1. ZKOUŠENÍ MATERIÁLŮ

Rozměr: px
Začít zobrazení ze stránky:

Download "1. ZKOUŠENÍ MATERIÁLŮ"

Transkript

1 1. ZKOUŠENÍ MATERIÁLŮ 1.1 Vlastnosti materiálů Materiály mají nejrozmanitější vlastnosti, které jsou dány především jejich chemickým složením a strukturou. Pro použitelnost v technické praxi se dělí na vlastnosti: fyzikální (souvisí hlavně s krystalickou stavbou - hustota, elektrická a tepelná vodivost, magnet. vlastnosti ap.) chemické (elektrochemické, korozní ap.) mechanické (pružnost, pevnost, houževnatost, tvrdost, tečení, únava ap.) technologické ( tvárnost, slévatelnost, obrobitelnost, svařitelnost ap.) Dle vlivu struktury: vlastnosti strukturně citlivé (závislé na dokonalosti krystalové mřížky, způsobu tepelného a mechanického zpracování - většina mechanických vlastností, elektrické ap.) vlastnosti strukturně necitlivé (hmotnost, měrné teplo, teplota tání ap.) 1.2 Mechanické zkoušky Mechanické vlastnosti umožňují kvantitativně hodnotit chování materiálů za působení vnějších sil, př. i dalších vlivů. Některé hodnoty mají fyzikální význam - lze je tedy přepočítávat pro jiný tvar a rozměr, jiné vystihují chování za určitých podmínek (nelze převádět) pro posouzení vlastností a zpracování materiálů (vrubová houževnatost). Celkové zkoušení je nezbytné pro kontrolu jakosti výrobků, jako důležitý poznatek výzkumných prací i k hodnocení úrovně technologie výroby. Mechanické zkoušky můžeme dělit dle: charakteru zatěžování (statické, dynamické) zjišťovaných vlastností (pevnostní, tvrdostní, únavy ap.) druhu namáhání (tah, tlak, ohyb, krut ap.) teploty a prostředí Pro zabezpečení reprodukovatelnosti a porovnatelnosti je nutnost jejich normování. Způsob odebírání vzorků může podstatně ovlivnit obdržené výsledky (materiál není homogenní a izotropní) - zkušební kus - zkušební vzorek místo odebírání - volba průměrných vlastností - nejvíce exponované místo ČN udává počet zkušebních vzorků dle množství a druhu výroby, potřeby bezpečnosti ap. Obecné zásady pro odběr jsou: reprezentace určité dávky, výroby, tavby ap. vyhnout se místům s předpokládanými vadami vzorek musí prodělat celý výrobní proces odběrem se nesmí ovlivnit vlastnosti brát ohled na anizotropii značení (nepoškozovat zkušební část, zůstat zachováno) tatické zkoušky Zkouška tahem. 1

2 Jedna ze základních statických zkoušek (za stálé síly neb pomalu spojitě se měnící síly) ČN Zkušební těleso je jednoduchého tvaru a zatěžuje se do porušení pracovní diagram - registruje se zátěžná síla a deformace (mění se délka zkušební tyče z L o na L u a průřez o na u) íla F se vztahuje na jednotku plochy - napětí normálové smluvní napětí R = F /MPa/ absolutní prodloužení L = L L /mm/ u Obr. 1.1: Pracovní diagram zkoušky tahem měkké uhlíkové oceli - E modul pružnosti) - mez pružnosti R E - fyzikální hodnota - smluvní mez pružnosti trvalé deformace,5% obvykle se vyjadřuje v % jako poměrné L prodloužení ε =. 1 /%/ L Pracovní smluvní diagram /obr. 1.1/ (závislost F-L odpovídá R-ε) - počátek odpovídá Hookeovu zákonu R = E.ε (mez úměrnosti R u - dále deformace pružné a plastické, zpevňování - výrazná mez kluzu R e (definice, náznak teorie - zrna, mřížka, roviny, dislokace) - smluvní mez kluzu (průtažnosti) R p,2 - mez pevnosti F m R m = - zaškrcování - skutečné napětí L L tažnost A u u =. 1 /%/ kontrakce Z =. 1 /%/ L houževnatost - měřítko energie k deformaci a porušení tělesa - plocha pod křivkou Lomy charakterizují vlastnosti materiálu (bodový, smykový, křehký, smíšený (dutinový). Zkušební tyče: dle upnutí dle materiálu dle délky (1 a 5 d o ev. nekruhové 11,3 a 5,65. o) vlivem zaškrcování nerovnoměrné prodloužení po délce Měření deformací - průtahoměry - optické, mechanické, elektrické (odporové, induktivní ap.) Obr. 1.2: Příklady pracovních diagramů zkoušky tlakem /1-šedá litina, 2-měkká ocel, 3-zinek, 4-olovo/ - rozdíl pevností u šedé litiny Zkouška tlakem /obr. 1.2/ Především u křehkých materiálů - obvykle válečky průměru 2 až 3 mm stejné výšky - nenormována - pevnost při porušení tělesa, jinak zkouška technologická. Hodnocení analogické tahu ev. poměrné zkrácení F mt R mt = /MPa/ ε t a rozšíření ψ t /%/ 2

