Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Rozměr: px
Začít zobrazení ze stránky:

Download "Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57"

Transkript

1 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

2 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost funkce 2 Diferenciální počet Derivace Příklady 3 Integrální počet Neurčitý a určitý integrál Příklady c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

3 Úvod Funkce Definice 1 Necht A, B R, f A B. Jestliže ke každému prvku a A existuje právě jeden prvek b B tak, že [a, b] f, pak relaci f nazýváme zobrazení množiny A do množiny B (f : A B). Množina A se nazývá definiční obor zobrazení f, značíme D(f ) = Dom(f ). Množinu H(f ) = Im(f ) = {b B : x D(f ) : f (x) = b} nazýváme obor hodnot zobrazení f. Zobrazení f nazýváme reálná funkce (reálná funce reálné proměnné). Píšeme y = f (x). x se nazývá nezávisle proměnná (argument) funkce f. y se nazývá závisle proměnná funkce f. Číslo f (x 0 ) R se nazývá funkční hodnota funkce f v bodě x 0. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

4 Úvod Funkce Poznámka Není-li definiční obor funkce zadán, jedná se o množinu všech x R pro která má daná funkce smysl. Příklad 1 Definiční obor funkce f (x) = 1 x 1 je D(f ) = R \ {1}. Definiční obor funkce g(x) = x je D(g) = (, 0]. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

5 Úvod Reálná čísla a posloupnosti Definice 2 (Rozšířená množina reálných čísel) Rozšířenou množinou reálných čísel R rozumíme množinu reálných čísel R rozšířenou o body a +, tj R = R {, + }. Body ± nazýváme nevlastní body, zatímco body množiny R nazýváme vlastní body. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

6 Úvod Reálná čísla a posloupnosti Definice 3 Posloupnost reálných čísel je zobrazení, jehož definičním oborem je množina N a oborem hodnot množina R, tj. a: N R, většinou místo a(n) píšeme a n. Příklad 2 a n = 1 n = {1, 1 2, 1 3,... } {a n } n=1, a n = vzorec pro a n a n = n sin(n π 2 ) {1, 0, 3, 0, 5, 0, 7,... } a n = {1, 1, 2, 1, 2, 3, 1, 2, 3, 4,... } c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

7 Úvod Reálná čísla a posloupnosti Definice 4 (Limita posloupnosti) Řekneme, že posloupnost a n konverguje k číslu a R, píšeme lim n a n = a, jestliže ke ε > 0 n 0 N: pro n n 0 platí a n a < ε, tj. a n (a ε, a + ε). Řekneme, že posloupnost a n diverguje k + ( ), píšeme lim n a n = + ( ), jestliže ke A R n 0 N takové, že pro n n 0 je a n > A (a n < A). Jestliže posloupnost nekonverguje ani nediverguje, řekneme, že osciluje. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

8 Úvod Reálná čísla a posloupnosti Definice 5 (Okoĺı bodu) Libovolný otevřený interval I R obsahující bod x 0 R nazýváme okoĺı bodu x 0 a značíme jej O(x 0 ). Definice 6 (Okoĺı ± ) Necht A R je libovolné. Interval (A, ), resp. (, A), nazýváme okoĺı +, resp.. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

9 Úvod Reálná čísla a posloupnosti Speciální typy okoĺı bodu δ-okoĺı bodu x 0 O δ (x 0 ) = (x 0 δ, x 0 + δ). Prstencové (ryzí) δ-okoĺı bodu x 0 P δ (x 0 ) = O δ (x 0 ) \ {x 0 } = (x 0 δ, x 0 ) (x 0, x 0 + δ). Levé a pravé δ-okoĺı bodu x 0 O δ (x 0) = (x 0 δ, x 0 ], O + δ (x 0) = [x 0, x 0 + δ). Levé a pravé prstencové δ-okoĺı bodu x 0 P δ (x 0) = (x 0 δ, x 0 ), P + δ (x 0) = (x 0, x 0 + δ). c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

10 Úvod Reálná čísla a posloupnosti Definice limity posloupnosti pomocí okoĺı bodu Příklad 3 lim a n = a R : O(a) n 0 N n n 0 : a n O(a). n Limita posloupnosti a n = ( 1) n 1 neexistuje. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

