tj. našeho pohledu na věc, může zjednodušit nebo zhoršit naše vnímání. Změna souřadnic invertibilní zobrazení R n R n. 2/3*Pi 1/2*Pi 1/3*Pi Příklad: polohu P zadáváme jako vzdálenost od počátku souřadnic r a úhel ϕ mezi spojnicí s počátkem a osou x. 5/6*Pi Pi 7/6*Pi 0 1/6*Pi 0 1/6 1/3 1/2 2/3 5/6 12*Pi 11/6*Pi 4/3*Pi 3/2*Pi 5/3*Pi Přechod z polárních souřadnic do standardních je P polární = (r, ϕ) (r cos ϕ, r sin ϕ) = P kartézské

47 Křivky a funkce jsou speciální případy zobrazení F : E m E n. Stejně jako u vektorových prostorů, volba souřadnic, tj. našeho pohledu na věc, může zjednodušit nebo zhoršit naše vnímání. Změna souřadnic invertibilní zobrazení R n R n. 2/3*Pi 1/2*Pi 1/3*Pi Příklad: polohu P zadáváme jako vzdálenost od počátku souřadnic r a úhel ϕ mezi spojnicí s počátkem a osou x. 5/6*Pi Pi 7/6*Pi 0 1/6*Pi 0 1/6 1/3 1/2 2/3 5/6 12*Pi 11/6*Pi 4/3*Pi 3/2*Pi 5/3*Pi Přechod z polárních souřadnic do standardních je P polární = (r, ϕ) (r cos ϕ, r sin ϕ) = P kartézské Graf funkce můžeme také vnímat jako obraz zobrazení R n R n+1.

48 Plán přednášky 1 Literatura 2 Funkce a zobrazení Funkce více proměnných Topologie euklidovských prostorů Křivky v euklidovských prostorech Zobrazení 3 Parciální derivace a diferenciál Derivace ve směru vektoru Totální diferenciál Tečná nadrovina ke grafu funkce

49 Funkce f : R n R má derivaci ve směru vektoru v R n v bodě x E n, jestliže existuje derivace d v f (x) složeného zobrazení t f (x + tv) v bodě t = 0, tj. d v f (x) = lim t 0 1 (f (x + tv) f (x)). t

50 Funkce f : R n R má derivaci ve směru vektoru v R n v bodě x E n, jestliže existuje derivace d v f (x) složeného zobrazení t f (x + tv) v bodě t = 0, tj. d v f (x) = lim t 0 1 (f (x + tv) f (x)). t Speciální volbou přímek ve směru souřadných os dostáváme tzv. parciální derivace funkce f, které značíme f x i, i = 1,..., n, nebo bez odkazu na samotnou fukci jako operace x i.

51 Funkce f : R n R má derivaci ve směru vektoru v R n v bodě x E n, jestliže existuje derivace d v f (x) složeného zobrazení t f (x + tv) v bodě t = 0, tj. d v f (x) = lim t 0 1 (f (x + tv) f (x)). t Speciální volbou přímek ve směru souřadných os dostáváme tzv. parciální derivace funkce f, které značíme f x i, i = 1,..., n, nebo bez odkazu na samotnou fukci jako operace x i. Pro funkce v E 2 dostáváme 1 f (x, y) = lim (f (x + t, y) f (x, y)), x t 0 t 1 f (x, y) = lim (f (x, y + t) f (x, y)). y t 0 t

52 Example Se samotnými parciálními nebo směrovými derivacemi nevystačíme pro dobrou aproximaci chování funkce lineárními výrazy: { { 1 když xy = 0 1 když y = x 2 0 g(x, y) =, h(x, y) =. 0 jinak 0 jinak

53 Example Se samotnými parciálními nebo směrovými derivacemi nevystačíme pro dobrou aproximaci chování funkce lineárními výrazy: { { 1 když xy = 0 1 když y = x 2 0 g(x, y) =, h(x, y) =. 0 jinak 0 jinak Žádná z nich neprodlužuje všechny hladké křivky procházející bodem (0, 0) na hladké křivky. Pro g existují obě parciální derivace v (0, 0) a jiné směrové derivace neexistují, zatímco pro h existují všechny směrové derivace v bodě (0, 0) a platí d v h(0) = 0 pro všechny směry v, takže jde o lineární závislost na v R 2.