3 Zkouška ohybem. Pro křehké materiály, svarové a pájené spoje - nosník na dvou podporách - z průhybu se určuje deformační schopnost - napětí normálové nerovnoměrně rozložené po průřezu - posun neutrální osy u litiny /obr. 1.3/ Obr. 1.3: Rozdělení napětí v průřezu tyče na mezí úměrnosti pro materiál nestejných vlastností v tahu a tlaku Zkouška střihem. Litiny ČN - průměr dle tloušťky stěny odlitku - nastojato, neobrobené pevnost v ohybu napětí krajního vlákna M o max R mo = /MPa/ - W o Fmax.L M max = /N.mm/ 4 W o - modul průřezu pro kruhový π d 3 32 (obdélníkový b.h 2 ) 6 Rovnoměrné smykové napětí ležící v průřezu - není běžná - pomocí přípravků, obvykle přídavná napětí v ohybu - R ms bývá,8 až 1, R m Zkouška krutem /obr. 1.4/ Nenormovaná - experimentální náročnost, bez tahového napětí, jednoúčelová - pevnost v krutu R mk, modul pružnosti ve smyku G - analogie tahu, rozložení napětí - kroutící moment M k = F. d /N.mm/ - pevnost v krutu M k max R mk = /MPa/ Wk Obr. 1.4: chéma uspořádání při zkoušce krutem - poměrné zkroucení - poměrné posunutí povrchového vlákna skos ϑ = ϕ L - modul průřezu v krutu - průřez se natočí o úhel ϕ W ϕ.r γ = modul pružnosti ve smyku L k 3 π d = /mm 3 / 16 G = τ γ Zkoušky tvrdosti. Tvrdost bývá definována jako odpor proti vnikání cizího tělesa do zkoušeného povrchu - vlivů více (různé pružné a plastické vlastnosti materiálů i identoru, jeho geometrie, použitá síla, tření, umístění vtisku ap.) - nejednotnost měření - rychlé, jednoduché, většinou bez výrazného poškození Dělení dle: rychlosti zatěžování (statické, dynamické) principu zkoušky Vrypové: (Mohsova stupnice tvrdosti, ocel 5, až 8,5 - Martensova - diamantový kužel 9 o - zatížení nebo šířka vrypu) Vnikací (HB, HV, HR) 3

4 Zkouška dle Brinella. Identor kalená ocelová kulička - D 1 až 2,5 mm - (ocelová do 35 HB, K do 45 HB),12.F F HB = F /N/ resp. A A - A plocha vtisku (kulový vrchlík) /mm 2 / R mhb = k.hb pro ocel k = 3,1 až 4,1 F /kp/ Obr. 1.5: Závislost tvrdosti HB na velikosti zátěžné síly - závislost tvrdosti na velikosti zatěžovací síly /obr. 1.5/ - vtisk,2 až,6 D - zatěžovací stupně v závislosti na D 2 - ocel 3, litina, barevné kovy 1, hliník 5, ložiskové kovy 2,5 - srovnávat možno pouze v zatěžovacím stupni - metodika, vzdálenosti od hrany, od sebe, tloušťka /obr. 1.6/, doba zátěže výhody - jednoduchá, heterogenní struktury, necitlivá, levná nevýhody - odečítání, přesnost, omezenost, poškození výrobku Obr. 1.6: Fotoelasticimetrické zjišťování průběhu smykového namáhání pod vtlačovanou kuličkou Zkouška dle Vickerse. Identor čtyřboký diamantový jehlan o vrcholovém úhlu 136,189.F HV = F/N/ resp. HV = 2 2 u 1,854.F u F/kp/ (F - síla vztažená na plochu vtisku, u - úhlopříčka vtisku /mm 2 /) - libovolné zatížení, vtisky geometricky podobné - vztah mezi Brinellem a Vickersem - výhody přesnější /obr. 1.7/, široké použití, menší vtisk i nižší hloubka a) b) Obr. 1.7: Deformace vtisku podle Vickerse /a-nezpevněný materiál, b-zpevněný materiál nevýhody - delší doba vyhodnocování, příprava povrchu, menší vtisk Mikrotvrdost - Hanemannův mikrotvrdoměr (,5 až 2 p) Obr. 1.8: Postup měření tvrdosti podle Rockwella /nahoře postup zatěžování; dole detail průniku indentoru a jeho měření/ Zkouška dle Rockwella. Dva druhy indentorů - diamantový kužel 12 o - ocelová kulička 1/16" - měří se hloubka vtisku /obr. 1.8/ - postup měření, předtížení, vlastní zatížení, odtížení - celá stupnice,2 mm - stupnice (kužel) C 15 kp, (kulička) B 1 kp, A 6 kp (kužel tenké vrstvy) výhody - rychlá nevýhody - menší přesnost (identor, pružnost), menší rozsah 4