11 Úvod Limita a spojitost funkce Motivace: Příklad 4 f (x) = x 2 + x 2, 1 D(f ) x 1 x 2 + x 2 (x + 2)(x 1) lim = lim = lim (x + 2) = 3 x 1 x 1 x 1 x 1 x 1 Příklad 5 g(x) = { x 2 x 0 1 x = 0 lim g(x) = 0 x 0 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

12 Úvod Limita a spojitost funkce Definice 7 (Limita) Řekneme, že funkce f má v bodě x 0 R limitu rovnu L R, jestliže ε > 0 δ > 0 takové, že pro x (x 0 δ, x 0 + δ) {x 0 } platí f (x) L < ε. Píšeme lim x x 0 f (x) = L. Definice 8 (Limita pomocí okoĺı) O ε (L) O δ (x 0 ) : x P δ (x 0 ) f (x) O ε (L). Poznámka Limita funkce nezávisí na funkční hodnotě f (x 0 ) (ta nemusí být dokonce ani definována). c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

13 Úvod Limita a spojitost funkce Nepřesně, ale ilustrativně: Je-li x bĺızko x 0, pak je f (x) bĺızko L. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

14 Úvod Limita a spojitost funkce Definice 9 (Limita, nevlastní limita, limita v nevlastním bodě) Necht x 0, L R. Jestliže ke každému O(L) existuje P(x 0 ) takové, že pro každé x P(x 0 ) platí f (x) O(L), pak řekneme, že lim x x0 f (x) = L. Příklad 6 Např. pro x 0 =, L = máme lim f (x) =, tj. x A R B R : x < B je f (x) > A. Příklad 7 Limita lim x sin x neexistuje. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

15 Úvod Limita a spojitost funkce Obr.: Nevlastní limita c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

16 Úvod Limita a spojitost funkce Obr.: Limita v nevlastním bodě c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

17 Úvod Limita a spojitost funkce Definice 10 (Jednostranná limita) Limitu zprava lim x x + 0 f (x) = L definujeme takto O(L) P + (x 0 ) : x P + (x 0 ) je f (x) O(L). Limitu zleva definujeme analogicky. (x 0, x 0 + δ) x R P + (x 0 ) = (, B) x = nemá smysl x = c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

18 Úvod Limita a spojitost funkce c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

19 Úvod Limita a spojitost funkce Není-li možné číslo do funkce dosadit jinak než limitně, můžeme představu o limitním chování funkce získat i empiricky a to dosazováním bĺızkých čísel. Podívejme se na chování funkce sin x x pro x 0 +. x 1 0, 1 0, 01 0, 001 0, 0001 sin x x 0, , , , , Z tabulky vidíme, že hodnoty se bĺıží jedničce. A skutečně lim x 0 + sin x x = 1. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

20 Úvod POZOR nejde o neprůstřelnou metodu: Limita a spojitost funkce x 1 0, 1 0, 01 0, 001 0, 0001 sin π x Přitom lim x 0 + sin π x neexistuje. (Zkuste dosazovat náhodná čísla bĺıžící se k nule zprava.. Např. sin = 0, ) π 0,003 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

21 Úvod Limita a spojitost funkce Definice 11 (Spojitost v bodě) Řekneme, že funkce f je spojitá v bodě x 0 D(f ), jestliže lim x x0 f (x) existuje a je rovna f (x 0 ), tj. ε > 0 δ > 0 : x O δ (x 0 ) platí f (x) O ε (f (x 0 )). Řekneme, že funkce f je spojitá v bodě x 0 zprava (zleva), je-li ( ) lim x x + 0 f (x) = f (x 0 ) lim x x 0 f (x) = f (x 0 ). c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

22 Úvod Limita a spojitost funkce Definice 12 (Spojitost na intervalu) Řekneme, že funkce f je spojitá na otevřeném intervalu (a, b), je-li spojitá v každém x (a, b). Řekneme, že funkce f je spojitá na uzavřeném intervalu [a, b], je-li spojitá na otevřeném intervalu (a, b) a v bodech a (b) je spojitá zprava (zleva). c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

23 Úvod Limita a spojitost funkce Příklad 8 { 0 x Q Dirichletova funkce χ(x) = není spojitá v žádném bodě 1 x I (lim x x0 χ(x) neexistuje libovolně malé okoĺı obsahuje 1 i 0). Příklad 9 Funkce f (x) = x χ(x) je spojitá v bodě x 0 = 0 a není spojitá v žádném jiném bodě. lim x x 0 }{{} χ(x) = 0 }{{} 0 ohraničená c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

