Interpolace, ortogonální polynomy, Gaussova kvadratura
|
|
- Dalibor Říha
- před 5 lety
- Počet zobrazení:
Transkript
1 Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu
2 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť f je spojitá funkce definovaná na [a, b]. Hledáme polynom p stupně nejvýše n tak, aby platilo p(x i ) = f(x i ), i = 0,..., n. p se nazývá Lagrangeův interpolační polynom, body x i uzly interpolace. Pro jednoduchost označme f i f(x i ). 3
3 Elementární Lagrangeovy polynomy Definujme j-tý elementární Lagrangeův polynom l j : l j (x) n i=0 i j x x i x j x i, j = 0,..., n, l j je stupně n a splňuje l j (x i ) = δ i,j, tj. l j (x i ) { 1 pokud i = j, 0 pokud i j, l 0,..., l n tvoří bázi prostoru polynomů p, deg p n, platí p(x) = γ 0 l 0 (x) + γ 1 l 1 (x) + + γ n l n (x), kde p(x i ) = γ i, i = 0,..., n. 4
4 Existence a jednoznačnost Lagrangeovy interpolace Věta Existuje právě jeden polynom stupně nejvýše n, který řeší úlohu Lagrangeovy interpolace. 5
5 Chyba Lagrangeovy interpolace Definujme polynom n ω n+1 (x) (x x i ). i=0 Pokud f dostatečně hladká (n + 1 spojitých derivací v intervalu [a, b]), pak ke každému bodu x z intervalu [a, b] existuje bod ξ x z otevřeného intervalu (a, b) takový, že platí f(x) L n (x) = f (n+1) (ξ x ) (n + 1)! ω n+1 (ξ x ). Důkaz pomocí Rollovy věta skripta Práger. Má-li funkce f omezenou n + 1 derivaci konstantou M, platí f(x) L n (x) M (n + 1)! max x [a,b] ω n+1(x). 6
6 Úloha Hermitovy interpolace Obecnější interpolace kromě funkčních hodnot v uzlech můžeme předepsat i hodnoty derivací. Mějme v intervalu [a, b] dány body x 0, x 1,..., x n. Dále nechť jsou dána přirozená čísla α 0,..., α n a definujme α max i=0,...,n α i. Předpoklad, f má v [a, b] spojité derivace až do řádu α 1. Úloha: nalézt polynom h nejnižšího stupně takový, aby platilo h (j) (x i ) = f (j) (x i ), j = 0,..., α i 1, i = 0,..., n. Tento polynom nazveme Hermitův interpolační polynom. Pro jednoduchost označme f (j) i f (j) (x i ). 7
7 Existence a jednoznačnost Hermitovy interpolace Věta Existuje právě jeden polynom stupně nejvýše m, který řeší úlohu Hermitovy interpolace, m n α i 1. i=0 8
8 Chyba Hermitovy interpolace Je-li f dostatečně hladká (existuje-li m + 1 spojitých derivací v intervalu [a, b]), pak ke každému bodu x z intervalu [a, b] existuje bod ξ x z otevřeného intervalu (a, b) takový, že platí f(x) H m (x) = f (m+1) (ξ x ) (m + 1)! ω m+1 (ξ x ), kde H m (x) je Hermitův interpolační polynom. Důkaz viz. např. Práger, skripta. 9
9 Důležitý příklad Hermitovy interpolace α i = 2, i = 0,..., n (předepsána funkční hodnota a hodnota první derivace) Hermitův interpolační polynom lze popsat vzorcem n n H 2n+1 (x) f i s i (x) + f i t i (x), i=0 i=0 hodnoty f i a f i jsou dány a polynomy s i a t i definujme jako s i (x) [1 2 (x x i ) l i(x i ) ] l 2 i (x), t i (x) (x x i ) l 2 i (x). H 2n+1 je stupně nejvýše m = 2n + 1. Splňuje podmínky? Platí s i (x j ) = δ i,j, t i (x j ) = 0, s i(x j ) = 0, t i(x j ) = δ i,j, pro i, j = 0,..., n. Dosazení H 2n+1 vyhovuje podmínkám. 10
10 Definice ortogonálních polynomů Definice Interval (a, b), nemusí být omezený. Nechť v(x) integrovatelná, skoro všude kladná funkce. V případě nekonečného intervalu předpoklad, že x j v(x), j = 1, 2,... jsou integrovatelné. V případě omezeného intervalu je tento požadavek vždy splněn. Říkáme, že posloupnost polynomů ϕ i, i = 0, 1,... je ortogonální s vahou v(x), pokud deg(ϕ) = i a platí-li b a vϕ i ϕ j dx = 0, i j. 12