5 Dynamické zkoušky tvrdosti. Obdoba statických : volný pád, stlačená pružina (Baumannovo kladivo), porovnávací (Poldi kladívko) Odrazové - horeho skleroskop - odraz závaží s kulovým diamantovým hrotem (max. 14 dílků, kalená ocel 1) Hh bez poškození povrchu, malá přesnost - Duroskop - princip kyvadla Kyvadlové - princip útlumu Dynamické zkoušky. Zjišťují odolnost proti křehkému porušení, používají se zkoušky analogické statickým - význam zkouška rázem v ohybu. Týž materiál se může porušit houževnatě nebo křehce dle podmínek. Vznik náhlých křehkých lomů bez předchozí varující deformace za nižších napětí může být příčinou havárií. Vznik křehkého lomu podporují: Obr. 1.9: Poměry při rázové zkoušce v ohybu na kyvadlovém kladivu /a) schéma Charpyho kladiva: 1-rám, 2-zkušební tyč, 3-kladivo, 3a-tvar břitu, 4-vlečná ručička, 5-stupnice, b) výpočet nárazové práce: G-kývající hmota, r-poloměr dráhy břitu/ Obr. 1.1: Rozměry zkušební tyče k vrubové zkoušce rázem předepsané normou ČN hranicích, radiační poškození, stárnutí, tepelné zpracování ap.) podmínky nízká teplota složitý stav napjatosti rychlost deformace Zkouška vrubové houževnatosti spočívá v přeražení zkušební tyče na kladivu a určení nárazové práce spotřebované na toto přeražení - houževnatost je spotřebovaná práce vztažená na plochu pod vrubem K KC = / J.cm -2 / - uspořádání dle Izoda (vetknutý nosník) nebo Charpy /obr. 1.9/ (nosník na dvou podporách) ČN - tyče U vrub (5, 3, 2 mm) /obr. 1.1/ nebo V vrub (2 mm), bez vrubu - kladivo ztráty, nárazová práce, vlivy na hodnotu vrubové houževnatosti: tvar vrubu hloubka vrubu šířka zkušební tyče orientace vláken - hodnota vrubové houževnatosti velice strukturně citlivá (velikost zrna, čistota ocelí, segregace na - významný vliv teplota /obr. 1.11/ - s hodnotou souvisí vzhled lomových ploch - závislost se někdy nazývá Vidalova křivka -- houževnatý stav 1-2 J.cm -2, křehký stav 1 J.cm -2 - přechodová teplota - charakteristika materiálu (provozní teploty) - způsoby určování - význam zkoušky - ukazatel plastických vlastností - ne hodnota k výpočtu 5

6 Obr. 1.11: Teplotní závislost vrubové houževnatosti /a) schéma průběhu a oblast lomů: I-houževnatých, II-smíšených, III-křehkých; b) způsoby stanovení přechodové teploty t p, a-jako inflexního bodu, b-z rovnosti ploch 1 a 2, c-podle zadané KC min/ 1.3 Technologické zkoušky Obr. 1.12: Curyho zkouška zabíhavosti pro šedou litinu - zkoušky: odolnost proti vzniku trhlin odolnost proti zkřehnutí Technologické vlastnosti umožňují za definovatelných podmínek určitý způsob zpracování materiálu - nelze vyjádřit ve fyzikálních veličinách - jedná se o posouzení vlastností pro určité zpracování - nutno ovšem definovat podmínky pro reprodukovatelnost a srovnatelnost výsledků - lévatelnost posouzení vhodností materiálu k výrobě odlitků, tedy schopnost kovů vytvořit odlitky odpovídající rozměry a tvarem bez makro a mikro vad - především závisí na : zabíhavost - schopnost zaplnit formu, obvykle dráha až kam zaběhne tekutý kov, Curyho zkouška, závisí především na složení (eutektické, likvidus-solidus), plyny, vměstky, teplotě lití, stavu formy apod. smrštění - zmenšení objemu vůči tavenině v % (ocel až 2,5 %, litina 1 %) vařitelnost charakteristika materiálu určující vhodnost vytvoření spoje předepsané jakosti - zaručená, podmíněně zaručená, dobrá, obtížná krystalizační a likvační trhliny - ohybová zkouška při teplotách u solidu - natavování povrchu v ochranné atmosféře imitace teplotních cyklů Thermorestor studené trhliny - zkouška Tekken žíhací a lamelární trhliny častá návarová zkouška - tuhost brání tepelné dilataci zkoušky zkřehnutí /obr. 1.13/ - vrubová houževnatost nebo ohyb 6

7 Obr. 1.13: Zkouška zkřehnutí svarového spoje Obr. 1.14: Zkouška plechů hloubením podle Erichsena /1-zkušební plech, 2-razník, 3-raznice, 4-přidržovač/ Tváření za studena. Obr. 1.15: Technologické zkoušky trubek /a-rozháněním, b- rozšiřováním, c-lemováním, d-smáčknutím/ opotřebení atd. Plechy - hlubokotažnost Erichsen, kulový vrchlík /obr. 1.14/ - Engelhart, válcový razník kalíšek - střídavý ohyb, dvojitý přehyb Dráty - střídavý ohyb, kroucení, navíjení Trubky - vnitřní přetlak, rozhánění (kužel 1:5), rozšiřování (vnitřní průměr o 1 %), lemování (přítlačná deska), smáčknutí /obr. 1.15/ Zkouška lámavosti (nosník na dvou podporách, za studena i za tepla) Tváření za tepla. Zkoušky pěchovací, krutem, kovací Zkoušky obrobitelnosti, závislost mimo materiálu na nástrojích a podmínkách Další povrchové úpravy, koroze, 1.4 Zkoušky nedestruktivní. Defektoskopie Vnitřní a povrchové vady (necelistvosti) vlivem výroby, technologie a provozu - ohrožení bezpečnosti, životnosti zařízení (zeslabení, vrubové účinky) - vady skryté - třídění ev. opravy Zkoušky prozařováním. Vnitřní vady, jejich orientace, použití - elektromagnetické vlnění: dlouhovlnné (měkké) 5-5 kev (rtg) krátkovlnné 5-4 kev (rtg) velmi krátkovlnné (tvrdé),5-3 MeV (betatron) 7

