8. Simulované ochlazování Simulated Annealing, SA
|
|
- Tomáš Šimek
- před 6 lety
- Počet zobrazení:
Transkript
1 Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 8. Simulované ochlazování Simulated Annealing, SA princip, fyzikální analogie formulace algoritmu vlastnosti způsob použití vývoj příklad
2 Lokální minimum hodnota optimalizačního kritéria lokální minimum: všechny sousední stavy mají horší hodnotu optimalizačního kritéria spojovací čáry jen pro názornost globální minimum kroky iterativní heuristiky 2
3 Správný průběh iterativní heuristiky hodnota optimalizačního kritéria různá počáteční řešení stejně kvalitní výsledná řešení kroky iterativní heuristiky 3
4 Uváznutí v lokálních minimech hodnota optimalizačního kritéria různá počáteční řešení zastavení v lokálních minimech kvalita výsledného řešení silně závisí na kvalitě počátečního řešení kroky iterativní heuristiky 4
5 Řízení úniku z lokálních minim velká ochota připustit tah, který vede k horšímu řešení malá ochota připustit tah, který vede k horšímu řešení rovnoměrný průzkum stavového prostoru konvergence k finálnímu řešení diversifikace intensifikace 5
6 Počátky analogie N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller: Equation of state calculation by fast computing machines. J. of Chem. Phys, 21(1953), S. Kirkpatrick, C. D. Gellat, M. P. Vecchi: Optimization by simulated annealing. Science, 220(1983), V. Černy, A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J. of Optimization Theory and Applications, 45(1985),
7 Tuhnutí taveniny vysoká teplota velká kinetická energie molekul kapalné skupenství opatrné chlazení velké krystaly nízká celková vazebná energie systému prudké chlazení malé krystaly vysoká celková vazebná energie systému nízká teplota vazebné síly převáží pevné skupenství krystalická stavba 7
8 Analogie stav systému změna stavu energie systému krystalický stav kinetická energie molekul teplota řešení přechod k sousednímu řešení optimalizační kritérium heuristické řešení ochota k přechodu do horšího stavu řídící parametr 8
9 Formulace simulovaného ochlazování
10 počáteční stav Ø best state = Ø? ne ano stop ()? ne ano state Jednoduchá lokální heuristika state.solution() and state.better (best) ne ano state state best best= Ø? ne ano try (state) řešení neexistuje nebo je neznáme řešení je best 10
11 Prohledávání okolí pro metodu prvé zlepšení try (state) randomizace q new = q (state)) new.solution() and new.better (state) ano ne return Ø poznáme-li, kdy jsou vyčerpána všechna q return new 11
12 Prohledávání okolí pro simulované ochlazování try (state, T) zvol náhodně q new = q (state) new.better (state) ne ano Předpoklady: minimalizční problém s řešení q(s) řešení return new =new.cost()-state.cost() x=random(0,1) x<exp(- /T)? ne ano return state return new 12
13 Prohledávání okolí pro simulované ochlazování try (state, T) zvol náhodně q náhodný soused new = q (state) new.better (state) ne ano =new.cost()-state.cost() x=random(0,1) x<exp(- /T)? ne ano přijmout, je-li lepší return new je-li horší... return new return state 13
14 Rozhodování v případě, že nový stav je horší Předpoklady:minimalizční problém =new.cost()-state.cost() x=random(0,1) x<e - /T? ne ano rozdíl opt. kritéria pravděpodobnost p new return new return state 0 p new 1 nepatrné zhoršení se přijme vždy p new 0 velké zhoršení se přijme zřídka T 0 p new 0 při nízké teplotě se zhoršení přijmou s malou pravděpodobností T p new 1 při vysoké teplotě se přijmou i velká zhoršení 14
15 počáteční stav state počáteční stav best počáteční teplota T Simulované ochlazování frozen (T, )? ne ano equilibrium ( )? ne ano heuristické řešení je best state try (state, T) state.better (best) ne ano state best T=cool(T, ) 15
16 Vlastnosti simulovaného ochlazování
17 Jak to funguje? Počáteční stav řešení z jiné (konstruktivní) heuristiky náhodná řešení Vysoké teploty velká pravděpodobnost přijetí horšího řešení převaha diverzifikace Nízké teploty konvergence k minimu převaha intenzifikace děkuju, docela pěkně 17