24 Úvod Limita a spojitost funkce Poznámka Představa, že funkce je spojitá jestliže se nepřetrhne platí, ale je zavádějící. Např. funkce f (x) = x(x 1)(x 2)χ(x) je spojitá v bodech 0, 1 a 2. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

25 Diferenciální počet Derivace Definice 13 (Derivace funkce f v bodě) Necht x 0 je vnitřním bodem D(f ). Jestliže existuje limita f (x) f (x 0 ) lim x x 0 x x 0 nazýváme tuto limitu derivací funkce f v bodě x 0, píšeme f (x 0 ). Poznámka f (x) f (x Je-li limita lim 0 ) x x0 x x 0 R řekneme, že funkce f má v bodě x 0 vlastní derivaci. f (x) f (x Je-li limita lim 0 ) x x0 x x 0 = ± řekneme, že funkce f má v bodě x 0 nevlastní derivaci + nebo. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

26 Diferenciální počet Derivace Definice 14 (Derivace funkce) Má-li funkce f derivaci v každém bodě intervalu I D(f ), pak se funkce x f (x) nazývá derivace funkce f a značí se f. Definice 15 (Derivace zprava / zleva) f +(x 0 ) = lim x x + 0 f (x) f (x 0 ) x x 0, f (x 0 ) = lim x x 0 f (x) f (x 0 ) x x 0 Poznámka Zavedením h jako x = x 0 + h získáme f f (x + h) f (x) (x 0 ) = lim. h 0 h c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

27 Diferenciální počet Derivace Geometrický význam derivace Sečna grafu funkce f procházející body [x 0, f (x 0 )] a [x 0 + h, f (x 0 + h)] má směrnici tg ϕ = f (x 0 + h) f (x 0 ). h Jestliže se s bodem x 0 + h bĺıžíme k bodu x 0 (tj. provádíme limitní přechod h 0), přejde tato sečna v tečnu v bodě [x 0, f (x 0 )]. Směrnice tečny ke grafu funkce f v bodě x 0 je tedy lim h 0 f (x 0 + h) f (x 0 ), h což je přesně derivace funkce f v bodě x 0. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

28 Diferenciální počet Derivace c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

29 Diferenciální počet Derivace Věta 1 Má-li funkce v bodě x 0 derivaci (vlastní), pak je v tomto bodě spojitá. Důkaz. lim (f (x) f (x 0 )) = lim (x x 0 ) f (x) f (x 0) = x x 0 x x0 x x 0 f (x) f (x 0 ) lim (x x 0 ) lim = 0. x x } 0 x x0 x x {{}}{{ 0 } 0 číslo R c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

30 Diferenciální počet Derivace Poznámka Opačné tvrzení neplatí ze spojitosti neplyne existence derivace. Např. funkce f (x) = x je spojitá na celém R, ale v x 0 = 0 nemá derivaci. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

31 Diferenciální počet Derivace Poznámka Bolzano a Weierstrass sestrojili funkci, která je spojitá v každém bodě, ale v žádném nemá derivaci. f n (x) = 1 n cos (n2 x), g n (x) = f 1 (x) + + f n (x) Pro n je g n spojitá ( hustá, roztřesená čára ). c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

32 Diferenciální počet Derivace g 5 (x) = 5 i=1 1 i cos (i 2 x) c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

33 Diferenciální počet Příklady Příklad 10 Jak rychle klesá voda ve válcové nádrži, jestliže vytéká rychlostí 3000 l/min? c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

34 Diferenciální počet Příklady Označme r poloměr nádrže [m], h(t) výšku vody v nádrži [m], t čas [min], V (t) objem vody v nádrži [m 3 ]. Víme, že V (t) = 3000 l/min, tj. V (t) = 3 m 3 /min (objem se zmenšuje, jeho derivace je tedy záporná). Hledáme h (t). Z rovnice pro objem válce určíme derivováním podle t V (t) = π r 2 h(t) V (t) = π r 2 h (t), tj. h (t) = V (t) π r 2 = 3 π r 2. Voda tedy klesá (protože je derivace objemu záporná) rychlostí 3/(π r 2 ) m/min. Pro malé r bude voda klesat rychle, pro velké r bude voda klesat pomalu. Např. pro r = 10 cm, tj. r = 0.1 m, je h (t) = 300/π = 95 m/min, naproti tomu pro r = 10 m je h (t) = 3/(100 π) = m/min, tj. h (t) = 9.5 mm/min. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

35 Diferenciální počet Příklady Příklad 11 Horkovzdušný balón stoupá kolmo vzhůru. Je zachycen radarem, který je 500 metrů od místa vzletu a který v té chvíli udává elevační úhel π 4, přičemž úhel roste rychlostí 0.14 rad/min. Jak rychle v tomto okamžiku balón stoupá? c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

36 Diferenciální počet Příklady Označme t čas [min], h(t) výška balónu nad zemí [m], ϕ(t) vertikální elevační úhel radaru [rad]. Potom víme, že ϕ (t) = 0.14 rad/min, když je ϕ = π 4. Hledáme h (t) pro ϕ = π 4. Z pravoúhlého trojúhelníka vidíme, že Derivováním podle t určíme tj. v uvedeném okamžiku je tg ϕ(t) = h(t), tj. h(t) = 500 tg ϕ(t). 500 h (t) = 500 h (t) = cos 2 ϕ(t) ϕ (t), 1 cos 2 π (0.14) = 140 m/min. 4 V daném okamžiku stoupá balón rychlostí 140 m/min. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

37 Diferenciální počet Příklady Příklad 12 Policejní auto sleduje auto lupičů. Přijíždí k pravoúhlé křižovatce ze severu, přičemž auto lupičů již ujíždí od křižovatky na východ. Když je policejní auto 0.6 km od křižovatky a auto lupičů 0.8 km od křižovatky, udává radar v policejním autě, že se auto lupičů vzdaluje od jejich auta rychlostí 40 km/h. Policejní auto jede v té chvíli rychlostí 120 km/h. Určete rychlost auta lupičů v tomto okamžiku. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

38 Diferenciální počet Příklady Označme x(t) pozici auta lupičů (vodorovně) [km], y(t) pozici policejního auta (svisle) [km], t čas [h], s(t) vzdušnou vzdálenost mezi auty [km]. Potom víme, že s (t) = 40 km/h pro x = 0.8 km a y = 0.6 km a y (t) = 120 km/h (policejní auto se ke křižovatce přibližuje, proto je derivace jejich pozice y(t) záporná). Hledáme x (t) v témže okamžiku. Z rovnice s 2 (t) = x 2 (t) + y 2 (t) obdržíme derivováním podle t 2 s(t) s (t) = 2 x(t) x (t)+2 y(t) y (t), tj. x (t) = s(t) s (t) y(t) y (t). x(t) Dosazením údajů pro daný okamžik dostaneme (0.6) x (t) = 2 + (0.8) 2 40 (0.6) ( 120) = 140 km/h. 0.8 Auto lupičů ujíždí v daném okamžiku od křižovatky rychlostí 140 km/h. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

39 Integrální počet Neurčitý a určitý integrál Definice 16 Řekneme, že funkce F je na intervalu I primitivní funkcí k funkci f, jestliže F (x) = f (x), x I. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

40 Integrální počet Neurčitý a určitý integrál Věta 2 Jsou-li funkce F a G primitivní funkce k funkci f na intervalu I, pak existuje konstanta c R taková, že G = F + c. Důkaz. F (x) = f (x), G (x) = f (x) (F (x) G(x) ) = 0 na I }{{} spojitá funkce F (x) G(x) = c R. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

41 Integrální počet Neurčitý a určitý integrál Definice 17 Množina primitivních funkcí k funkci f se nazývá neurčitý integrál funkce f a značí se f (x)dx. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

42 Integrální počet Neurčitý a určitý integrál Naším cílem nyní bude výpočet plochy podgrafu dané (nezáporné) funkce f. Podgraf = { [x, y] R 2 : x [a, b], 0 y f (x) }. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

43 Integrální počet Neurčitý a určitý integrál Definice 18 Necht D = {x 0, x 1,..., x n } je dělení intervalu [a, b] a ξ i [x i 1, x i ]. Pak K = {ξ 1,..., ξ n } se nazývá výběr reprezentantů dělení D a součet n f (ξ i )(x i x i 1 ) =: S(D, f, K) i=1 se nazývá integrální součet funkce f příslušný dělení D a výběru reprezentantů K. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

44 Integrální počet Neurčitý a určitý integrál Věta 3 Necht funkce f je integrovatelná na intervalu [a, b] a D n je libovolná nulová posloupnost dělení tohoto intervalu. Pak pro každý výběr reprezentantů K n dělení D n platí b lim S(D n, f, K n ) = f (x)dx. n a c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

45 Integrální počet Neurčitý a určitý integrál Věta 4 (Newtonův-Leibnitzův vzorec) Necht funkce f je integrovatelná na intervalu [a, b], funkce F je spojitá na [a, b] a na (a, b) je primitivní funkcí k f, tj. F = f na (a, b). Pak platí b a f (x)dx = F (b) F (a). c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

46 Integrální počet Příklady Příklad [ x x 2 3 dx = 3 ] 5 2 = 53 3 ( 2)3 3 = c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

47 Integrální počet Příklady Objem a povrch pláště rotačního tělesa (rotace nezáporné funkce f kolem osy x na intervalu [a, b]). b b P = 2π f (x) 1 + f 2 (x)dx, V = π f 2 (x)dx. a a c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

48 Integrální počet Příklady Vzorec pro objem rotačního tělesa plyne přímo z konstrukce integrálu. Uvažujme dělení intervalu [a, b], v každém dílku zvoĺıme reprezentanta ξ i. Tím obdržíme obdélník daný délkou dílku a funkční hodnotou v příslušném reprezentantu. Rotujeme-li tento obdélník kolem osy x, vytvoří válec o poloměru f (ξ i ) a výšce x i x i 1. Součet všech objemů přejde pro nulovou posloupnost dělení v objem uvažovaného rotačního tělesa. V n i=1 b πf 2 (ξ i )(x i x i 1 ) = S(D, πf 2, K) π f 2 (x)dx = V a Podobně lze odvodit vzorec pro povrch pláště nahradíme-li křivku za lomenou čáru, objekt snadno rozděĺıme na sadu komolých kuželů. Součet povrchů pláště těchto kuželů se pro nulové dělení bĺıží k povrchu pláště daného tělesa. c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

49 Integrální počet Příklady Příklad 14 Vypočtěte povrch koule o poloměru R. R P = 2 2π 0 R 2 x 2 R R R 2 x dx = 4πR dx = 4πR c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

50 Integrální počet Příklady Příklad 15 Určete objem tělesa vzniklého rotací plochy omezené grafy funkcí f (x) = x a g(x) = x + 3 kolem osy x. 2 V = π = π = π =... = π. 2 g 2 (x)dx π f 2 (x)dx 1 (x + 3) 2 (x 2 + 1) 2 dx 8 + 6x x 2 x 4 dx c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

9. Limita a spojitost funkce

9. Limita a spojitost funkce Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 9. Limita a spojitost funkce OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a r), kde r > 0; značí se O (a,

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε. LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice

Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice podzim 2008, pátá přednáška Derivace a tečny aneb matematika libovolně malých změn Nejen velké,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

5. Limita a spojitost

5. Limita a spojitost 5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální

Více

Matematika II: Pracovní listy

Matematika II: Pracovní listy Matematika II: Pracovní listy Zuzana Morávková, Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava K M D G ISBN 978-80-48-334-8

Více

Matematika B 2. Úvodní informace

Matematika B 2. Úvodní informace Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Diferenciální geometrie

Diferenciální geometrie Diferenciální geometrie Pomocný učební text díl I. František Ježek Plzeň, červen 2005 Obsah 1 Křivky 4 1.1 Vyjádření křivky......................... 4 1.2 Transformace parametru..................... 5

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

Funkce více proměnných - úvod

Funkce více proměnných - úvod Funkce více proměnných - úvod Helena Říhová FBMI 14. července 2014 Helena Říhová (ČVUT) Funkce více proměnných - úvod 14. července 2014 1 / 16 Obsah 1 Úvod Grafy funkcí dvou proměnných Eukleidovská vzdálenost

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

7. Integrál přes n-rozměrný interval

7. Integrál přes n-rozměrný interval 7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více