Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu"

Transkript

1 Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu obrázky molekul a Lewisovy vzorce molekul v této přednášce čerpány z:

2 Stavba hmoty - historie Leukippós a Démokritos století př.n.l. hmota se skládá z malých, tuhých, dále nedělitelných částic atomos ~ nedělitelný tyto částice se mohou volně pohybovat ve vzduchoprázdnu Aristoteles a Platón teorii o atomech zavrhli: Krása a laskavost nemůžou být tvořeny ničím materiálním neuznávali existenci vakua ( nicoty ) hmota tvořena 4 živly Názory Aristotela a Platóna ovládaly stav poznání o stavbě hmoty až do středověku. picture(s):

3 Stavba hmoty - historie 17. století atomy ano, ale stvořil je Bůh Galileo Galilei první experimenty se vzduchem, pozorování vesmíru vakuum existuje (1638) Robert Boyle v díle The Sceptical Chymist (1661) zkritizoval Aristotelův výklad hmoty (čtyři živly) systematickým studiem vzduchu (Boylův zákon) přispěl k základům atomové teorie rozlišoval mezi směsí a sloučeninou sloučeniny jsou složené z dále nedělitelných částic prvky Isaac Newton v díle Opticks (1704) shrnul názory od Démokrita až po Boyla:.Bůh stvořil hmotu z pevných, tuhých a pohyblivých částic, které jsou nesrovnatelně tvrdší než hmota, kterou tvoří; tyto částice jsou dále nedělitelné a nezničitelné.. picture(s):

4 Stavba hmoty - historie John Dalton zakladatel atomové teorie (1801) prvek se skládá z atomů stejného druhu, tj. stejné hmotnosti; prvky nelze zničit ani vytvořit zákon stálých poměrů slučovacích molekula je tvořena vždy stejným poměrem prvků (~ daltonidy) odhadl hmotnost prvních šesti prvků J.L. Gay-Lussac rozšíření atomové teorie (1809): objem plynů před a po reakci odpovídá počtu částic před a po reakci Amedeo Avogadro stejné objemy plynu obsahují při stejné teplotě a tlaku stejný počet molekul (1811) Avogadrovo číslo (počet částic v 1 molu) až na konci 19.století N A = 6, mol -1 picture(s):

5 Stavba hmoty - historie D.I. Mendělejev 1868 zveřejnil práci, ve které seřadil 63 známých prvků podle jejich chemických vlastností = periodická tabulka prvků zároveň předpověděl existenci prvků s vyšší atomovou hmotností také předpověděl vlastnosti prvků, které chyběly v již objevených periodách (Ga, Ge, Sc) M. Faraday množství náboje přeneseného během přeměny atomu na ion je stejné pro stejné množství daného prvku později Faradayova konstanta ~ náboj 1 molu elektronů F = C/mol picture(s):

6 Stavba hmoty - historie J.J. Thompson pokusy s katodovou trubicí dokázal, že elektrický proud je přenášen záporně nabitými částicemi (1897) určil poměr náboje elektronu a jeho hmotnosti pudingový model atomu kladně nabitá koule se záporně nabitými částicemi uvnitř atom celkově elektroneutrální picture(s):

7 Stavba hmoty - historie R.A. Millikan experiment s nabitými kapkami oleje (1909) měřením jejich rychlosti mezi elektrodami v závislosti na náboji určil hodnotu náboje a hmotnosti elektronu m = 9, g (později upřesněno na 9, g ) e = -1, C hmotnost e - je 2000x menší než hmotnost atomu vodíku picture(s):

8 Stavba hmoty - historie E. Rutherford 1903 určil α-částice a β-částice jako jádra helia (He 2+ ) respektive proud elektronů 1911 provedl experiment se zlatou folií a α-částicemi pokud by platil pudingový model pokud atom obsahuje kladně nabité jádro veliké hmotnosti ale!! H obsahuje 1 proton a 1 elektron He obsahuje 2 protony a 2 elektrony proč je tedy M H :M He = 1:4?! J. Chadwick jádro obsahuje kromě protonů ještě elektroneutrální neutrony (1932) picture(s):

9 Struktura atomu částice symbol hmotnost (g) hmotnost (amu) náboj (C) relativní náboj elektron e, β 9, , , proton p, H + 1, ,0072 1, neutron n 1, , atomová hmotnostní jednotka 1 12 amu = m( C) = 1, g 12 6 relativní hmotnost M r = m amu 1 mol počet atomů obsažený ve 12 g nuklidu 6 C N A = 6, mol molární hmotnost M = M r amu N A

10 Struktura atomu Atomové (protonové) číslo Z ~ počet protonů v jádře - u elektroneutrálních atomů rovno počtu elektronů v elektronovém obalu Izotopy - atomy se stejným Z, mohou se lišit v N(A) S vs 16 S A Z X Neutronové číslo N ~ počet neutronů v jádře Izotony - atomy se stejným N, mohou se lišit v Z(A) 16S vs 15 P (N = 16) Hmotové (nukleonové) číslo A = Z + N Izobary - atomy se stejným A, mohou se lišit v Z(N) 16S vs 18 Ar (A = 36) Nuklid ~ prvek obsahující pouze atomy s daným Z a N(A) relativní atomová hmotnost prvku A r vážená suma A r jednotlivých nuklidů přítomných v daném prvku A r (Cl) 0,7543 A r ( Cl) + 0,2457 A r ( Cl) = 0, , = 35,47

11 Atomové jádro Hmotnost, velikost, tvar hustota jádra je 1, g/cm 3 (ping-pongový míček by vážil tun) tvar souvisí se stabilitou daného jádra velikost je dána dosahem jaderných sil x menší než atom (má-li jádro velikost ping-pongového míčku, pak nejvyšší elektronová hustota je ve vzdálenosti 0,5 km) picture(s):

12 Atomové jádro Vazebná energie jádra hmotnost jádra je vždy menší než součet hmotnosti nukleonů ~ celková vazebná energie jádra Δ m = m teor - m exp = Δ E / c 2 jaderná energie: odpudivé síly mezi protony vzájemné gravitační účinky soudržné síly kvarků vazebná energie jádra je obrovská např. energie jádra jednoho molu 4 He (4 g) m( 24 He) = 6, kg m teor = 6, kg Δm = kg ~ ~ DE = 4, J/at = 2, J/mol tato jaderná energie 1 molu He by ohřála 6500 t vody z 0 C na 100 C picture(s):

13 Atomové jádro vazebná energie na jeden nukleon štěpení jader nejvyšší hodnoty vazebné energie na 1 nukleon (8,7 MeV) mají stabilní jádra v oblasti triády Fe nukleonové číslo slučování jader neutrony ředí odpudivé síly mezi protony do Z = 20 stačí N = Z pro vyšší počet protonů je nutné zvyšovat počet neutronů (nad Z = 83 už je potřeba N/Z ~ 5/3) magická čísla: převaha netronů údolí stability prvky stabilní, pokud mají 2, 8, 20, 28, 82 (114, 164) protonů nebo 2, 8, 20, 28, 82 a 126 (184, 196) neutronů ( např Pb) moře nestability ostrov superstability ~ 114 protonů neutronů picture(s):

14 picture(s): Elektronový obal J.R. Rydberg pozoroval spektrum po excitaci vodíku (1888) diskrétní emise vysvětlil přechody elektronů mezi definovanými energetickými hladinami Balmerova Série VIS 2 e 1 1 DE E n E 1 n a0 n2 n1 série emisních čar Lymanova n 2 = 1 (UV) Balmerova n 2 = 2 (VIS) Paschenova n 2 = 3 (IČ) N. Bohr elektrony se vyskytují pouze na stabilních orbitech s diskrétní energií (1913) poloměru orbitu odpovídá diskrétní moment hybnosti Bohrův model atomu m e v r = n h 2π v r m p m e

15 Axiomatický charakter, základní postuláty: Kvantová mechanika Kvantování energie pro záření ɛ = h ν h Planckova konst. (M. Planck 1900, N. Bohr 1913) h= Js částice ve vázaném stavu (e - v krabici nebo v atomu) Dualistický charakter pro záření ɛ = m c 2 = h ν = h c/λ (A. Einstein 1905, A. Compton 1922, L. de Broglie 1924) částice a její vlna λ = h/mv = h/p Princip neurčitosti (W. Heisenberg 1927) existují dvojice veličin, které nelze zároveň určit s libovolnou přesností pravděpodobnostní charakter veličin Δp x Δx ħ/2 Δɛ Δ τ ħ/2 ħ=h/2π (pro atom Δτ, a proto Δɛ 0)

16 Schrӧdingerova rovice vlnová funkce Ψ(τ, r) popisuje stav částice v daném čase a místě τ čas, r =(x,y,z) polohový vektor hustota pravděpodobnosti výskytu elektronu ~ Ψ 2 pravděpodobnost výskytu elektronu v objemu dv v okolí bodu r(x,y,z) ~ Ψ(r) 2 dv Schrӧdingerova rovice Ĥ Ψ = E Ψ Hamiltonián H - operátor celkové energie E Η 2 ~ ~ ~ E E k E p 2m kinetická potenciální energie energie e 2 E p E. Schrӧdinger rovnici publikoval 1924 Nobelova cena 1933 picture(s):

17 Schrӧdingerova rovice Řešení pro atom vodíkového typu tzn. jeden elektron a jádro s jedním protonem potenciální energie ~ E p E p Ze r 2 (~ přitahování jádra a elektronu) řešení vyžaduje transformaci souřadnic z x, y, z r, q, j x = r sinq cosj y = r sinq sinj q r z = r cosj j x (x,y,z) n,l,m (r, q, j) R n,l (r) Y l,m (q, j) y radiální část angulární část ~ energie, tvar ~ tvar, orientace v prostoru řešením rovnice 3 kvantová čísla n, l, m l

18 Kvantová čísla hlavní kvantové číslo n = 1,2,3,4,5 ~ energie elektronu, tzn. vzdálenost od jádra vedlejší kvantové číslo l = 0,1,2,.(n-1) ~ tvar atomového orbitalu l=0 orbital s, l=1 orbital p l=2 orbital d, l=3 orbital f magnetické kvantové číslo m l = -l,,-1,0,1,...,+l ~ orientace orbitalu v prostoru Pauliho princip výlučnosti daný orbital (stav elektronu) popsaný konkrétní funkcí R n,l (r) Y l,m (q, j) charakterizovaný čísly n, l, m l může být obsazen maximálně dvěma elektrony ale!! žádné dva elektrony daného atomu nemůžou mít stejný stav zavádí se čtvrté kvantové číslo spinové kvantové číslo m s = +1/2, -1/2 ~ vnitřní moment hybnosti picture(s):

19 Atomové orbitaly s n = 1,2,. 1s Ψ 2s Ψ l = 0 m l = 0 r r r průběh vlnové funkce pro n 2 má s-orbital vnitřní strukturu: obsahuje oblasti s opačným znaménkem vlnové funkce obsahuje tzv. nodální plochy (nodes), kde je Ψ 2 = 0 - zde se jedná o radiální (vnitřní) nodální plochy - angulární (vnější) plochy neobsahuje s-orbital má střed symetrie picture(s):

20 Atomové orbitaly p n = 2,3,. p x z p y z p z z l = 1 m l = -1,0,+1 y x x y průběh vlnové funkce 2p x Ψ 3p x Ψ vždy 1 angulární (vnější) uzlová plocha od n = 3 také vnitřní nodální plocha nemá střed symetrie 2p x 3p x 4p x 5p x picture(s):

21 Atomové orbitaly d n = 3,4,. d x2-y2 z d z2 z l = 2 m l = -2,-1,0,+1,+2 x y x y d xz z d yz d xy z x y x y - orbitaly d mají střed symetrie

22 Atomové orbitaly d - vždy dvě angulární nodální plochy - od n = 4 také vnitřní nodální plochy picture(s):

23 Atomové orbitaly f - tři vnější nodální plochy - nemají střed symetrie n = 4,5. l = 3 m l = -3,-2,-1,0,+1,+2,+3 f z3 f xyz f x3 f z(x2-y2) f y3 f x(z2-y2) f y(z2-x2)

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

MO 1 - Základní chemické pojmy

MO 1 - Základní chemické pojmy MO 1 - Základní chemické pojmy Hmota, látka, atom, prvek, molekula, makromolekula, sloučenina, chemicky čistá látka, směs. Hmota Filozofická kategorie, která se používá k označení objektivní reality v

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY

PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY PEDAGOGICKÁ FAKULTA JIHOČESKÉ UVIVERZITY Referát z jaderné fyziky Téma: Atomové jádro Vypracoval: Josef Peterka, MVT bak. II. Ročník Datum dokončení: 24. června 2002 Obsah: strana 1. Struktura atomu 2

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Molekuly 1 21.09.13. Molekula definice IUPAC. Proč existují molekuly? Molekuly. Kosselův model. Představy o molekulách. mezi atomy vzniká vazba

Molekuly 1 21.09.13. Molekula definice IUPAC. Proč existují molekuly? Molekuly. Kosselův model. Představy o molekulách. mezi atomy vzniká vazba C e l k o v á e n e r g i e 1.09.13 Molekuly 1 Molekula definice IUPAC l elektricky neutrální entita sestávající z více nežli jednoho atomu. Přesně, molekula, v níž je počet atomů větší nežli jedna, musí

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

ČÁST VIII - M I K R O Č Á S T I C E

ČÁST VIII - M I K R O Č Á S T I C E ČÁST VIII - M I K R O Č Á S T I C E 32 Základní částice 33 Dynamika mikročástic 34 Atom - elektronový obal 35 Atomové jádro 36 Radioaktivita 37 Molekuly 378 Pod pojmem mikročástice budeme rozumět tzv.

Více

Bruno Kostura ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

Bruno Kostura ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA CHEMIE I (Obecná chemie) Bruno Kostura Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3..15.1/0016 Studijní opory s převažujícími

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

6.2.7 Princip neurčitosti

6.2.7 Princip neurčitosti 6..7 Princip neurčitosti Předpoklady: 606 Minulá hodina: Elektrony se chovají jako částice, ale při průchodu dvojštěrbinou projevují interferenci zdá se, že neplatí předpoklad, že elektron letí buď otvorem

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

SADA VY_32_INOVACE_CH2

SADA VY_32_INOVACE_CH2 SADA VY_32_INOVACE_CH2 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Ing. Zbyňkem Pyšem. Kontakt na tvůrce těchto DUM: pys@szesro.cz Výpočet empirického vzorce Název vzdělávacího

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

1. 1 V Z N I K A V Ý V O J A T O M O V É T E O R I E

1. 1 V Z N I K A V Ý V O J A T O M O V É T E O R I E 1. Atomová fyzika 9 1. 1 V Z N I K A V Ý V O J A T O M O V É T E O R I E V této kapitole se dozvíte: které experimentální skutečnosti si vynutily vznik atomové teorie; o historii vývoje modelů atomů. Budete

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Studijní modul Atomová a jaderná fyzika Vít Procházka Olomouc 2012 2 Recenzovali: Mgr. Milan Vůjtek, Ph.D. Ing. Tomáš Hatala

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

Elektrické vlastnosti látek

Elektrické vlastnosti látek Elektrické vlastnosti látek A) Výklad: Co mají popsané jevy společného? Při česání se vlasy přitahují k hřebenu, polyethylenový sáček se nechce oddělit od skleněné desky, proč se nám lepí kalhoty nebo

Více

MATURITNÍ OKRUHY Z FYZIKY

MATURITNÍ OKRUHY Z FYZIKY MATURITNÍ OKRUHY Z FYZIKY 1.a) Kinematika hmotného bodu Hmotný bod, poloha hmotného bodu, vztažná soustava. Trajektorie a dráha, hm. bodu, průměrná a okamžitá rychlost, okamžité zrychlení. Klasifikace

Více

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul. Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby

Více

Standardní model. Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR

Standardní model. Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR Standardní model Standardní model je v současné době všeobecně uznávanou teorií, vysvětlující stavbu a vlastnosti hmoty. Výzkum částic probíhal celé dvacáté století, poslední předpovězené částice byly

Více

Jak se vyvíjejí hvězdy?

Jak se vyvíjejí hvězdy? Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

Chemie - látky Variace č.: 1

Chemie - látky Variace č.: 1 Variace č.: . Složení látek a chemická vazba V tématickém celku si objasníme, proč mohou probíhat chemické děje. Začneme složením látek. Víme, že látky se skládají z atomů, které se slučují v molekuly.

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

1. A T O M Y O D L E U K I P P A P O B E R N O U L L I H O ( VČ. KINETICKÉ TEORIE )

1. A T O M Y O D L E U K I P P A P O B E R N O U L L I H O ( VČ. KINETICKÉ TEORIE ) 1. A T O M Y O D L E U K I P P A P O B E R N O U L L I H O ( VČ. KINETICKÉ TEORIE ) Leukippos (500 440 př.n.l., Řecko) - původce atomismu vznikl přehodnocením učení předchozích materialistických filozofů

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

JE+ZJE Přednáška 1. Jak stará je jaderná energetika?

JE+ZJE Přednáška 1. Jak stará je jaderná energetika? JE+ZJE Přednáška 1 Jak stará je jaderná energetika? Experimental Breeder Reactor 1. kritický stav 24. srpna 1951. 20. prosince poprvé vyrobena elektřina z jaderné energie. Příští den využita pro osvětlení

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Atomy a molekuly. Nenechte drobotinu, aby se tak dřela

Atomy a molekuly. Nenechte drobotinu, aby se tak dřela vězda. Vzduch. Brouk. Mraky. Žhavá láva. Ledovce. Vy. Každá z těchto věcí má jiný tvar, barvu, teplotu, povrch a hustotu. Jinak jsou ale zcela stejné. Všechny jsou utvořeny z relativně málo druhů částic.

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Cesta do mikrosvěta. Martin Rybář

Cesta do mikrosvěta. Martin Rybář Cesta do mikrosvěta Martin Rybář Nobelovy ceny za SM 40 nobelových cen 64 fyziků Antoine Henri Becquerel Pierre Curie Marie Curie Joseph John Thomson Max Planck Niels Bohr Robert Andrews Millikan Arthur

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Fyzika. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení vyučovacího předmětu. Výchovné a vzdělávací strategie

Fyzika. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení vyučovacího předmětu. Výchovné a vzdělávací strategie Fyzika Charakteristika vyučovacího předmětu Vyučovací předmět Fyzika patří mezi přírodní vědy. Žáky vede k pochopení, že fyzika je součástí každodenního života a je nezbytná pro rozvoj moderních technologií,

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

OBECNÁ A ANORGANICKÁ CHEMIE

OBECNÁ A ANORGANICKÁ CHEMIE OBECNÁ A ANORGANICKÁ CHEMIE 1. díl pro vyšší stupeň Gymnázia v Duchcově JIŘÍ ROUBAL motto: Z ničeho se nemá dělat věda ani z vědy. Jan Werich Předmluva k třetímu vydání. Předkládaná skripta představují

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

test zápočet průměr známka

test zápočet průměr známka Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

FYZIKA II Otázky ke zkoušce

FYZIKA II Otázky ke zkoušce FYZIKA II Otázky ke zkoušce 1. Formy fyzikálního pohybu. Hmotný bod, trajektorie, dráha, zákon pohybu, vztažná soustava. Pohyb hmotného bodu podél přímky: vektor posunutí, rychlost posunutí, okamžitá rychlost,

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Reálné gymnázium a základní škola města Prostějova 5.6 Učební osnovy: Fyzika

Reálné gymnázium a základní škola města Prostějova 5.6 Učební osnovy: Fyzika Podle těchto učebních osnov se vyučuje ve všech třídách šestiletého i čtyřletého gymnázia od školního roku 2012/2013. Zpracování osnovy předmětu Fyzika koordinoval Mgr. Jaroslav Bureš. Časová dotace Nižší

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Poznání zrozené ze zoufalství Několik poznámek k počátkům kvantové teorie Jiří Chýla, Fyzikální ústav Akademie věd ČR, chyla@fzu.

Poznání zrozené ze zoufalství Několik poznámek k počátkům kvantové teorie Jiří Chýla, Fyzikální ústav Akademie věd ČR, chyla@fzu. Poznání zrozené ze zoufalství Několik poznámek k počátkům kvantové teorie Jiří Chýla, Fyzikální ústav Akademie věd ČR, chyla@fzu.cz Pokrok ve vědě jde často daleko složitějšími cestami, než jak se o tom

Více

7.11 Pojetí vyučovacího předmětu Fyzika RVP EL

7.11 Pojetí vyučovacího předmětu Fyzika RVP EL 7.11 Pojetí vyučovacího předmětu Fyzika RVP EL Obecné cíle výuky Fyziky Cílem výuky vyučovacího předmětu Fyzika je osvojení základních fyzikálních pojmů a zákonitostí, rozvíjení přirozené touhy po poznání

Více

Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika

Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika Obecná fyzika - Fyzika, Fyzika pro vzdělávání, Biofyzika (povinně pro všechny obory) 1. Trajektorie hmotného bodu, poloha, dráha,

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/-1-3-6 III/-1-3-7 III/-1-3-8 III/-1-3-9 III/-1-3-10 Název DUMu Historie modelů atomu Bohrův model atomu Spektrum atomu vodíku Slupkový model atomu a další modely

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

30 VLNOVÉ VLASTNOSTI ČÁSTIC. Materiální vlny Difrakce částic

30 VLNOVÉ VLASTNOSTI ČÁSTIC. Materiální vlny Difrakce částic 269 30 VLNOVÉ VLASTNOSTI ČÁSTIC Materiální vlny Difrakce částic Planckův postulát a další objevy v oblasti částicových vlastností elektromagnetických vln porušily určitou symetrii přírody - částice měly

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

ČÁST I - Ú V O D. 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI

ČÁST I - Ú V O D. 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI ČÁST I - Ú V O D 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI 2 1 PŘEDMĚT FYZIKY Každá věda - a fyzika bezpochyby vědou je - musí mít definován

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Energie a její transformace ALTERNATIVNÍ ENERGIE 1/2002 Ing. Mojmír Vrtek, Ph.D.

Energie a její transformace ALTERNATIVNÍ ENERGIE 1/2002 Ing. Mojmír Vrtek, Ph.D. Energie a její transformace ALTERNATIVNÍ ENERGIE 1/2002 Ing. Mojmír Vrtek, Ph.D. Energie Jakkoli je pojem energie běžně používaný, je definice této veličiny nesnadná. Velice často uváděná definice, že

Více

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 žák řeší úlohy na vztah pro okamžitou výchylku kmitavého pohybu, určí z rovnice periodu frekvenci, počáteční fázi kmitání vypočítá periodu a

Více

Maturitní okruhy z fyziky 2 007 / 2 008

Maturitní okruhy z fyziky 2 007 / 2 008 Maturitní okruhy z fyziky 2 007 / 2 008 Základní okruhy 1. ročník: - obsah a význam fyziky, metody fyzikálního poznávání, vztah fyziky k ostatním vědám (matematice, chemii, biologii,...) - fyzikální veličiny

Více

6.07. Fyzika - FYZ. Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9.

6.07. Fyzika - FYZ. Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9. 6.07. Fyzika - FYZ Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu Vyučovací předmět fyzika

Více