18 Teoretická analýza (Hajek) pro funkci cool() ve tvaru t k = c log(1+k) kdo to má vědět? k číslo kroku c hloubka lokálního minima proces po nekonečném počtu kroků skončí v globálním minimu (asymptotická konvergence) 18
19 Způsob použití simulovaného ochlazování
20 Co je třeba vymyslet počáteční teplota cool(t, ) frozen(t, ) equilibrium( ) rozvrh ochlazování předem daný nebo řízený zpětnou vazbou stavový prostor (operace) optimalizační kritérium počáteční řešení jako obvykle u lokálních iterativních heuristik 20
21 Teplota je parametr =new.cost()-state.cost() x=random(0,1) x<exp(- /T)? změníme metodu cost() tak, aby cenu vracela v haléřích místo v korunách měli bychom dostat stejné výsledky k tomu také T musí být 100 větší 21
22 Rozvrh ochlazování cool (T) = at, 0,8 < a < 0,999 souvisí s ostatními parametry rozvrhu equilibrium(): pevný počet kroků N N přijatých nebo 2N kroků brání příliš pomalému chlazení při nízkých teplotách souvisí s cool(t) 22
23 Souvislost cool() a equilibrium() Dáno: počáteční teplota T p koncová teplota T k celkový počet iterací s T(x) T p.a x/n teplota v čase x T k Měníme: délku ekvilibria N T p.a s/n koncová teplota T(x) T p T k T p x/s nezávisle na N 23
24 Ochlazování při konstantních T k, T p, s T p T k s 24
25 Počáteční teplota Známe hloubku lokálních minim nastavíme teplotu tak, aby pravděpodobnost úniku z minima byla např. 0,5 Zpětnovazební řízení rychle zvyšujeme teplotu sledujeme četnost přijatých změn k horšímu zaznamenáme teplotu pro pravděpodobnost např. 0,5 vrátíme původní stav a nastavíme teplotu 25
26 frozen() Četnost změn (jakýchkoli) klesla pod nastavenou mez Pevná mez teploty 26
27 Co je třeba vymyslet počáteční teplota cool(t, ) frozen(t, ) equilibrium( ) rozvrh ochlazování předem daný nebo řízený zpětnou vazbou stavový prostor (operace) optimalizační kritérium počáteční řešení jako obvykle u lokálních iterativních heuristik 27
28 Technika relaxace Co když nemohu zabránit, aby q(s) převedla řešení na konfiguraci, která řešením není? Obecný problém iterativních heuristik Relaxace přirážka k optimalizačnímu kritériu (pokud lze spočítat) odhadnout vzdálenost od řešení a použít místo optimalizačního kritéria Jiná řešení zahodit opravit, např. některou z jednoduchých heuristik 28
29 Relaxace a dosažitelnost stavový prostor řešení 29
30 Stavový prostor Randomizovaný algoritmus stavového prostoru statistické vlastnosti Vzájemná dosažitelnost stavů, přibližně stejná Výpočet náhodného souseda a optimalizačního kritéria nejčastější operace, zjednodušit, i za cenu relaxace Hajekuv výsledek vliv hloubky minim na činnost algoritmu nepřidělávat algoritmu práci zbytečně divokým optimalizačním kritériem 30
31 Počáteční řešení Náhodná počáteční řešení vícenásobné spuštění měření iterativní síly dobře aplikované simulované ochlazování není závislé na počátečním řešení těžiště práce v iteracích Konstruktivní počáteční řešení chytrá konstruktivní fáze hluboké lokální minimum alespoň nějaké minimum 31
32 Vymysleli jsme počáteční teplota cool(t, ) frozen(t, ) equilibrium( ) rozvrh ochlazování předem daný nebo řízený zpětnou vazbou stavový prostor (operace) optimalizační kritérium počáteční řešení jako obvykle u lokálních iterativních heuristik 32
33 Je to dobře? Vývoj SA heuristik Použitelnost v celém rozsahu zamýšlené aplikace bez ručních zásahů dostatečný soubor zkušebních úloh, generátory hodnocení zkušebních úloh úloha vizualizace podoba řešení vývoj optimalizačního kritéria vývoj heuristiky a vývoj jejích adaptačních mechanismů 33
34 Příklad použití
35 Floorplanning Obdélníkové moduly se zadanou plochou, ale volitelným poměrem výška/šířka (v jistých mezích) Poskládat do obdélníka s minimální plochou Rozložení jednotek integrovaného obvodu Volíme omezení: tzv. řezové plány
36 V M1 V V H V H H H
37 V M2 V V H V H H V
38 V M3 V H V H H H V
39 Stavový prostor Všechny stavy jsou vzájemně dosažitelné (každá operace je pro to nutná) Vzájemná dosažitelnost je stejná (každý tah má svou inverzi, mezi každým párem stavů je možno přejít oběma směry) 39
40 Aplikace SA Počáteční teplota: pravděpodobnost přijetí průměrného zhoršení : p 0 1 Provést několik záměn, spočítat Ekvilibrium: N zlepšení nebo 2N kroků, kde N n t k = 0,85 t k-1 Frozen: méně než 5% přijatých T 0 = - ln p0 40
41 Alternativní rozvrhy ochlazování Žíhání nefunguje! 41
42 Kombinace a alternativy SA alternativní pravděpodobnostní fce (profiling, čas pro exp(x)) jediná teplota (závislá na instanci) kombinace s metodou pouze nejlepší 42
43 Paralelizace Ustálení při dané teplotě, různé nastavení generátoru pseudonáhodných čísel Více náhodných sousedů zbytečné při vysokých teplotách dublování při nízkých teplotách přepnout Společná paměť, paralelní zápis mezivýsledků 43
7. Heuristické metody
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
11. Tabu prohledávání
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:
OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního
jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky
Pokročilé heuristiky jednoduchá heuristika asymetrické stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy pokročilá heuristika symetrické stavový prostor, který vyžaduje řízení 1 2 Paměť pouze
Simulované žíhání jako nástroj k hledání optimálního řešení
Simulované žíhání jako nástroj k hledání optimálního řešení Michael Pokorný - Střední škola aplikované kybernetiky s.r.o. - pokorny.michael@ssakhk.cz 21. června 211 Úvod Nedeterministická metoda optimalizace
Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1
Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1 Efektivita optimalizačních metod Robustní metoda Efektivita Specializovaná metoda Enumerace nebo MC kombinatorický
13. Lineární programování
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
ČVUT FEL X36PAA - Problémy a algoritmy. 5. úloha - Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu
ČVUT FEL X36PAA - Problémy a algoritmy 5. úloha - Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu Jméno: Marek Handl Datum: 4. 2. 2009 Cvičení: Pondělí 9:00 Zadání Zvolte si heuristiku,
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Metoda Monte Carlo, simulované žíhání
co byste měli umět po dnešní lekci: integrovat pomocí metody Monte Carlo modelovat jednoduché mnočásticové systémy (Brownův pohyb,...) nalézt globální minimum pomocí simulovaného žíhání Určení čísla metodou
Markov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
3 Exaktní metody a heuristiky
3 Exaktní metody a heuristiky Podle prohledávání stavového prostoru dělíme metody na: úplné (všechny stavy), systematické (každý stav max. 1), obojí = exaktní řešení 3.1 Lokální metody, Pojem okolí v lokálních
State Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node
State Space Search Po spuštění appletu se na pracovní ploše zobrazí stavový prostor první předpřipravené úlohy: - Zeleným kroužkem je označen počáteční stav úlohy, který nemůže být změněn. - Červeným kroužkem
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
7. Vyhodnocení uživatelského rozhraní
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 BI-TUR 7. Vyhodnocení uživatelského rozhraní EVROPSKÝ SOCIÁLNÍ FOND
Algoritmy pro shlukování prostorových dat
Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
VUT Brno Fakulta informačních technologií Simulační nástroje a techniky (SNT) 2014/2015 Vehicle routing problem Ant colony
VUT Brno Fakulta informačních technologií Simulační nástroje a techniky (SNT) 2014/2015 Vehicle routing problem Ant colony František Němec (xnemec61) xnemec61@stud.fit.vutbr.cz 19. července 2015 1 Úvod
Technická univerzita v Liberci ROBUST
Optimalizace řízení redundantního systému k z n pomocí metody simulovaného žíhání Čeněk Jirsák Fakulta přírodovědně-humanitní a pedagogická, Technická univerzita v Liberci ROBUST 2018 25. 1. 2018 Obsah
Úvod do mobilní robotiky AIL028
SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce
4. NP-úplné (NPC) a NP-těžké (NPH) problémy
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Minule jsme si řekli, jak využívat heuristiky v prohledávání a jak konstruovat heuristiky BFS,
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.
OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Hanojská věž. T2: prohledávání stavového prostoru. zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3]
Hanojská věž zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah je lepší? (co je lepší tah?) P. Berka, 2012 1/21 Stavový prostor 1. množina stavů S = {s} 2. množina přechodů
Zpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Algoritmy používané ve výpočetní geometrii
Algoritmy používané ve výpočetní geometrii Hrubá síla. Inkrementální metoda. Zametací přímka. Heuristiky. Rozděl a panuj. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie.
Struktury a vazebné energie iontových klastrů helia
Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
České vysoké učení technické v Praze Fakulta elektrotechnická. Diplomová práce Přepínání metaheuristik. Aleš Kučík
České vysoké učení technické v Praze Fakulta elektrotechnická Diplomová práce Přepínání metaheuristik Aleš Kučík Vedoucí práce: Ing. Jan Koutník, Ph.D. Studijní program: Elektrotechnika a informatika,
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Úvod do mobilní robotiky AIL028
Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)
Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol
Paralení programování pro vícejádrové stroje s použitím OpenMP. B4B36PDV Paralelní a distribuované výpočty
Paralení programování pro vícejádrové stroje s použitím OpenMP B4B36PDV Paralelní a distribuované výpočty Minulé cvičení: Vlákna a jejich synchronizace v C++ 11... 1 Minulé cvičení: Vlákna a jejich synchronizace
Téma 8: Optimalizační techniky v metodě POPV
Téma 8: Optimalizační techniky v metodě POPV Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská
Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu
4. 12. 213 MI-PAA úkol č. 4 Antonín Daněk Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu 1 SPECIFIKACE ÚLOHY Cílem tohoto úkolu bylo seznámit se s vybranou pokročilou iterativní
Měření měrného skupenského tepla tání ledu
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření měrného skupenského tepla tání ledu Úvod Tání, měrné
EM algoritmus. Proč zahrnovat do modelu neznámé veličiny
EM algoritmus používá se pro odhad nepozorovaných veličin. Jde o iterativní algoritmus opakující dva kroky: Estimate, který odhadne hodnoty nepozorovaných dat, a Maximize, který maximalizuje věrohodnost
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
4. Úvod do paralelismu, metody paralelizace
4. Úvod do paralelismu, metody paralelizace algoritmů Ing. Michal Bližňák, Ph.D. Ústav informatiky a umělé inteligence Fakulta aplikované informatiky UTB Zĺın Paralelní procesy a programování, Zĺın, 26.
Detekce interakčních sil v proudu vozidel
Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky
Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:
Teorie rozhodování (decision theory)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie
VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
Protiopatření eliminující proudovou analýzu
SIX Research Centre Vysoké učení technické v Brně martinasek@feec.vutbr.cz crypto.utko.feec.vutbr.cz Proudová analýza (PA) V dnešní době představuje efektivní a úspěšný způsob útoku cílený na bezpečné
Optimalizační algoritmy inspirované chováním mravenců
Optimalizační algoritmy inspirované chováním mravenců Motivace a biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů vhodných pro ACO Aplikace Motivace NP-hard problémy
pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
Optimalizační algoritmy inspirované chováním mravenců
Optimalizační algoritmy inspirované chováním mravenců Biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů Aplikace Motivace NP-hard problémy časová náročnost nalezení
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Generování pseudonáhodných. Ing. Michal Dorda, Ph.D.
Generování pseudonáhodných čísel při simulaci Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky V simulačních modelech se velice často vyskytují náhodné proměnné. Proto se budeme zabývat otázkou, jak při simulaci
Testování prvočíselnosti
Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Počítačový model plazmatu. Vojtěch Hrubý listopad 2007
Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří
Metaheuristiky s populacemi
Metaheuristiky s populacemi 8. března 2018 1 Společné vlastnosti 2 Evoluční algoritmy 3 Optimalizace mravenčí kolonie Zdroj: El-Ghazali Talbi, Metaheuristics: From Design to Implementation. Wiley, 2009.
MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ
ESKÉ VYSOKÉ U ENÍ TECHNICKÉ V PRAZE Fakulta stavební MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ Studijní program: Stavební inženýrství Studijní obor: Fyzikální a materiálové inženýrství Vypracovala: Ing. Markéta
Vypracovat přehled paralelních kinematických struktur. Vytvořit model a provést analýzu zvolené PKS
Autor BP: Vedoucí práce: Tomáš Kozák Ing. Jan Zavřel, Ph.D. Vypracovat přehled paralelních kinematických struktur Vytvořit model a provést analýzu zvolené PKS Provést simulaci zvolené PKS Provést optimalizaci
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VUT V BRNĚ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Schéma identifikační procedury
Schéma identifikační procedury systém S generátor rekonstrukčních hypotéz G a S nejsou porovnatelné nelze srovnat kvalitu G a S S a S jsou porovnatelné kvalita dekompozice S? S : (S,S ) = G dekompozice
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 7 ČASOVÁNÍ A SYNCHRONIZACE TECHNICKÉHO VYBAVENÍ doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
Příklady ke cvičením. Modelování produkčních a logistických systémů
Modelování produkčních a logistických systémů Katedra logistiky, kvality a automobilové techniky Garant, přednášející, cvičící: Jan Fábry 10.12.2018 Příklady ke cvičením Opakování lineárního programování
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Laboratoře TZB Cvičení č. 5 Stratifikace vodního objemu vakumulačním zásobníku Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?
A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,
2. Začlenění HCI do životního cyklu software
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Optimalizace & soft omezení: algoritmy
Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných
Konvexní obálka v E 3 a dělení prostoru
Konvexní obálka v E 3 a dělení prostoru Zuzana Majdišová 30.1.2015 Úvod Existující algoritmy: QuickHull O nh Divide and Conquer O n log n Inkrementální konstrukce O n log n Balení dárků O nh Hlavní myšlenka
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny
Řešení problému vážené splnitelnosti booleovské formule pokročilou iterativní metodou
Řešení problému vážené splnitelnosti booleovské formule pokročilou iterativní metodou 1 SPECIFIKACE ÚLOHY Cílem této úlohy bylo použít vybranou pokročilou iterativní metodou pro řešení problému vážené
Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská
Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2
3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem
ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Programování. s omezujícími podmínkami. SAT a lokáln. Algoritmus GSAT. Algoritmus GSAT. Roman Barták
Lokáln lní prohledávání Programování s omezujícími podmínkami Roman Barták Katedra teoretické informatiky a matematické logiky roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak prochází úplná nekonzistentní
Aproximativní algoritmy UIN009 Efektivní algoritmy 1
Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
20. května Abstrakt V následujícím dokumentu je popsán způsob jakým analyzovat problém. výstřelu zasáhnout bod na zemi v definované vzdálenosti.
Ukázková semestrální práce z předmětu VSME Tomáš Kroupa 20. května 2014 Abstrakt V následujícím dokumentu je popsán způsob jakým analyzovat problém lučištníka, který má při pevně daném natažení luku jen
VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE
VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE Přednáška na semináři CAHP v Praze 4.9.2013 Prof. Ing. Petr Noskievič, CSc. Ing. Miroslav Mahdal, Ph.D. Katedra automatizační
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro