Operace s maticemi. 19. února 2018
|
|
- Radovan Vaněk
- před 6 lety
- Počet zobrazení:
Transkript
1 Operace s maticemi Přednáška druhá 19. února 2018
2 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice
3 Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A = a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n... a m,1 a m,2 a m,n Označení: prvek na pozici (i, j) matice A:a ij množina všech reálných matic typu m n: R m n. Je-li m = n, potom matici nazýváme čtvercovou. Definice(Vektor). Reálný n-rozměrný (aritmetický) vektor je matice typu n 1 x = x 1 x 2. x n Množina všech n-rozměrných vektorů se značí R n (namísto R n 1 ).
4 Základní operace s maticemi Definice (Rovnost matic). Dvě matice se rovnají, A = B, pokud mají stejné rozměry m n a A ij = B ij pro všechna i, j. Definice (Součet matic). Bud A, B R m n. Pak A + B je matice typu m n s prvky (A + B) ij = A ij + B ij. Definice (Násobení číslem). Bud α R a A R m n. Pak αa je matice typu m n s prvky (αa) ij = αa ij. Výše zmíněné operace umožňují zavést přirozeně i odčítání jako A B := A + ( 1)B. Speciální maticí je nulová matice, jejíž všechny prvky jsou nuly. Značíme ji 0 či 0 m n pro zdůraznění rozměru. Věta (Vlastnosti součtu matic a násobení matice číslem). Platí následující vlastnosti: α, β jsou čísla a A, B, C matice vhodných rozměrů. 1 A + B = B + A... (komutativita) 2 (A + B) + C = A + (B + C)... (asociativita) 3 A + 0 = A 4 A + ( 1)A = 0 5 α(βa) = (αβ)a 6 1A = A 7 α(a + B) = αa + αb... (distributivita) 8 (α + β)a = αa + βa... (distributivita)
5 Příklady Jsou dány matice ( A = Určete 1 3A 2 A + B 3 2A 3B ) ( 1 2 3, B = )
6 Součin matic Definice Bud A R m p a B R p n. Pak AB je matice typu m n s prvky (AB) ij = Příklad násobení matic Pro matice A = , B = p a ik b kj. k=
7 Příklad: soustava rovnic jako součin matic Mějme matice: A R m n, x R n 1 (sloupcový vektor) a 11 a a 1n a 21 a22... a 2n A =.., x =. a m1 a m2... amn Výsledkem násobení matice A vektorem x je matice b R m 1 (sloupcový vektor): Ax = b, x 1 x 2... x n tj. zápis soustavy rovnic. a 11 a a 1n a 21 a a 2n... a m1 a m2... amn x 1 x 2... x n = a 11 x 1 + a 12 x a 1n x n a 21 x 1 + a 22 x a 2n x n. =.. a m1 x 1 + a m2 x a mnx n b 1 b 2. b m
8 Vlastnosti součinu matic Jednotková matice. Značí se I resp. I n (nebo E, E n ) a je to čtvercová matice řádu n s prvky I ij = 1 pro i = j a I ij = 0 jinak. Je to tedy matice s jedničkami na diagonále a s nulami jinde. Jednotkový vektor e i je pak i-tý sloupec jednotkové matice. Věta. (Vlastnosti součinu matic). Platí následující vlastnosti: α je číslo a A, B, C matice vhodných rozměrů. 1 (AB)C = A(BC)... (asociativita) 2 A(B + C) = AB + AC... (distributivita) 3 (A + B)C = AC + BC... (distributivita) 4 α(ab) = (αa)b = A(αB) 5 I m A = AI n = A, kde A R m n Poznámka. Součin matic obecně není komutativní! Pro mnoho matic je AB BA. Najděte takový příklad!
9 Transpozice Definice Bud A R m n. Pak transponovaná matice má typ n m, značí se A T a je definovaná (A T ) ij := a ji. Příklad Transpozice vlastně znamená překlopení dle hlavní diagonály, např. A = ( ), A T = Věta (Vlastnosti transpozice). Platí následující vlastnosti: α je číslo a A, B matice vhodných rozměrů. 1 (A T ) T = A 2 (A + B) T = A T + B T 3 (αa) T = αa T 4 (AB) T = B T A T
10 Příklady Pro matice ( ) A =, ( ) B =, ( ) 2 1 C =, 3 1 spočítejte (pokud to má smysl) 1 (A + 4B) + C 2 (A + B) T 2C, 3 (B C) A T, 4 (B 3A T ) + C 5 C (B T (πa) T )
11 Příklad Jsou dány matice Určete 1 B A 2 A 2 A = 3 A B B A ( ), B =
12 Příklad Pro matici určete A 2, A A T A = ( )
13 Příklad Určete matice A B, B C, C B, kde ( ) A =, B = , C = ( )
14 Příklad Určete matici X, pro kterou platí A B = 2X + A T, kde A = ( ) ( 3 1, B = 2 5 )
15 Příklady pro zvídavé Příklad ( Najděte ) (všechny) ( matice ) X, pro které platí: X = X Příklad Řekneme, že matice A typu n n je idempotentní, pokud A A = A. Najděte idempotentní matici 2 2 různou od I 2. Ukažte, že pokud A je idempotentní, potom I n A je idempotentní. Příklad ( ) cos α sin α Spočítejte n-tou mocninu matice sin α cos α Návod: použijte indukci a vztahy pro součty sinů a kosinů.