8 zdroje umělé (rtg lampy, lineární urychlovače a betatrony), radioizotopy (Co 6 - záření gama) - zeslabení I I. µ x = e Obr. 1.16: Prozařovací metody registrace a-fotografická, b-fluorescenční, c- ionizační /1-zářič, 2-clona, 3-prozařovaný materiál, 4-film v kazetě, 5- fluorescenční deska, 6-stínící deska, 7-ionizační komora, 8-registrační přístroj/ velikost, poloha několik snímků µ - součinitel zeslabení (atomové číslo, vlnová délka), x - tloušťka registrace (zviditelnění) /obr. 1.16/ : fotoregistrace (film - radiogram) - měrky, zesilovací fólie fluorescenční (stínítka) ionizační (detektory - ionizace plynu) - ocel rtg. do 8 mm, betatron 5 mm - hodnocení - tvar, Zvukem a ultrazvukem. Obr. 1.17: Princip odrazové ultrazvukové metody a,b s jednou sondou, c,d s dvěma sondami /1-vysílací i přijímací sonda, 2-počáteční echo, 3-koncové echo, 4-poruchové echo, V-vysílací sonda, P-přijímací sonda/ metody: průchodová - měření ultrazvukové energie - vysilač a přijímač (velikost ne poloha) Zvukem - běžná kontrola necelistvosti - Ultrazvuk - frekvence 1-1 MHz - odraz na rozhraní dvou prostředí - podélné (všechny látky - vzduch 33 m.s -1, ocel 58 m.s -1 ) - příčné (tuhé, cca poloviční rychlost c vlnová délka λ = ) - f vstup, blízké pole (oblast interferencí) vnitřní vady (kolmé na průchod) odrazem - (dvě sondy neb jedna) /obr. 1.17/ - krátké ultrazvukové impulzy - odražení, el. signál přes časovou základnu na obrazovce - vada, poruchové echo (poloha určuje hloubku vady, výška a tvar její velikost) - desítky metrů, zajištění vstupu, vliv struktury Obr. 1.18: Princip magneto-elektrické metody a) podélná magnetizace, b) příčná magnetizace /P-předmět, V-vada/ Magnetické a indukční metody. Feromagnetické materiály (Inkar) - vada změna magnetického toku (povrch ev. těsně pod) - indikace feromagnetický prášek (za sucha nebo suspenze) - vada orientovaná kolmo ke směru magnetického toku 8

9 /obr. 1.18/ - magnetizace permanentním magnetem, průchodem proudu (nejčastější - vysoké proudy), pomocným vodičem indukční metoda - zjišťování rozptylového pole ve zmagnetovaném předmětu elektromagnetickým snímačem (obdoba Inkaru) vířivými proudy - pro nemagnetické i magnetické - vady místně zhoršují vodivost (indukce střídavým magnetickým polem do výrobku) Kapilární zkoušky. Využití vzlínavosti kapalin /obr. 1.19/ - vady souvisící s povrchem, od feromagnetických po nevodivé - postup (plnění, odstranění zbytku, nanesení detekční látky, vzlínání indikační kapaliny) - zvýšení kontrastu - rozložení vad, velikost? - Obr. 1.19: Princip kapilární metody: a) povrch před nanesením kapaliny, b) po nanesení kapaliny, c) po natření, d) po nanesení detekční látky /1-trhlina, 2-indikační kapalina, 3-detekční látka/ Použití metod. žádná univerzální - výběr dle zkoušeného materiálu, tvaru, rozměrech a složitosti výrobku, přístupu kontrolovaného místa, hospodárnosti i předpokládaného druhu a velikosti vady - příklady 9

ZKOUŠENÍ KOVOVÝCH MATERIÁLŮ

ZKOUŠENÍ KOVOVÝCH MATERIÁLŮ ZKOUŠENÍ KOVOVÝCH MATERIÁLŮ Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1 VLASTNOSTI MATERIÁLŮ fyzikální (souvisí hlavně s krystalickou stavbou hustota, elektrická a tepelná vodivost, magnet. vlastnosti

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

Zkoušky vlastností technických materiálů

Zkoušky vlastností technických materiálů Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato

Více

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 5 _ Z K O U Š K Y M A T E R I Á L U _ P W P

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 5 _ Z K O U Š K Y M A T E R I Á L U _ P W P A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 5 _ Z K O U Š K Y M A T E R I Á L U _ P W P Název školy: Číslo a název projektu: Číslo a název šablony

Více

Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.

Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45. Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.0029 Statické zkoušky (pevnost, tvrdost) Dynamické zkoušky (cyklické,

Více

ZKOUŠENÍ MATERIÁLU. Defektoskopie a technologické zkoušky

ZKOUŠENÍ MATERIÁLU. Defektoskopie a technologické zkoušky ZKOUŠENÍ MATERIÁLU Defektoskopie a technologické zkoušky Zkoušení materiálů bez porušení Nedestruktivní zkoušky (nezpůsobují trvalou změnu tvaru, rozměrů nebo struktury): metody zkoumání struktur (optická

Více

VLASTNOSTI KOVŮ a jejich zkoušení 1 Vlastnosti - dělení V technické praxi je obvyklé dělení vlastností materiálů na: fyzikální mechanické technologické 2 Fyzikální vlastnosti Vyplývají z typu kovové vazby,

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které

Více

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů Nauka o materiálu Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které lze získat

Více

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5 Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru

Více

Zkoušky vlastností technických materiálů

Zkoušky vlastností technických materiálů Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké

Více

Fyzikální těmito vlastnosti se zabývá fyzika a patří sem např. teplota tání, délková a objemová roztažnost, tepelná vodivost atd.

