ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ"

Transkript

1 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní plastifikací (nadměrnou plastickou deformací), místní ztrátou stability (lokálním boulením) nebo kombinací obou způsobů. Zavádí se tzv. klasifikace průřezů, v závislosti od ní se únosnosti počítají pomocí průřezových charakteristik plastických (s indexem pl), pružných (s indexem el), efektivních (s indexem eff). K porušení materiálu v tažených částech průřezu dochází: mezní plastifikací (nadměrnou plastickou deformací) v plném průřezu nebo houževnatým lomem (přetržením) v místě oslabení dírami pro šrouby. Je třeba počítat s oslabením průřezu, únosnosti se stanovují pomocí průřezových charakteristik plného průřezu (bez zvláštního indexu), účinného průřezu (s indexem net). Klasifikace průřezů Definují se 4 třídy průřezů: (1) Průřezy, ve kterých lze předpokládat úplný plastický kloub s dostatečnou deformační kapacitou pro plasticitní výpočet. () Průřezy, ve kterých lze předpokládat plnou plastickou únosnost, avšak s omezenou deformační kapacitou. (3) Průřezy, ve kterých lze předpokládat pouze plnou pružnou únosnost definovanou dosažením návrhové pevnosti v nejvíce namáhaných tlačených vláknech. (4) Průřezy, jejichž ohybová nebo tlaková únosnost je v důsledku lokálního boulení stěn menší než jejich plná pružná únosnost. Rámcovou představu o klasifikaci poskytuje následující obr. je třeba jej chápat jako ilustraci, ve skutečnosti může být např. válcovaný I profil třídy 1 apod. 1

2 Obr. Klasifikace průřezů Poznámka Průřezy tříd 1, a 3 se označují jako kompaktní; průřezy třídy 4 se označují jako štíhlé. V dalším se budeme zabývat převážně kompaktními průřezy, průřezy třídy 4 se probírají až v samém závěru semestru (v tématu Pevnost štíhlých stěn ). K definicím tříd Pojmy pružný a plastický se týkají jednak průběhu napětí v průřezu, jednak průběhu vnitřních sil v konstrukci. Napětí v průřezu lze uvažovat podle teorie plasticity u průřezů tříd 1 a, u průřezů třídy 3 jen podle teorie pružnosti; rozdělení vnitřních sil v konstrukčním prvku lze uvažovat podle teorie plasticity pouze u průřezů třídy 1, u průřezů ostatních tříd pak podle teorie pružnosti (viz obr.). Obr. Napětí od ohybu Obr. Vnitřní síly od ohybu

3 3

4 4

5 Třída průřezu se stanoví podle štíhlosti tlačených a ohýbaných stěn viz přiložený arch. Poznámka U běžně používaných profilů mají jednotlivé stěny svoje ustálené názvy (viz obr.). Obr. Názvy stěn Oslabení průřezu Účinný průřez se bere jako plný průřez zmenšený vhodným způsobem o všechny díry (a jiné otvory). Jestliže jsou díry uspořádány vstřícně, potom účinná plocha (oslabeného průřezu) A net = A d 0 t, jestliže jsou díry pro šrouby vystřídané, potom účinná plocha s t A net = A d0 t +, 4 p kde A... plná průřezová plocha, d 0 t... součet ploch oslabení v řezu (kritické lomové čáře), s t... výraz zahrnující (všechny) šikmé části řezu, 4 p kde d 0...průměr díry, t...tloušťka, s, p...rozteče dvou sousedních děr, viz obr. Obr. Oslabení průřezu 5