11 Skalární součin v prostoru polynomů Množina všech polynomů tvoří vektorový prostor. Definujme skalární součin mezi dvěma vektory (polynomy) p a q vztahem p, q v b a v p q dx. Lze lehce ověřit, že p, q v je skutečně skalární součin. Chceme ukázat, že pro takto definovaný vektorový prostor se skalárním součinem existuje ortogonální báze (posloupnost polynomů ϕ i, i = 0, 1,... ), a ukážeme jak ji sestrojit. 13
12 Všechny kořeny polynomu ϕ k jsou reálné a jednoduché Věta Všechny kořeny polynomu ϕ k jsou reálné, jednoduché a leží v otevřeném intervalu (a, b). 14
13 Ortogonální polynomy lze počítat tříčlennou rekurencí Věta Monické ortogonální polynomy ϕ 0, ϕ 1,..., ϕ n+1 lze počítat tříčlennou rekurencí přičemž ϕ k+1 (x) = (x α k )ϕ k β k ϕ k 1 (x), k = 1,..., n, ϕ 0 (x) = 1, ϕ 1 = x α 1. Koeficienty α k a β k jsou dány vztahy α k = β k = b a v(x) x ϕ2 k (x) dx b a v(x), ϕ2 k (x) dx k = 0, 1,..., n, b a v(x) ϕ2 k (x) dx b a v(x) ϕ2 k 1 (x) dx k = 1, 2,..., n. 15
14 Ortonormální polynomy Uvažujme systém ortonormálních polynomů, tedy polynomů ψ 0,..., ψ n+1 s normou jedna, ψ k (x) ϕ k(x) ϕ k (x) v = Lze ukázat, že splňují rekurentní vztahy ϕ k (x). b a v(x) ϕ2 k (x)dx β k+1 ψ k+1 (x) = (x α k )ψ k β k ψ k 1 (x), k = 0, 1,..., n, kde ψ 1 = 0, ψ 0 = 1 b, β 0 = v(x) dx β0 a kde β k a α k jsou koeficienty z rekurence pro monické ortogonální polynomy. 16
15 Ortogonální polynomy a Jacobiho matice Tříčlenné rekurence lze přepsat pomocí tridiagonálních matic. Uvažujme např. ortonormální polynomy, definujme J n+1 = Φ k (x) [ψ 0, ψ 1 (x),..., ψ k (x)] T, α 0 β1 β1 α 1 β βn βn α n. Potom lze tříčlenné rekurence zapsat ve tvaru xφ n (x) = J n+1 Φ n (x) + β n+1 ψ n+1 (x)e n, kde e n je n-tý sloupec jednotkové matice velikosti n. J n+1 je Jacobiho maticí. 17
16 Ortogonální polynomy a Jacobiho matice xφ n (x) = J n+1 Φ n (x) + β n+1 ψ n+1 (x)e n, Pro kořen µ polynomu ψ n+1, ψ n+1 (µ) = 0, platí µφ n (µ) = J n+1 Φ n (µ). Protože je ψ 0 0, je Φ n (µ) 0. Φ n (µ) je tedy vlastním vektorem matice J n+1 a µ příslušným vlastním číslem J n+1. Kořeny ψ n+1 jsou jednoduché, každý kořen je vlastním číslem J n+1 vlastní čísla J n+1 jsou právě kořeny ψ n+1 (tj. i ϕ n+1 ). Návod, jak počítat kořeny ortogonálních polynomů: jako vlastní čísla příslušných Jacobiho matic. 18
17 Příklady ortogonálních polynomů Různé volby váhové funkce v(x), zvykem uvádět pro interval [ 1, 1], transformace na obecný interval [a, b] pomocí lineární transformace x = 2y b a, y [a, b]. b a v(x) = 1 Legendrovy polynomy v(x) = 1 1 x 2 Čebyševovy polynomy v(x) = e x Laguerrovy polynomy Ortogonální báze prostoru polynomů aproximace funkcí. Například (aproximaci) řešení nějaké úlohy hledáme jako lineární kombinaci ortogonálních polynomů. 19
18 Obecná kvadraturní formule a algebraická přesnost Naším cílem je aproximovat numericky hodnotu integrálu b v(x) je opět váhová funkce. Budeme aproximovat výrazem a v(x) f(x) dx. n A i f(a i ), i=0 který se nazývá kvadraturní formule. Čísla A i nazýváme váhy a body a i, ležící v intervalu [a, b], uzly. Říkáme, že kvadraturní vzorec má algebraickou přesnost m, integruje-li přesně polynomy až do stupně m. 21
19 Gaussova kvadratura Snaha dosáhnout co největší algebraické přesnosti. Máme 2n + 2 parametrů (n + 1 uzlů a n + 1 vah) lze očekávat algebraickou přesnost 2n + 1. Říkáme, že kvadraturní vzorec s n + 1 uzly je Gaussův, je-li jeho algebraická přesnost rovna 2n + 1. Věta Kvadraturní vzorec je Gaussův právě tehdy, když b A i = v(x) l i (x) dx. a a n ω(x) = (x a i ) i=0 je ortogonální polynom s vahou v(x). 22