Fyzikální těmito vlastnosti se zabývá fyzika a patří sem např. teplota tání, délková a objemová roztažnost, tepelná vodivost atd. Vlastnosti materiálu Rozdělení vlastností : Abychom mohli správně a hospodárně použít materiál, musíme dobře znát jeho vlastnosti ( některé typické vlastnosti přímo určují jeho použití např. el. Vodivost,

Více

NAUKA O MATERIÁLU I. Zkoušky tvrdosti, zkoušky technologické a defektoskopické. Přednáška č. 05: Zkoušení materiálových vlastností II

NAUKA O MATERIÁLU I. Zkoušky tvrdosti, zkoušky technologické a defektoskopické. Přednáška č. 05: Zkoušení materiálových vlastností II NAUKA O MATERIÁLU I Přednáška č. 05: Zkoušení materiálových vlastností II Zkoušky tvrdosti, zkoušky technologické a defektoskopické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra

Více

DESTRUKTIVNÍ ZKOUŠKY SVARŮ II.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ II. DESTRUKTIVNÍ ZKOUŠKY SVARŮ II. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -

Více

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -

Více

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního

Více

2. přednáška. Petr Konvalinka

2. přednáška. Petr Konvalinka EXPERIMENTÁLNÍ METODY MECHANIKY 2. přednáška Petr Konvalinka Experimentální vyšetřování pevnostních vlastností betonu Nedestruktivní metody zkoušky pevnosti Schmidtovo kladívko odpor v otlačení pull-out

Více

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení: BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

Vlastnosti technických materiálů

Vlastnosti technických materiálů Vlastnosti technických materiálů Kovy a jejich slitiny mají různé vlastnosti, které jsou dány především jejich chemickým složením a strukturou. Pro posouzení použitelnosti kovů v technické praxi je obvyklé

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Seznam platných norem NDT k 31.12.2011

Seznam platných norem NDT k 31.12.2011 Seznam platných norem NDT k 31.12.2011 Stupeň Znak Číslo Název Dat. vydání Účinnost Změny ČSN EN 015003 10256 Nedestruktivní zkoušení ocelových trubek - Kvalifikace a způsobilost pracovníků nedestruktivního

Více

NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ

NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP

Více

Nedestruktivní zkoušení - platné ČSN normy k 31.10.2005

Nedestruktivní zkoušení - platné ČSN normy k 31.10.2005 Nedestruktivní zkoušení - platné ČSN normy k 31.10.2005 (zpracováno podle Věstníků ÚNMZ do č. včetně) Vzdělávání pracovníků v NDT: ČSN EN 473 (01 5004) Nedestruktivní zkoušení - Kvalifikace a certifikace

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

1.1.1 ZKOUŠKA TAHEM Provádí se na zkušební tyči (průřez kruhový nebo obdélníkový), upnuté do čelistí

1.1.1 ZKOUŠKA TAHEM Provádí se na zkušební tyči (průřez kruhový nebo obdélníkový), upnuté do čelistí 1 ZKOUŠENÍ VLASTNOSTÍ KOVŮ 1.1 ZKOUŠKY MECHANICKÝCH VLASTNOSTI Nejdůležitější a nejpoužívanější u všech zkoušek. Poskytují základní údaje pro stanovení tvaru, rozměrů a materiálu strojních součástí. Dělíme

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu

Více

Seznam platných norem z oboru DT k

Seznam platných norem z oboru DT k Seznam platných norem z oboru DT k 30.9.2011 Stupeň Znak Číslo Název ČSNEN 015003 10256 Nedestruktivní zkoušení ocelových trubek - Kvalifikace a způsobilost pracovníků nedestruktivního zkoušení pro stupeň

Více

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň Pracoviště zkušební laboratoře: 1. Zkušebna Analytická chemie 2. Zkušebna Metalografie 3. Mechanická zkušebna včetně detašovaného pracoviště Orlík 266, 316 06 Plzeň 4. Dynamická zkušebna Orlík 266, 316

Více

Vlastnosti, které souvisí se zpracováním materiálu na výrobek. VÝBĚR VHODNÉ TECHNOLOGIE

Vlastnosti, které souvisí se zpracováním materiálu na výrobek. VÝBĚR VHODNÉ TECHNOLOGIE Vlastnosti, které souvisí se zpracováním materiálu na výrobek. VÝBĚR VHODNÉ TECHNOLOGIE TVÁRNOST Tvárný materiál si zachová tvar daný působením mechanických sil a to i po jejich zániku. Tvárnost zjišťujeme

Více

VÍŘIVÉ PROUDY DZM 2013 1

VÍŘIVÉ PROUDY DZM 2013 1 VÍŘIVÉ PROUDY DZM 2013 1 2 VÍŘIVÉ PROUDY ÚVOD Vířivé proudy tvoří druhou skupinu v metodách, které využívají ke zjišťování vad materiálu a výrobků působení elektromagnetického pole. Na rozdíl od metody

Více

Elektrická vodivost - testové otázky:

Elektrická vodivost - testové otázky: Elektrická vodivost - testové otázky: 1) Elektrický náboj (proud) je přenášen? a) elektrony b) protony c) jádry atomu 2) Elektrický proud prochází pouze kovy? a) ano b) ne 3) Nejlepšími vodiči elektrického

Více

Nauka o materiálu. Přednáška č.8 Zbytková napětí a defektoskopie

Nauka o materiálu. Přednáška č.8 Zbytková napětí a defektoskopie Nauka o materiálu Přednáška č.8 Zbytková napětí a defektoskopie Příčiny vzniku zbytkových napětí V konstruktérské a výpočtářské praxi je obvykle materiál považován za homogenní izotropní kontinuum. K deformaci

Více

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE Z TECHNOLOGIE

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE Z TECHNOLOGIE SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE Z TECHNOLOGIE Školní rok: 2012/2013 Obor: 23-44-L/001 Mechanik strojů a zařízení 1. Základní vlastnosti materiálů fyzikální vlastnosti chemické vlastnosti mechanické

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

LETECKÉ MATERIÁLY. Úvod do předmětu

LETECKÉ MATERIÁLY. Úvod do předmětu LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých

Více

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012 Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či

Více

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ DIEVAR DIEVAR 2 DIEVAR Charakteristika DIEVAR je Cr-Mo-V legovaná vysoce výkonná ocel pro práci za tepla s vysokou odolností proti vzniku trhlin a prasklin z tepelné únavy a s vysokou odolností proti opotřebení

Více

OVMT Technologické zkoušky Zkoušky svařitelnosti

OVMT Technologické zkoušky Zkoušky svařitelnosti Technologické zkoušky Zkoušky svařitelnosti Technologickými zkouškami zjišťujeme vhodnost zvoleného materiálu pro další technologické zpracování. Jde o technologické vlastnosti materiálu, které jsou významné

Více

Podle hodnoty tvrdosti lze odhadnout také další vlastnosti materiálu. V hojné míře se pro tyto účely používají empirické koeficienty.

Podle hodnoty tvrdosti lze odhadnout také další vlastnosti materiálu. V hojné míře se pro tyto účely používají empirické koeficienty. Tvrdost [H] je mechanická vlastnost, která je velmi důležitá v technické praxi především pro kovové materiály. Tvrdost lze zjistit velmi snadno pomocí řady mechanických zkoušek. Používané metody měření

Více

3.2 Mechanické vlastnosti

3.2 Mechanické vlastnosti 3.2 Mechanické vlastnosti Mechanickými vlastnostmi je kvantitativně hodnoceno chování materiálu za působení vnějších mechanických sil. Mezi základní mechanické vlastnosti patří pružnost, pevnost, plasticita,

Více

Zkoušení ztvrdlého betonu Objemová hmotnost ztvrdlého betonu

Zkoušení ztvrdlého betonu Objemová hmotnost ztvrdlého betonu Objemová hmotnost ztvrdlého betonu ČSN EN 12390-7 Podstata zkoušky Stanoví se objem a hmotnost zkušebního tělesa ze ztvrdlého betonu a vypočítá se objemová hmotnost. Metoda stanovuje objemovou hmotnost

Více

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 1. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Základní návrhové předpisy: - ČSN 73 1401/98 Navrhování ocelových

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

DOPORUČENÁ LITERATURA KE KVALIFIKAČNÍM A RECERTIFIKAČNÍM ZKOUŠKÁM:

DOPORUČENÁ LITERATURA KE KVALIFIKAČNÍM A RECERTIFIKAČNÍM ZKOUŠKÁM: DOPORUČENÁ LITERATURA KE KVALIFIKAČNÍM A RECERTIFIKAČNÍM ZKOUŠKÁM: A. PRACOVNÍCI NEDESTRUKTIVNÍHO ZKOUŠENÍ KVALIFIKAČNÍ A CERTIFIKAČNÍ SYSTÉM (KCS) PODLE POŽADAVKŮ STANDARDU STD-101 APC (ČSN EN 473) 1.

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4 1 VIDAR SUPREME 2 Charakteristika VIDAR SUPREME je Cr-Mo-V legovaná ocel pro práci za tepla, pro kterou jsou charakteristické tyto vlastnosti: Velmi dobrá odolnost proti náhlým změnám teploty a tvoření

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

Elektrostruskové svařování

Elektrostruskové svařování Nekonvenční technologie svařování Elektrostruskové svařování doc. Ing. Ivo Hlavatý, Ph.D. ivo.hlavaty@vsb.cz http://fs1.vsb.cz/~hla80 1 Elektroda zasahuje do tavidla, které je v pevném skupenství nevodivé.

Více

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry získat výhodné mechanické vlastnosti ve vztahu k funkčnímu uplatnění tvářence Výhody tváření : vysoká produktivita práce automatizace

Více

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. 1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. Z hlediska použitelnosti kovů v technické praxi je obvyklé dělení

Více

Zapojení odporových tenzometrů

Zapojení odporových tenzometrů Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní

Více

TEORIE TVÁŘENÍ. Lisování

TEORIE TVÁŘENÍ. Lisování STŘEDNÍ PRŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 2299 příspěvková organizace zřízená HMP Lisování TEORIE TVÁŘENÍ TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM, STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

LŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha

LŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Mechanické vlastnosti: jak a co lze měřm ěřit na tenkých vrstvách Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Prague, May 2005 OBSAH 1 mechanické vlastnosti objemových materiálů 1 tenké vrstvy a jejich

Více

Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING

Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING 1 CHIPPER / VIKING 2 Charakteristika VIKING je vysoce legovaná ocel, kalitelná v oleji, na vzduchu a ve vakuu, která vykazuje následující charakteristické znaky: Dobrá rozměrová stálost při tepelném zpracování

Více

Metody diagnostiky v laboratoři fyzikální vlastnosti. Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D.

Metody diagnostiky v laboratoři fyzikální vlastnosti. Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D. Metody diagnostiky v laboratoři fyzikální vlastnosti Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D. OBSAH Vzorky betonu jádrové vývrty Objemová hmotnost Dynamické moduly pružnosti Pevnost v tlaku Statický

Více

[ MPa] 11. KAPITOLA DYNAMICKÉ ZKOUŠKY. Rázová a vrubová houževnatost. = ε. A d

[ MPa] 11. KAPITOLA DYNAMICKÉ ZKOUŠKY. Rázová a vrubová houževnatost. = ε. A d 11. KAPITOLA DYNAMICKÉ ZKOUŠKY Rázová a vrubová houževnatost Zkouška rázové a vrubové houževnatosti materiálů spočívá v namáhání tělesa rázem, tedy silou koncentrovanou do velmi krátké doby. Souvisí s

Více

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 14.10.2012

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 14.10.2012 Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_17 Název materiálu: Mechanické vlastnosti materiálů Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí mechanické vlastnosti

Více

Použití. Části formy V 0,9. Části nástroje. Matrice Podpěrné nástroje, držáky matric, pouzdra, lisovací podložky,

Použití. Části formy V 0,9. Části nástroje. Matrice Podpěrné nástroje, držáky matric, pouzdra, lisovací podložky, ORVAR SUPREME 2 Charakteristika ORVAR SUPREME je Cr-Mo-V legovaná nástrojová ocel, pro kterou jsou charakteristické tyto vlastnosti: Velmi dobrá odolnost proti náhlým tepelným změnám a tvoření trhlin za

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUE OF MATERIALS SCIENCE AND ENGINEERING

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Technologické procesy (Tváření)

Technologické procesy (Tváření) Otázky a odpovědi Technologické procesy (Tváření) 1) Co je to plasticita kovů Schopnost zůstat neporušený po deformaci 2) Jak vzniká plastická deformace Nad mezi kluzu 3) Co jsou to dislokace Porucha krystalové

Více

Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl

Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl Zákaznický den, Zlín 17.3.2011 Základní typy zkoušek stanovení základních vlastností surovin, materiálu polotovarů

Více

Svarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové

Svarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové Svarové spoje Svařování tavné tlakové Tavné svařování elektrickým obloukem plamenem termitem slévárenské plazmové Tlakové svařování elektrické odporové bodové a švové třením s indukčním ohřevem Kontrola

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

Podniková norma Desky z PP-B osmiúhelníky

Podniková norma Desky z PP-B osmiúhelníky IMG Bohemia, s.r.o. Průmyslová 798, 391 02 Sezimovo Ústí divize vytlačování Vypracoval: Podpis: Schválil: Ing.Pavel Stránský Ing.Antonín Kuchyňka Verze: 01/08 Vydáno dne: 3.3.2008 Účinnost od: 3.3.2008

Více

TVÁŘENÍ ZA STUDENA LISOVÁNÍ

TVÁŘENÍ ZA STUDENA LISOVÁNÍ TVÁŘENÍ ZA STUDENA LISOVÁNÍ je takové při kterém se nepřesáhne teplota Tváření plošné při kterém výlisek nemění svoji tloušťku Tváření objemové při kterém objem ( jaký tam vložíme ) polotovaru zůstane

Více

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti

Více

Kontrola povrchových vad

Kontrola povrchových vad Kontrola povrchových vad Základní nedestruktivní metody pro kontrolu povrchových vad jsou vizuální, penetrační, magnetická a vířivými proudy. Pokud není stanoveno jinak, volíme použití metod NDT podle

Více

Použití. Charakteristika FORMY PRO TLAKOVÉ LITÍ A PŘÍSLUŠENSTVÍ NÁSTROJE NA PROTLAČOVÁNÍ VYŠŠÍ ŽIVOTNOST NÁSTROJŮ QRO 90 SUPREME

Použití. Charakteristika FORMY PRO TLAKOVÉ LITÍ A PŘÍSLUŠENSTVÍ NÁSTROJE NA PROTLAČOVÁNÍ VYŠŠÍ ŽIVOTNOST NÁSTROJŮ QRO 90 SUPREME 1 QRO 90 SUPREME 2 Charakteristika QRO 90 SUPREME je vysokovýkonná Cr-Mo-V legovaná ocel pro práci za tepla, pro kterou jsou charakteristické tyto vlastnosti: Vysoká pevnost a tvrdost při zvýšených teplotách

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

Výpočet skořepiny tlakové nádoby.

Výpočet skořepiny tlakové nádoby. Václav Slaný BS design Bystřice nad Pernštejnem 1 Výpočet skořepiny tlakové nádoby. Úvod Indukční průtokoměry mají ve své podstatě svařovanou konstrukci základního tělesa. Její pevnost se musí posuzovat

Více

Složení. Konstrukční ocel obsahuje okolo 0,2% C

Složení. Konstrukční ocel obsahuje okolo 0,2% C Složení Ocel - slitina železa a dalších prvků - nejdůležitější je uhlík - nekujná železa > 2,14 % C (litina) - kujná železa < 2,14% C Konstrukční ocel obsahuje okolo 0,2% C Nežádoucí prvky: P, S, O 2,

Více

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. 2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů

Více

Měření tvrdosti odlitků dynamickou metodou. Zkoušky tvrdosti. Vlivy na měření

Měření tvrdosti odlitků dynamickou metodou. Zkoušky tvrdosti. Vlivy na měření Měření tvrdosti odlitků dynamickou metodou Článek se věnuje jedné z moderních metod měření tvrdosti přenosnými tvrdoměry, která je vhodná zejména pro měření hrubozrnných odlitků, popř. odlitků s nepříliš

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

Výrobní způsob Výrobní postup Dodávaný stav Způsob Symbol Výchozí materiál Skružování Svařování pod. (Za tepla) válcovaný Skružování za

Výrobní způsob Výrobní postup Dodávaný stav Způsob Symbol Výchozí materiál Skružování Svařování pod. (Za tepla) válcovaný Skružování za Svařované ocelové trubky pro tlakové nádoby a zařízení Technické dodací podmínky Část 5: Pod tavidlem obloukově svařované trubky z nelegovaných a legovaných ocelí se zaručenými vlastnostmi při zvýšených

Více

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM Miroslav Liška, Ondřej Žáček MMV s.r.o. Patinující ocele a jejich vývoj Oceli se zvýšenou

Více

TECHNOLOGIE I (slévání a svařování)

TECHNOLOGIE I (slévání a svařování) TECHNOLOGIE I (slévání a svařování) Přednáška č. 3: Slévárenské slitiny pro výrobu odlitků, vlastnosti slévárenských slitin, faktory ovlivňující slévárenské vlastnosti, rovnovážné diagramy. Autoři přednášky:

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Adhezní síly v kompozitech

Adhezní síly v kompozitech Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní

Více

Hodnocení mechanických vlastností vybraných druhů ocelí. Jakub Kabeláč

Hodnocení mechanických vlastností vybraných druhů ocelí. Jakub Kabeláč Hodnocení mechanických vlastností vybraných druhů ocelí Jakub Kabeláč Bakalářská práce 211 Příjmení a jméno:. Obor:. P R O H L Á Š E N Í Prohlašuji, že beru na vědomí, že odevzdáním diplomové/bakalářské

Více

Příloha č. 3. Specifikace požadavků na Univerzální trhací stroj s teplotní komorou a pecí. Univerzální trhací stroj s teplotní komorou a pecí

Příloha č. 3. Specifikace požadavků na Univerzální trhací stroj s teplotní komorou a pecí. Univerzální trhací stroj s teplotní komorou a pecí Příloha č. 3 Specifikace požadavků na Dodávka mechanického zkušebního trhacího stroje představuje plně funkční zařízení v nejpreciznějším možném provedení a s nejlepšími dosažitelnými parametry pro provádění

Více

Laboratoř mechanického zkoušení kovových materiálů

Laboratoř mechanického zkoušení kovových materiálů Teorie Mechanickým zkoušením materiálu rozumíme sledování jeho vlastností při působení mechanických sil. Působení vnější mechanické síly na těleso vyvolá změnu jeho tvaru - deformaci. Velikost a charakter

Více

APLIKACE MIKROTVRDOSTI K HODNOCENÍ KVALITY PLASTOVÝCH DÍLŮ. vliv expozice v tenzoaktivním prostředí motorových paliv a geometrie dílu

APLIKACE MIKROTVRDOSTI K HODNOCENÍ KVALITY PLASTOVÝCH DÍLŮ. vliv expozice v tenzoaktivním prostředí motorových paliv a geometrie dílu APLIKACE MIKROTVRDOSTI K HODNOCENÍ KVALITY PLASTOVÝCH DÍLŮ vliv expozice v tenzoaktivním prostředí motorových paliv a geometrie dílu Laboratorní cvičení předmět: Vlastnosti a inženýrské aplikace plastů

Více

Mn P max. S max 0,025 0,020 0,30. Obsah těchto prvků nemusí být uváděn, pokud nejsou záměrně přidávány do tavby. Prvek Mezní hodnota rozboru tavby

Mn P max. S max 0,025 0,020 0,30. Obsah těchto prvků nemusí být uváděn, pokud nejsou záměrně přidávány do tavby. Prvek Mezní hodnota rozboru tavby Svařované ocelové trubky pro tlakové nádoby a zařízení Technické dodací podmínky Část 2: Elektricky svařované trubky z nelegovaných a legovaných ocelí se zaručenými vlastnostmi při zvýšených teplotách

Více

Postupy. Druh oceli Chemické složení tavby hmotnostní % a) Značka Číselné označení. Mn P max. S max 0,40-1,20 0,60-1,40

Postupy. Druh oceli Chemické složení tavby hmotnostní % a) Značka Číselné označení. Mn P max. S max 0,40-1,20 0,60-1,40 Svařované ocelové trubky pro tlakové nádoby a zařízení Technické dodací podmínky Část 4: Elektricky svařované trubky z nelegovaných ocelí se zaručenými vlastnostmi při nízkých teplotách. Způsob výroby

Více

1.1.1 Hodnocení plechů s povlaky [13, 23]

1.1.1 Hodnocení plechů s povlaky [13, 23] 1.1.1 Hodnocení plechů s povlaky [13, 23] Hodnocení povlakovaných plechů musí být komplexní a k určování vlastností základního materiálu přistupuje ještě hodnocení vlastností povlaku v závislosti na jeho

Více

Česká svářečská společnost ANB Czech Welding Society ANB (Autorised National Body for Welding Personnel and Company Certification) IČO: 68380704

Česká svářečská společnost ANB Czech Welding Society ANB (Autorised National Body for Welding Personnel and Company Certification) IČO: 68380704 Normy pro tavné Aktuální stav 11/2014 Požadavky na jakost při tavném EN ISO 3834-1 až 5 CEN ISO/TR 3834-6 Obloukové Skupiny materiálu CEN ISO/TR 15608 ISO/TR 20173 Doporučení pro EN 1011-1 (ISO/TR 17671-1)

Více

VANADIS 10 Super Clean

VANADIS 10 Super Clean 1 VANADIS 10 Super Clean 2 Charakteristika VANADIS 10 je Cr-Mo-V legovaná prášková ocel, pro kterou jsou charakteristické tyto vlastnosti: Extrémně vysoká odolnost proti opotřebení Vysoká pevnost v tlaku

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

6. Základní vlastnosti materiálů a jejich zkoušky

6. Základní vlastnosti materiálů a jejich zkoušky 6. Základní vlastnosti materiálů a jejich zkoušky Základní vlastnosti materiálů: Fyzikální - hustota, teplota nebo teplotní rozsah tání a tuhnutí, teplota tavení a lití, délková a objemová roztažnost a

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická

Více