6 Prostý tah Obr. Prostý tah Prvky namáhané prostým tahem (viz obr.) se posuzují podle podmínky N Sd N t, Rd, kde N Sd...návrhová tahová síla, N t,rd...únosnost v (prostém) tahu, která se vypočte A f y N pl, Rd =, γ M 0 Nt, Rd = min 0,9 Anet fu Nu, Rd =, γ M kde A, A net... plná a účinná plocha průřezu, f y, f u... mez kluzu a mez pevnosti, γ M0, γ M... dílčí součinitele spolehlivosti materiálu. Připomeneme, že γ M0 = 1,15, γ M = 1,30. Poznámka V uvedené podmínce spolehlivosti, jakož i ve všech dalších se návrhové účinky zatížení (tj. vnitřní síly a napětí) dosazují v absolutních hodnotách (nikoliv podle konvence teorie pružnosti). Příklad oslabení průřezu + prostý tah Zadání. Posuďte tažený plech tloušťky t = 10 mm z oceli S 35 oslabený dírami pro šrouby o průměru d 0 = 18 mm podle obr. Návrhová tahová síla je N Sd = 300 kn. 6

7 Řešení K výpočtu použijeme (pro ocel S 35) následující materiálové charakteristiky: f y = 35 MPa, γ M0 = 1,15, f u = 360 MPa, γ M = 1,30. Jak bylo uvedeno, v plechu působí tahová síla N Sd = 300 kn máme prokázat podmínku spolehlivosti. N Sd N t, Rd Řešíme prvek oslabený dírami vystřídaného uspořádání únosnost v tahu N t,rd stanovíme jednak na základě plné průřezové plochy A, jednak na základě účinné plochy oslabeného průřezu A net, jež je dána vztahem s t A net = A d0 t +. 4 p Plnou průřezovou plochu stanovíme (podle kót v obr.) jednoduchými počty A = b t = = 1800 mm, účinné plochy je třeba stanovit pro všechny reálné způsoby přetržení viz obr. (jednotlivé řezy a příslušné účinné plochy tedy očíslujeme). Nejprve vypočteme plochu jednoho oslabení d 0t = = 180 mm, hodnotu výrazu pro jednu šikmou část řezu s t = = 67 mm. 4 p 4 60 Potom účinné plochy v závislosti od počtu oslabení a počtu šikmých částí řezu jsou dány hodnotami: s t A net, 1 = A 1 d0t + 0 = = 160 mm, 4 p s t, = A d0t + 0 = = 1440 mm A net, 4 p 7

8 s t A net, 3 = A d0t + 1 = = 1507 mm 4 p s t A net, 4 = A 3 d0t + = = 1394 mm 4 p,. Posouzení se provede na základě nejmenší účinné plochy A min A, =1394 mm. net = net i i Únosnost v tahu A f y N pl, Rd = = = 368 kn γ M 0 1,15 Nt, Rd = min = 347 kn 0,9 Anet fu 0, N = = = 347 kn u, Rd γ 1,30 M N = 300 kn vyhovuje. Sd Prostý tlak Prvky namáhané prostým tlakem (viz obr.) se posuzují podle podmínky N Sd N c, Rd, kde N Sd... návrhová tlaková síla, N c,rd... únosnost v prostém tlaku, která se pro průřezy tříd 1, a 3 vypočte Obr. Prostý tlak A f y Nc, Rd =, γ M 0 kde A...plná průřezová plocha, f y...mez kluzu, γ M0...dílčí součinitel spolehlivosti materiálu. Oslabení průřezu vyplněnými dírami se neuvažuje. Poznámka Štíhlé pruty musí být rovněž posouzeny na vzpěr, o tom však později. 8

9 Prostý ohyb Obr. Prostý ohyb Prvky namáhané prostým ohybem (viz obr.) se posuzují podle podmínky M Sd M c, Rd, kde M Sd...návrhový ohybový moment, M c,rd...(prostá) momentová únosnost, která se vypočte Wpl f y M c, Rd = M pl, Rd = pro průřezy tříd 1 a, γ M 0 Wel f y M c, Rd = M el, Rd = pro průřezy třídy 3, γ M 0 kde W pl, W el... plastický a pružný průřezový modul, f y... mez kluzu, γ M0... dílčí součinitel spolehlivosti materiálu. Stručně připomeneme stanovení průřezových modulů Pružný průřezový modul vychází z předpokladu pružného průběhu napětí po průřezu (viz obr.), je dán výrazem I y W el =, ez kde I = z da... moment setrvačnosti k hlavní (těžišťové) ose y, y A e z... vzdálenost krajních vláken od osy y. Plastický průřezový modul vychází z předpokladu plastifikace celého průřezu (viz obr.), je dán výrazem A W =, kde S y pl S y A A = z da = zc.. statický moment poloviny průřezu k těžišťové ose y na A dvě stejně velké poloviny je průřez rozdělen plastickou neutrální osou, která je obecně různá od osy těžišťové. 9