54 Následující definice věrně sleduje chování diferenciálu funkcí jedné proměnné:

55 Následující definice věrně sleduje chování diferenciálu funkcí jedné proměnné: Funkce f : R n R je diferencovatelná v bodě x, jestliže 1 v bodě x existují všechny směrové derivace d v f (x), v R n, 2 d v f (x) je lineární v závislosti na přírůstku v a 3 0 = lim v 0 1 v ( f (x + v) f (x) dv f (x) ).

56 Následující definice věrně sleduje chování diferenciálu funkcí jedné proměnné: Funkce f : R n R je diferencovatelná v bodě x, jestliže 1 v bodě x existují všechny směrové derivace d v f (x), v R n, 2 d v f (x) je lineární v závislosti na přírůstku v a 3 0 = lim v 0 1 v ( f (x + v) f (x) dv f (x) ). Lineární výraz d v f (závislý na vektorové proměnné v) nazýváme diferenciál funkce f vyčíslený na přírůstku v. V literatuře se často také říká totální diferenciál df funkce f.

57 Uvažujme f : E 2 R se spojitými parciálními derivacemi. Diferenciál v pevném bodě (x 0, y 0 ) je lineární funkce df : R 2 R df = f f dx + x y dy na přírůstcích se souřadnicemi danými právě parciálními derivacemi.

58 Uvažujme f : E 2 R se spojitými parciálními derivacemi. Diferenciál v pevném bodě (x 0, y 0 ) je lineární funkce df : R 2 R df = f f dx + x y dy na přírůstcích se souřadnicemi danými právě parciálními derivacemi. Obecněji v případě funkcí více proměnných píšeme obdobně df = f x 1 dx 1 + f x 2 dx f x n dx n ( ) a platí: Theorem Nechť f : E n R je funkce n proměnných, která má v okolí bodu x E n spojité parciální derivace. Pak existuje její diferenciál df v bodě x a jeho souřadné vyjádření je dáno rovnicí ( ).

59 Pro f : E 2 R a pevný bod (x 0, y 0 ) E 2 uvažme rovinu v E 3 : z = f (x 0, y 0 ) + f x (x 0, y 0 )(x x 0 ) + f y (x 0, y 0 )(y y 0 ). Je to jediná rovina procházející (x 0, y 0 ), ve které leží derivace a tedy i tečny všech křivek c(t) = (x(t), y(t), f (x(t), y(t))). Říkáme jí tečná rovina ke grafu funkce f.

60 Pro f : E 2 R a pevný bod (x 0, y 0 ) E 2 uvažme rovinu v E 3 : z = f (x 0, y 0 ) + f x (x 0, y 0 )(x x 0 ) + f y (x 0, y 0 )(y y 0 ). Je to jediná rovina procházející (x 0, y 0 ), ve které leží derivace a tedy i tečny všech křivek c(t) = (x(t), y(t), f (x(t), y(t))). Říkáme jí tečná rovina ke grafu funkce f. Na obrázku jsou zobrazeny dvě tečné roviny ke grafu funkce f (x, y) = sin(x) cos(y). Červená čára je obrazem křivky c(t) = (t, t, f (t, t)) y x y x 1 0

61 Obecně pro f : E n R je tečnou rovinou afinní nadrovina v E n+1.

62 Obecně pro f : E n R je tečnou rovinou afinní nadrovina v E n+1. Tato nadrovina 1 prochází bodem (x, f (x)) 2 její zaměření je grafem lineárního zobrazení df (x) : R n R, tj. diferenciálu v bodě x E n.

63 Obecně pro f : E n R je tečnou rovinou afinní nadrovina v E n+1. Tato nadrovina 1 prochází bodem (x, f (x)) 2 její zaměření je grafem lineárního zobrazení df (x) : R n R, tj. diferenciálu v bodě x E n. Analogie s funkcemi jedné proměnné: Diferencovatelná funkce f na E n má v bodě x E n nulový diferenciál tehdy a jen tehdy, když její složení s libovolnou křivkou procházející tímto bodem zde má stacionární bod. To ovšem neznamená, že v takovém bodě musí mít f aspoň lokálně buď maximum nebo minimum. Stejně jako u funkcí jedné proměnné můžeme rozhodovat teprve podle derivací vyšších.

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 3. 9. 6 Obsah přednášky Literatura Derivace

Více

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace

Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace Michal Bulant Masarykova univerzita Fakulta informatiky 18. 9. 2007 Q Literatura Q Zobrazení a funkce více proměnných 9 Funkce

Více

Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace

Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace S Matematika III - 1. přednáška Funkce více proměnných: křivky, směrové derivace Michal Bulant Masarykova univerzita Fakulta informatiky 18. 9. 2007 Q Literatura Q Zobrazení a funkce více proměnných 9

Více

Michal Bulant. Masarykova univerzita Fakulta informatiky

Michal Bulant. Masarykova univerzita Fakulta informatiky Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Dodatek 2: Funkce dvou proměnných 1/9

Dodatek 2: Funkce dvou proměnných 1/9 Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

LIMITA A SPOJITOST FUNKCE

LIMITA A SPOJITOST FUNKCE PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel

KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel KOMPLEXNÍ ČÍSLA A FUNKCE V předchozích částech byl důraz kladen na reálná čísla a na reálné funkce. Pokud se komplexní čísla vyskytovala, bylo to z hlediska kartézského součinu dvou reálných přímek, např.

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

1. přednáška 1. října Kapitola 1. Metrické prostory.

1. přednáška 1. října Kapitola 1. Metrické prostory. 1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

1/15. Kapitola 2: Reálné funkce více proměnných

1/15. Kapitola 2: Reálné funkce více proměnných 1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Home. Obsah. Strana 1 MATEMATIKA. Fullscreen PRO LETECKÉ. Tisk OBORY II. Konec

Home. Obsah. Strana 1 MATEMATIKA. Fullscreen PRO LETECKÉ. Tisk OBORY II. Konec Kurzy celoživotního vzdělávání Fakulta dopravní ČVUT MATEMATIKA Strana 1 PRO LETECKÉ OBORY II PŘEHLED LÁTKY 1 Metrické a normované prostory 2 Posloupnosti v metrických prostorech 3 Reálné funkce více reálných

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Drsná matematika. Martin Panák, Jan Slovák

Drsná matematika. Martin Panák, Jan Slovák Drsná matematika Martin Panák, Jan Slovák Pokus o učební text pro začínající studenty informatiky přibližující podstatnou část matematiky v rozsahu čtyř semestrálních přednášek. Prozatím jsou zaznamenány

Více

Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření

Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření Jan Slovák Masarykova univerzita Fakulta informatiky 12. 12. 2007 Obsah přednášky 1 Literatura 2 Kvadratické formy a kvadriky 3 Projektivní

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Matematická analýza III.

Matematická analýza III. 3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické

Více

Matematická analýza pro informatiky I. Limita funkce

Matematická analýza pro informatiky I. Limita funkce Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

Drsná matematika. Martin Panák, Jan Slovák

Drsná matematika. Martin Panák, Jan Slovák Drsná matematika Martin Panák, Jan Slovák Pokus o učební text pro začínající studenty informatiky přibližující podstatnou část matematiky v rozsahu čtyř semestrálních přednášek. Prozatím jsou zaznamenány

Více

Ortogonální projekce a ortogonální zobrazení

Ortogonální projekce a ortogonální zobrazení Drsná matematika I 9. přednáška Ortogonální projekce a ortogonální zobrazení Jan Slovák Masarykova univerzita Fakulta informatiky 27. 4. 2010 Obsah přednášky 1 Literatura 2 Projekce a ortogonální zobrazení

Více

DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib

DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

3. přednáška 15. října 2007

3. přednáška 15. října 2007 3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

Kapitola 1. Reálné funkce více reálných proměnných. 1.1 Euklidovský n-rozměrný prostor R n Algebraické vlastnosti prostoru R n

Kapitola 1. Reálné funkce více reálných proměnných. 1.1 Euklidovský n-rozměrný prostor R n Algebraické vlastnosti prostoru R n Obsah 1 Reálné funkce více reálných proměnných 5 1.1 Euklidovský n-rozměrný prostor R n...................... 5 1.1.1 Algebraické vlastnosti prostoru R n.................. 5 1.1.2 Metrické vlastnosti prostoru

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Texty k přednáškám z MMAN3: 3. Metrické prostory

Texty k přednáškám z MMAN3: 3. Metrické prostory Texty k přednáškám z MMAN3: 3. Metrické prostory 3. července 2012 1 Metrika na množině, metrický prostor Pojem vzdálenosti dvou reálných (komplexních) čísel, nebo bodů v rovině či prostoru je známý ze

Více

Přednášky z předmětu Aplikovaná matematika, rok 2012

Přednášky z předmětu Aplikovaná matematika, rok 2012 Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------

Více

Derivace funkce Otázky

Derivace funkce Otázky funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více