20 Gaussova kvadratura Váhy jsou vždy kladné deg(l j ) = n deg(l 2 j ) = 2n b a v(x) l 2 j(x) dx = n A i l 2 j(a i ) = A j. i=0 Odtud je vidět, že všechny váhy Gaussova kvadraturního vzorce jsou kladné. Gaussův kvadraturní vzorec vrací hodnotu integrálu z Hermitovského interpolačního polynomu funkce f. 23
21 Výpočet Gaussovy kvadratury Uzly Gaussovy kvadratury jsou kořeny ortogonálních polynomů. Ortogonální polynomy tříčlenná rekurence, jejich kořeny jsou vlastní čísla příslušných Jacobiho matic. Uvažujme spektrální rozklad Jacobiho matice α 0 β1 β1 α 1 β βn βn α n = UΛU T, U = [u 0, u 1,..., u n ] je ortonormální a Λ je reálná diagonální. 24
22 Jacobiho matice a uzly a váhy Gaussovy kvadratury Uzly Gaussovy kvadratury jsou vlastní čísla Jacobiho matice. Váhy jsou dány vztahem A i = u 2 1,i, i = 0,..., n, kde u 1,i je první složka normovaného vlastního vektoru u i, viz. např. kniha Gautschi Z Jacobiho matic vznikajících při generování ortogonálních polynomů dostaneme kompletní informaci o uzlech a vahách Gaussovy kvadratury. 25
Arnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
VíceInterpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
VíceIntegrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
Více19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
VíceČebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
VíceAproximace funkcí. Polynom Φ m (x) = c 0 + c 1 x + c 2 x c m x m. Φ m (x) = c 0 g 0 (x) + c 1 g 1 (x) + c 2 g 2 (x) +...
Aproximace funkcí 1 Úvod Aproximace funkce - výpočet funkčních hodnot nejbližší (v nějakém smyslu) funkce v určité třídě funkcí (funkce s nějakými neznámými parametry) Příklady funkcí používaných pro aproximaci
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
VíceProgram SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
VícePodobnostní transformace
Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy
Více2. Schurova věta. Petr Tichý. 3. října 2012
2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci
VíceUčební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Více15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceAplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,
Více10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
VíceEUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
VíceDnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VíceNumerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
VíceLineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Více8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Více)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Více7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Víceem do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda
Zápočtové problémy Na následujících stránkách naleznete druhou sérii zápočtových problémů věnovanou nosníkům. Ti, co ještě nemají žádný problém přidělený, si mohou vybrat libovolný z nich. Řešení můžete
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VíceAproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
VíceLineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
Více2. prosince velikosti symboly a, b, je b ω a b = a b cosω (1) a. ω pro ω π/2, π platí a b = b a a (3) a b = a 1 b 1 + a 2 b 2 + a 3 b 3 (5)
Vektorové prostory se skalárním součinem 2. prosince 25 1 Skalární součin geometrických vektorů Skalární součin geometrických vektorů je definován jako součin jejich velikostí násobený kosinem jejich odchylky.
VíceVěta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
VíceDnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
VíceCvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
VíceNumerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
VíceMATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
VíceFakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
VíceKapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceTéma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Více6. přednáška 5. listopadu 2007
6. přednáška 5. listopadu 2007 Souvislost diferenciálu a parciálních derivací. Diferenciál implikuje parciální derivace a spojité parciální derivace implikují diferenciál. Tvrzení 2.3. Když je funkce f
VíceÚlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Více18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
VíceÚlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
VíceCo jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceKapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
VíceIII. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
VíceSymetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
VíceDerivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceDEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Více2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro
Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:
VíceKapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY NUMERICKÁ INTEGRACE - ORTOGONÁLNÍ POLYNOMY BAKALÁŘSKÁ PRÁCE Tomáš Bárta Matematická studia Vedoucí práce:
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Více22 Základní vlastnosti distribucí
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající
VíceVěta o sedlovém bodu a Fredholmova alternativa
Věta o sedlovém bodu a Fredholmova alternativa Petr Tomiczek Fakulta Aplikovaných věd Západočeská univerzita Plzeň 2006 obsah 1 Rozklad Hilbertova prostoru Uzavřený lineární a samoadjungovaný operátor
Více8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
VíceAplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Více5. Interpolace a aproximace funkcí
5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x
VíceK oddílu I.1 základní pojmy, normy, normované prostory
ÚVOD DO FUNKCIONÁLNÍ ANALÝZY PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2015/2016 PŘÍKLADY KE KAPITOLE I K oddílu I1 základní pojmy, normy, normované prostory Příklad 1 Necht X je reálný vektorový prostor a : X
VíceSkalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
VíceNumerické metody: aproximace funkcí
Numerické metody: aproximace funkcí Mirko Navara http://cmp.felk.cvut.cz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
VíceLDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
VíceNMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019
Jméno: Příklad 2 3 4 5 Celkem bodů Bodů 20 20 20 20 20 00 Získáno Zápočtová písemná práce určená k domácímu vypracování. Nutnou podmínkou pro získání zápočtu je zisk více jak 50 bodů. Pravidla jsou následující:.
Více1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Více9. Vícerozměrná integrace
9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující
VíceKombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
VíceGreenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
VíceKapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
VíceInterpolace Lagrangeovy polynomy. 29. října 2012
Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic
Více9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Víceα β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace
Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme
VíceVYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
VíceMatematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
VíceVlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
VíceNecht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
Vícepouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
VíceI. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VíceNumerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu
VíceMATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
VíceBáze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů
Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ) Připomeňme, že konečná posloupnost u 1, u 2,, u n vektorů z V je
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
VíceDefinice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Vícep(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VíceUniverzita Karlova v Praze procesy II. Zuzana. Predikce
ne ve Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 23.4.-7.5. 2010 ne ve 1 ne Outline 2 ve ne ve Definice: Nechť H je Hilbertův
VíceMatematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
VíceStudijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.
Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,
Víces velmi malými čísly nevýhodou velký počet operací, proto je mnohdy postačující částečný výběr
1. Úvod 1.1. druhy chyb: ch. matematického modelu rozdíl mezi idealizovaným a reálným problémem ch. numerické metody výsledkem nepřesné řešení ch. zaokrouhlovací vystupují současaně 1.. chyba absolutní
Více1 Vektorové prostory a podprostory
Pro nahrazení účasti v jednotlivých cvičeních (resp. pro studenty kombinované formy) je dostačující vypracování a odevzdání tučně vyznačených příkladů. 1 Vektorové prostory a podprostory Definujte vektorový
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
VíceKapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
Více15. listopadu Matematický ústav UK Matematicko-fyzikální fakulta. Hermitovská interpolace
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Hermitovská interpolace 15. listopadu 2017 Zbyněk Šír (MÚ UK) - Geometrické modelování 15. listopadu 2017 1 / 23 Hermiteovská
VíceNumerické metody: aproximace funkcí
Numerické metody: aproximace funkcí Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
Více