16 Speciální matice Nulová matice Jednotková matice Čtverová matice Diagonální matice Trojúhelníková matice
17 Hodnost matice (opakování) Definice (hodnost matice). Maximální počet lineárně nezávislých řádků matice A (chápaných jako aritmetické vektory) nazýváme hodností matice A. Značíme ji h(a). Definice(Elementární řádkové úpravy). Elementární řádkové úpravy jsou 1 vynásobení i-tého řádku číslem α 0 (tj. vynásobí se všechny prvky řádku), 2 přičtení α-násobku j-tého řádku k i-tému, přičemž i j, 3 výměna i-tého a j-tého řádku. Elementární řádkové operace nemění hodnost matice
18 Definice (Odstupňovaný tvar matice). Matice A R m n je v řádkově odstupňovaném tvaru, pokud existuje r takové, že platí řádky 1,..., r jsou nenulové (tj. každý obsahuje aspoň jednu nenulovou hodnotu), řádky r + 1,..., m jsou nulové, a navíc označíme-li p i nejmenší číslo sloupce, ve kterém a ij 0, tak platí p 1 < p 2 < < p r. Každou matici lze prevést elementárními řádkovými úpravami do odstupňovaného tvaru. Sloupce p 1,... p r nazveme bázické, ostatní nebázické. Definice Hodnost matice Hodností matice rozumíme počet nenulových řádků po převodu do odstupňovaného tvaru.
19 Regulární matice Definice (regulární a singulární matice). Čtvercovou matici typu n n, která má maximální možnou hodnost (tj. n), nazýváme regulární maticí. Čtvercovou matici, která není regulární, nazýváme singulární maticí. Typickým příkladem regulární matice je E n a singulární matice 0. Tvrzení Čtvercová matice A R n n je regulární soustava Ax = 0 má jediné řešení x = 0. Tvrzení Pro čtvercovou matici A R n n platí: A je regulární pro každé b R n má soustava Ax = b jediné řešení. Vlastnosti regulárních matic. Součet regulárních matic nemusí být regulární matice, vezmeme např. I + ( I ) = 0. Součin regulárních matic je regulární matice.
20 Inverzní matice Motivace pro inverzní matice: Matice umíme sčítat, odečítat, násobit, tak nešly by i dělit? Ukážeme si, že něco jako dělení lze zavést, ale jen pro regulární matice. Definice Bud A R n n. Pak A 1 je inverzní maticí k A, pokud splňuje AA 1 = A 1 A = E n Které matice mají inverzi? Pouze a jen ty regulární. Věta (O existenci inverzní matice). Bud A R n n. Je-li A regulární, pak k ní existuje inverzní matice, a je určená jednoznačně. Naopak, existuje-li k A inverzní, pak A musí být regulární. Věta Je-li A regulární, pak A T je regulární. Věta (Jedna rovnost stačí). Bud te A, B R n n. (1) Je-li BA = E, pak A je regulární a B = A 1. (2) Je-li AB = E, pak A je regulární a B = A 1.
21 Výpočet inverzní matice K matici A připíšeme jednotkovou matici. Ekvivalentními úpravami převedeme matici A na jednotkovou. Potom na místě jednotkové matice dostaneme A 1. AE EA 1 Pokud na místě A nevznikne jednotková matice, potom matice A není regulární a inverzní neexistuje.
22 Příklady K maticím A, B, C, D určete inverzní, pokud existují. ( ) ( ) A =, B =, C = ( ) ( 2 3, D = 1 5 )
23 Vlastnosti inverzní matice Věta (Vlastnosti inverzní matice). Bud te A, B R n n regulární. Pak: (A 1 ) 1 = A, (A 1 ) T = (A T ) 1, (αa) 1 = 1 α A 1 pro α 0, (AB) 1 = B 1 A 1.