10 Obr. K průřezovému modulu Tak např. pro dvouose symetrický I profil (viz obr.) se průřezové moduly (k tuhé ose y) vypočtou 1 3 W ( ( )( ) ) 3 el = b h b tw h t f, 6 h tw W ( ) ( ) pl = b t f h t f + h t f. 4 Obr. I průřez Poznámka Štíhlé pruty musí být rovněž posouzeny na klopení, o tom však později. Prostý smyk Prvky namáhané prostým smykem (viz obr.) se posuzují podle podmínky V Sd V pl, Rd, Obr. Prostý smyk kde V Sd...návrhová posouvající síla, V pl,rd...smyková únosnost, která se vypočte Av f y Vpl, Rd =, γ M 0 3 kde A v...smyková plocha průřezu, f y...mez kluzu, γ M0...dílčí součinitel spolehlivosti materiálu. 10

11 Stručně připomeneme, že smyková plocha (v obecném pojetí teorie pružnosti) je dána výrazem A A v =, κ kde A...(celková) průřezová plocha, A S y κ = d > 1,0 A...smykový součinitel, I y A t kde I y...moment setrvačnosti průřezu k ose y, S y...statický moment části průřezu k ose y (jakožto funkce s průběhem po střednici průřezu), t...tloušťka stěny průřezu. U běžně používaných profilů (složených z přímých stěn tj. průřezu I, U, L, T apod.) lze uplatnit doporučení brát smykovou plochu A v jako plochu všech částí rovnoběžných s působící posouvající silou. Tak např. pro dvouose symetrický I profil (viz obr.) se smyková plocha (v rovině větší tuhosti) vypočte A v = h t w v případě válcovaného profilu, A = h t t v případě svařovaného profilu. v ( f ) w Obr. Ke smykové ploše Pro některé další průřezy je smyková plocha uvedena v tab. Tab. Smyková plocha některých průřezů 1 ) ) 3 ) A v 0,5 A 0,844 A 0,833 A 1 ) Kruhová trubka konstantní tloušťky ) Plný kruhový průřez 3 ) Plný obdélníkový průřez 11

12 Příklad klasifikace průřezu + prostý ohyb + prostý smyk Zadání. Posuďte ohýbaný prostý nosník o rozpětí L = 10 m při rovnoměrném zatížení q = 10 kn/m' na prostou pevnost. Nosník je svařovaný, z oceli S 35, dvouose symetrického I průřezu (viz obr.). Řešení K výpočtu použijeme (pro ocel S 35) následující materiálové charakteristiky: f y = 35 MPa, γ M0 = 1,15. Nejprve určíme (podle zásad stavební mechaniky) složky vnitřních sil (viz obr.). Uprostřed rozpětí působí návrhový ohybový moment 1 1 M Sd = q L = = 1500 knm, 8 8 v podporovém průřezu působí návrhová posouvající síla 1 1 V Sd = q L = = 600 kn. 1

13 Je zřejmé, že uprostřed rozpětí vzniká prostý ohyb máme prokázat podmínku spolehlivosti M Sd M c, Rd, v podporovém průřezu vzniká prostý smyk máme prokázat podmínku spolehlivosti. V Sd V pl, Rd Momentová únosnost M c,rd se stanovuje v závislosti od klasifikace průřezu ta se provádí podle štíhlosti tlačených a ohýbaných stěn, tj. tlačené pásnice a ohýbané stojiny. Štíhlost tlačené pásnice je dána poměrem (viz obr.) c t f 145 = = 5,8, 5 přičemž kritéria jednotlivých tříd jsou uvedena v oddíle (c) přiloženého archu. Takže pásnice o štíhlosti c = 5,8 9ε = 9 spadá do třídy 1. t f Štíhlost ohýbané stojiny je dána poměrem (viz obr.) d 950 = = 95, t w 10 přičemž kritéria jednotlivých tříd jsou uvedena v oddíle (a) přiloženého archu. Takže stojina o štíhlosti d = 95 14ε = 14 spadá do třídy 3. t w V obou případech jsme brali součinitel ε = = = 1,0. 35 f y 13

14 Třídu celého průřezu určuje nejnepříznivější (tj. nejvyšší) třída klasifikovaných stěn tzn. náš průřez je třídy 3. Stanovíme tedy pružný průřezový modul W el = ( b h ( b tw )( h t f ) )= 6 h 1 3 = Momentová únosnost W 6 el f y 8, M c Rd = = = 1749 knm M Sd γ 1, ( ( ) ( ) ) = 8,56 10 mm, = M knm. vyhovuje. Smyková únosnost V pl,rd se stanoví pomocí smykové plochy A v, kterou lze pro svařovaný profil brát A = ( ) = ( ) 10 = 9, v h t f tw mm. Smyková únosnost A 3 v f y 9, Vpl, Rd = = = 111 kn VSd 600 kn γ 3 1,15 3 = vyhovuje. M 0 14

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

Šroubovaný přípoj konzoly na sloup

Šroubovaný přípoj konzoly na sloup Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Pro. Ing. František ald, CSc., místnost B 632

Více

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami.

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami. 4. cvičení Třecí spoje Princip třecích spojů. Návrh spojovacího prvku V třecím spoji se smyková síla F v přenáší třením F s mezi styčnými plochami spojovaných prvků, které musí být vhodně upraveny a vzájemně

Více

Šroubované spoje namáhané smykem Šroubované spoje namáhané tahem Třecí spoje (spoje s VP šrouby) Vůle a rozteče. Vliv páčení

Šroubované spoje namáhané smykem Šroubované spoje namáhané tahem Třecí spoje (spoje s VP šrouby) Vůle a rozteče. Vliv páčení Šroubové spoje Šroubované spoje namáhané smykem Šroubované spoje namáhané tahem Třecí spoje (spoje s VP šrouby) Vůle a rozteče Vliv páčení 1 Kategorie šroubových spojů Spoje namáhané smykem A: spoje namáhané

Více

Řešený příklad: Nosník s kopením namáhaný koncovými momenty

Řešený příklad: Nosník s kopením namáhaný koncovými momenty Dokument: SX011a-CZ-EU Strana 1 z 7 Eurokód Vypracoval rnaud Lemaire Datum březen 005 Kontroloval lain Bureau Datum březen 005 Řešený příklad: Nosník s kopením namáhaný koncovými Tento příklad seznamuje

Více

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

SLOUP NAMÁHANÝ TLAKEM A OHYBEM

SLOUP NAMÁHANÝ TLAKEM A OHYBEM SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro

Více

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu.

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. 3. Tenkostěnné za studena tvarované O Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. Tloušťka plechu 0,45-15 mm (ČSN EN 1993-1-3, 2007) Profily: otevřené uzavřené

Více

Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením

Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením Dokument č. SX003a-CZ-EU Strana 1 z 8 Eurokód :200 Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením Tento příklad podrobně popisuje posouzení prostého nosníku s rovnoměrným zatížením.

Více

9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti.