24 Maticové rovnice A X B = C X = A 1 C B 1, pokud inverzní matice existují. Příklady 1 ( ) 2 3 X = 1 4 ( 12 ) X ( ) 4 7 = 1 2 ( ) ( ) ( ) ( ) X =
25 Semestrální práce IA: komentář k zadání Ahoj A = ( ) ( 1 3, B = 2 4 )
26 Determinant matice Definice Necht A je čtvercová matice. Determinantem matice A nazýváme číslo, které označujeme det A a které lze matici A přiřadit podle těchto pravidel: a) Je-li A = (a) čtvercová matice typu 1 1, pak det A = a. b) Je-li A = (a ij ) čtvercová matice typu n n (pro n > 1), vybereme libovolný řádek matice A (označíme jej jako i tý) a položíme det A = a i1 A i1 + a i2 A i2 + + a in A in, kde A ij je tzv.doplněk prvku a ij v matici A, A ij = doplněk a ij = ( 1) i+j A ij, kde A ij je determinant čtvercové matice typu (n 1) (n 1), která vznikne z matice A vynecháním i tého řádku a j tého sloupce, tj. det A = n j=1 a ij ( 1) i+j det(a ij) Součtu říkáme (Laplaceův) rozvoj determinantu podle i-tého řádku. Pro matici A R 2 2 : det A = a 11 a 22 a 12 a 21
27 Sarrusovo pravidlo Pro matici A R 3 3 můžeme použít Sarrusovo pravidlo: det A = a 11a 22 a 33 + a 21 a 32 a 13 + a 31 a 12 a 23 a 13 a 22 a 31 a 11 a 32 a 23 a 21 a 12 a 33 Sarussovo pravidlo ze použít pouze pro matice rozměru 3 3! Determinant matice většího rozměru počítáme rozvojem.
28 Adjungovaná matice Definice Pro čtvercovou matici A R n n má adjungovaná matice adj(a) R n n složky: adj(a) ij = ( 1) i+j A ji, i, j = 1... n, kde A ji je determinant čtvercové matice typu (n 1) (n 1), která vznikne z matice A vynecháním j tého řádku a i tého sloupce. Matice adj(a) je matice vytvořená z doplňků jednotlivých prvků a následně transponovaná. Věta Pro každou čtvercovou matici A R n n platí : A adj(a) = det(a) I n. Jsou-li prvky matice A celá čísla, bude mít inverzní matice A 1 pouze celá čísla právě tehdy, když det(a) = ±1.
29 Výpočet inverzní matice pomocí adjungované matice A 1 = 1 det A adj(a) = 1 ( ) T A*, det A kde A* je matice z doplňků prvků a ij. Pro matici A R 2 2 : ( ) doplněk = a ( 1) 1+1 det (d) = +d a b doplněk = b ( 1) A = : 1+2 det (c) = c c d doplněk = c ( 1) 2+1 det (b) = b doplněk = d ( 1) 2+2 det (a) = +a ( ) ( ) d c A* = b a ( ) ( ) T d b adj(a) = A* = c a ( ) 1 a b = c d 1 ad bc ( d ) b c a
30 Vlastnosti determinantu Determinant čtvercové matice, která má bud pod hlavní diagonálou nebo nad ní samé nuly je roven součinu prvků na hlavní diagonále. Determinant jednotkové matice typu n n je roven 1. Obsahuje-li některý řádek (nebo sloupec) matice A samé nuly, je det A = 0. det A T = det A pro regulární matici: det A 1 = 1 det A det AB = det A det B, ale det(a + B) det A + det B, nicméně: řádková (a sloupcová) linearita: a a 1n a a 1n a a 1n det a i1 + b 1... a in + b n = det a i1... a in +det b 1... b n a n1... a nn a n1... a nn a n1... a nn Matice je regulární det A 0
31 Determinant a elementární úpravy K výpočtu determinantu je možné využít Gaussovu eliminaci. K tomu musíme a) umět spočítat determinant matice v odstupňovaném tvaru, b) vědět, jak hodnotu determinantu ovlivňují elementární řádkové úpravy. Determinant matice v odstupňovaném je roven součinu diagonálních prvků. Necht matice A vznikne z A nějakou elementární úpravou: 1 Vynásobení i-tého řádku číslem α R: det(a ) = αdet(a). 2 Výměna i-tého a j-tého řádku: det(a ) = det A. 3 Přičtení α-násobku j-tého řádku k i-tému, přičemž i j: det(a ) = det(a).