9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti. 9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti. Spřažené ocelobetonové konstrukce (ČSN EN 994-) Spřažené nosníky beton (zejména lehký)

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Složení. Konstrukční ocel obsahuje okolo 0,2% C

Složení. Konstrukční ocel obsahuje okolo 0,2% C Složení Ocel - slitina železa a dalších prvků - nejdůležitější je uhlík - nekujná železa > 2,14 % C (litina) - kujná železa < 2,14% C Konstrukční ocel obsahuje okolo 0,2% C Nežádoucí prvky: P, S, O 2,

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl regionu (NUTS2) hl. m. Praha (JPD) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován Evropským

Více

Ocelobetonové konstrukce

Ocelobetonové konstrukce Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky 13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost

Více

Betonové konstrukce (S)

Betonové konstrukce (S) Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

1.3.1 Výpočet vnitřních sil a reakcí pro nejnepříznivější kombinaci sil

1.3.1 Výpočet vnitřních sil a reakcí pro nejnepříznivější kombinaci sil OHYB NOSNÍKU - SVAŘOVANÝ PROFIL TVARU Ι SE ŠTÍHLOU STĚNOU (Posouzení podle ČSN 0-8) Poznámka: Dále psaný text je lze rozlišit podle tpu písma. Tpem písma Times Ne Roman normální nebo tučné jsou psané poznámk,

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy. Náměstí Svobody Modřice STATICKÉ POSOUZENÍ

Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy. Náměstí Svobody Modřice STATICKÉ POSOUZENÍ Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy Investor: Město Modřice Náměstí Svobody 93 664 42 Modřice STATICKÉ POSOUZENÍ Vypracoval: Ing. Miroslav Dorazil Ivanovické náměstí 404/28a

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Katedra ocelových a dřevěných konstrukcí Obsah přednášek 2 Stabilita stěn, nosníky třídy 4. Tenkostěnné za studena tvarované profily. Spřažené ocelobetonové spojité

Více

Uplatnění prostého betonu

Uplatnění prostého betonu Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

6 Mezní stavy únosnosti

6 Mezní stavy únosnosti 6 Mezní stavy únosnosti 6.1 Nosníky 6.1.1 Nosníky pozemních staveb Typické průřezy spřažených nosníků jsou na obr. 4. Betonová deska může být kompaktní nebo žebrová, případně může mít náběhy. Ocelový nosník

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Prvky betonových konstrukcí BL01 7 přednáška

Prvky betonových konstrukcí BL01 7 přednáška Prvky betonových konstrukcí BL01 7 přednáška Zásady vyztužování - podélná výztuž - smyková výztuž Vyztužování bet. prvků desky - obecné zásady - pásové a lokální zatížení - úpravy kolem otvorů trámové

Více

NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ

NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN

Více

Řešený příklad: Prostě uložený a příčně nedržený nosník

Řešený příklad: Prostě uložený a příčně nedržený nosník Dokument č. SX001a-CZ-EU Strana 1 8 Eurokód Připravil Alain Bureau Datum prosinec 004 Zkontroloval Yvan Galéa Datum prosinec 004 Řešený příklad: Prostě uložený a příčně nedržený Tento příklad se týká detailního

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

Sada 2 Dřevěné a ocelové konstrukce

Sada 2 Dřevěné a ocelové konstrukce Stř ední škola stavební Jihlava Sada 2 Dřevěné a ocelové konstrukce 20. Prostý ohb Digitální učební materiál projektu: SŠS Jihlava šablon registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU

NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN

Více

Sylabus přednášek OCELOVÉ KONSTRUKCE. Zkoušky oceli. Obsah přednášky. Koutové svary. Značení oceli. Opakování. Tahová zkouška

Sylabus přednášek OCELOVÉ KONSTRUKCE. Zkoušky oceli. Obsah přednášky. Koutové svary. Značení oceli. Opakování. Tahová zkouška Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Prof. Ing. rantišek Wald, CSc., místnost B 632

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

K výsečovým souřadnicím

K výsečovým souřadnicím 3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové

Více

Prvky betonových konstrukcí BL01 5. přednáška

Prvky betonových konstrukcí BL01 5. přednáška Prvky betonových konstrukcí BL01 5. přednáška Dimenzování průřezů namáhaných posouvající silou. Chování a modelování prvků před a po vzniku trhlin, způsob porušení. Prvky bez smykové výztuže. Prvky se

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

Jednoduchá metoda pro návrh ocelobetonového stropu

Jednoduchá metoda pro návrh ocelobetonového stropu Jednoduchá metoda pro návrh Jan BEDNÁŘ František WALD, Tomáš JÁNA, Olivier VASSART, Bin ZHAO Software pro požární návrh konstrukcí 9. února 011 Obsah prezentace Chování za požáru Jednoduchá metoda pro

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVENÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES SPORTOVNÍ HALA EXHIBITION

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

9 Spřažené desky s profilovaným plechem v pozemních stavbách

9 Spřažené desky s profilovaným plechem v pozemních stavbách 9 Spřažené desky s profilovaným plechem v pozemních stavbách 9.1 Všeobecně 9.1.1 Rozsah platnosti Tato kapitola normy se zabývá spřaženými stropními deskami vybetonovanými do profilovaných plechů, které

Více

GESTO Products s.r.o.

GESTO Products s.r.o. GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995 1 1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

Řešený příklad: Šroubový přípoj taženého úhelníku ztužidla ke styčníkovému plechu

Řešený příklad: Šroubový přípoj taženého úhelníku ztužidla ke styčníkovému plechu Dokument: SX34a-CZ-EU Strana z 8 Řešený příklad: Šroubový přípoj taženého úhelníku ztužidla ke Příklad ukazuje posouzení šroubového přípoje taženého úhelníku ztužidla ke, který je přivařen ke stojině sloupu.

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Katedra ocelových a dřevěných konstrukcí Obsah přednášek 2 Stabilita stěn, nosníky třídy 4. Tenkostěnné za studena tvarované profily. Spřažené ocelobetonové spojité

Více

STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví

STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví Střední průmyslová škola stavební Střední odborná škola stavební a technická Ústí nad Labem, příspěvková organizace tel.: 477 753 822 e-mail: sts@stsul.cz www.stsul.cz STAVEBNÍ KONSTRUKCE Témata k profilové

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: betonové konstrukce) KOMUNITNÍ CENTRUM MATKY TEREZY V PRAZE . Základní informace.. Materiály.. Schéma konstrukce. Zatížení.. Vodorovné konstrukc.. Svislé konstrukce 4.

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

10 Navrhování na účinky požáru

10 Navrhování na účinky požáru 10 Navrhování na účinky požáru 10.1 Úvod Zásady navrhování konstrukcí jsou uvedeny v normě ČSN EN 1990[1]; zatížení konstrukcí je uvedeno v souboru norem ČSN 1991. Na tyto základní normy navazují pak jednotlivé

Více

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním

Více

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a

Více

PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku.

PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku. PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku Skladba stropu: Podlaha, tl.60mm, ρ=400kg/m 3 Vlastní žb deska, tl.dle návrhu,

Více

Použitelnost. Žádné nesnáze s použitelností u historických staveb

Použitelnost. Žádné nesnáze s použitelností u historických staveb Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

15. ŽB TRÁMOVÉ STROPY

15. ŽB TRÁMOVÉ STROPY 15. ŽB TRÁMOVÉ STROPY Samostatné Společně s deskou trámového stropu Zásady vyztužování h = l/10 až l/20 b = h/2 až h/3 V každém rohu průřezu musí být jedna vyztužená ploška Nosnou výztuž tvoří 3-5 vložek

Více

Přijímací zkoušky na magisterské studium, obor M

Přijímací zkoušky na magisterské studium, obor M Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Úvod I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Zatímco stavební praxe vystačí pro betonové, dřevěné a ocelobetonové konstrukce se třemi evropskými normami, pro ocelové konstrukce je k

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami.

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami. cvičení Dřevěné konstrukce Hřebíkové spoje Základní pojmy. Návrh spojovacího prostředku Na hřebíkové spoje se nejčastěji používají ocelové stavební hřebíky s hladkým dříkem kruhového průřezu se zápustnou

Více

2. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

2. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 2. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger SPOJE Základní klasifikace: 1) Klasifikace podle tuhosti:

Více

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D.

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D. Konstrukční systémy I Třídění, typologie a stabilita objektů Ing. Petr Suchánek, Ph.D. Zatížení a namáhání Konstrukční prvky stavebního objektu jsou namáhány: vlastní hmotností užitným zatížením zatížením

Více

PRVKY KOVOVÝCH KONSTRUKCÍ

PRVKY KOVOVÝCH KONSTRUKCÍ VYSOKÉ UČEÍ TECHICKÉ V BRĚ AKULTA STAVEBÍ Doc. Ing. ARCELA KARAZÍOVÁ, CSc. PRVKY KOVOVÝCH KOSTRUKCÍ ODUL BO0-0 SPOJE KOVOVÝCH KOSTRUKCÍ STUDIJÍ OPORY PRO STUDIJÍ PROGRAY S KOBIOVAOU OROU STUDIA Doc. Ing.

Více

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu

Více

Materiály charakteristiky potř ebné pro navrhování

Materiály charakteristiky potř ebné pro navrhování 2 Materiály charakteristiky potřebné pro navrhování 2.1 Úvod Zdivo je vzhledem k velkému množství druhů a tvarů zdicích prvků (cihel, tvárnic) velmi různorodý stavební materiál s rozdílnými užitnými vlastnostmi,

Více

Řešený příklad: Prostě podepřená vaznice průřezu IPE

Řešený příklad: Prostě podepřená vaznice průřezu IPE Dokument: SX01a-CZ-EU Strana 1 z Eurokód Vpracoval Mladen Lukic Datum Leden 006 Kontroloval Alain Bureau Datum Leden 006 Řešený příklad: Prostě podepřená vaznice průřezu IPE Tento příklad se zabývá podrobným

Více

Lindab Usnadňujeme výstavbu. LindabConstruline. Vaznice a paždíky. Konstrukční profily Z, C a U

Lindab Usnadňujeme výstavbu. LindabConstruline. Vaznice a paždíky. Konstrukční profily Z, C a U Lind_kat_vaznice a pazd09 23.9.2009 18:40 Str. 1 Lindab Usnadňujeme výstavbu TM LindabConstruline Vaznice a paždíky Konstrukční profily Z, C a U Lind_kat_vaznice a pazd09 23.9.2009 18:40 Str. 2 Lindab

Více

Kancelář stavebního inženýrství s.r.o. Statický výpočet

Kancelář stavebního inženýrství s.r.o. Statický výpočet 47/2016 Strana: 1 Kancelář stavebního inženýrství s.r.o. Botanická 256, 362 63 Dalovice - Karlovy Vary IČO: 25 22 45 81, mobil: +420 602 455 293, +420 602 455 027, =================================================

Více

7 Prostý beton. 7.1 Úvod. 7.2 Mezní stavy únosnosti. Prostý beton

7 Prostý beton. 7.1 Úvod. 7.2 Mezní stavy únosnosti. Prostý beton 7 Prostý beton 7.1 Úvod Konstrukce ze slabě vyztuženého betonu mají výztuž, která nesplňuje podmínky minimálního vyztužení, požadované pro železobetonové konstrukce. Způsob porušení konstrukcí odpovídá

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 02 STATICKÝ VÝPOČET

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 02 STATICKÝ VÝPOČET VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES 02 STATICKÝ VÝPOČET

Více

Šroubové spoje. Průměr šroubu d (mm) 12 16 20 24 27 30 Plocha jádra šroubu A S (mm 2 ) 84,3 157 245 353 459 561

Šroubové spoje. Průměr šroubu d (mm) 12 16 20 24 27 30 Plocha jádra šroubu A S (mm 2 ) 84,3 157 245 353 459 561 Šroubové spoje Šrouby pro ocelové konstrukce s šestihrannou hlavou, vyráběné tvarováním za tepla nebo také za studena, se podle přesnosti rozměrů a drsnosti povrchu dělí na hrubé (průměr otvoru pro šroub

Více

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Stručný obsah Předmluva xvii Část 1 Základy konstruování 2 1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Část 2 Porušování

Více