32 Příklady A = ( ) B = C = D = V = x y z x 2 y 2 z 2
33 Příklady Ukažte, že platí: Vyjádřete 1 x x 2 1 x x 2 1 y y 2 = 2 x 2 y 2 x x x x x x x x x y
34 Geometrická interpretace determinantu Uvažujme čtvercové regulární matice (A R n n, det A 0) Představme si řádky matice jako vektory v eukleidovském prostoru. n = 2 Doplňme v rovině oba vektory na rovnoběžník. Plošný obsah rovnoběžníku je roven det A. n = 3 Doplňme v prostoru tři vektory na rovnoběžnostěn. Objem tohoto rovnoběžnostěn je roven det A. n N Doplňme v prostoru vektory na n-rozměrný rovnoběžnostěn. Objem tohoto rovnoběžnostěn je roven det A. Poznámka. Svou roli hraje nejen velikost determinantu A, ale také jeho znaménko; to souvisí s pořadím hran rovnoběžnostěnu jako řádků matice A. Speciálně, pro A R 3 3 je det(a) > 0 pokud řádky A tvoří pravotočivou posloupnost vektorů (tzv. pravidlo palce), a det(a) < 0 pokud tvoří levotočivou posloupnost.
35 Použití determinantu pro polynomy Polynomy p(x) = a n x n + + a 1 x + a 0, q(x) = b m x m + + b 1 x + b 0 mají společný kořen právě tehdy, když a n a n 1... a 0 a n a n 1... a det a n a n 1... a 0 = 0 b m b m 1... b 1 b b m b m 1... b 1 b 0
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
ČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A
ČTVERCOVÉ MTICE Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det() značíme determinant čtvercové matice Regulární matice hodnost je rovna jejímu řádu determinant je
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců
Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Číselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Vektory a matice Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Soustavy lineárních rovnic a determinanty
Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
12. Determinanty. 12. Determinanty p. 1/25
12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant
Matematika 2 pro PEF PaE
Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté
Úvodní informace Soustavy lineárních rovnic. 12. února 2018
Úvodní informace Soustavy lineárních rovnic Přednáška první 12. února 2018 Obsah 1 Úvodní informace 2 Soustavy lineárních rovnic 3 Matice Frobeniova věta Úvodní informace Olga Majlingová : Na Okraji, místnost
P 1 = P 1 1 = P 1, P 1 2 =
1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Soustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
D 11 D D n1. D 12 D D n2. D 1n D 2n... D nn
Inversní matice 1 Definice Nechť je čtvercová matice řádu n Čtvercovou matici B řádu n nazveme inversní maticí k matici, jestliže platí B=E n =B, kdee n jeodpovídajícíjednotkovámatice 2 Tvrzení Inversní
10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet
Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 7.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/200 Michal Marvan 7 Determinanty Determinant je jistá hodnota přiřazená čtvercové matici Geometricky
Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10
1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz
ALGEBRA. Téma 1: Matice a determinanty
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1 746 01 Opava tel (553 684 611 DENNÍ STUDIUM Téma 1: Matice a determinanty 1 Přehled základních pojmů a tvrzení Základní pojmy Číselná
VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.
VEKTOROVÝ PROSTOR Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru. Soubor n-složkových vektorů je libovolná skupina vektorů,
Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.
Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav
2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY
2. ZÁKLADY MAICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY V této kapitole se dozvíte: jak je definována reálná nebo komplexní matice a co rozumíme jejím typem; co jsou to prvky matice, co vyjadřují jejich indexy
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
2. Lineární algebra 2A. Matice a maticové operace. 2. Lineární algebra
2 Lineární algebra 2A Matice a maticové operace 2 Lineární algebra Verze října 201 Teorie matic a determinantů představuje úvod do lineární algebry Nejrozsáhlejší aplikace mají matice a determinanty při
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Soustavy lineárních rovnic
7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,
Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)
Hodnost matice Vektorový prostor Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání vektorů a reálný násobek vektoru, přičemž platí: a) V n je uzavřenou množinou vůči
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
3. Matice a determinanty
. Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
rozumíme obdélníkovou tabulku
Přednáška : Matice Matice poskytují velmi účinný způsob jak úsporně zapisovat mnoho lineárních problémů. Navíc je tento způsob velmi vhodný pro jejich zadání do počítačových programů, které dokáží tyto
Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,
Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1
Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném
ftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
z textu Lineární algebra
2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
p, q dvě permutace na množině X, pak složené zobrazení, tj. permutaci, q p : X X nazýváme složení permutací p a q (v tomto pořadí).
Kapitola 10 Determinanty Začneme pomocnou definicí Definice 101 Vzájemně jednoznačné zobrazení p : X X nazýváme permutace na množině X Je-li p permutace na množině X, pak inverzní zobrazení p 1 : X X nazýváme
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném
Univerzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu.
Univerzitní licence MATLABu Pište mail na: operator@service.zcu.cz se žádostí o nejnovější licenci MATLABu. * násobení maticové K = L = 1 2 5 6 3 4 7 8 Příklad: M = K * L N = L * K (2,2) = (2,2) * (2,2)
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná