Simulované žíhání jako nástroj k hledání optimálního řešení
|
|
- Alois Konečný
- před 8 lety
- Počet zobrazení:
Transkript
1 Simulované žíhání jako nástroj k hledání optimálního řešení Michael Pokorný - Střední škola aplikované kybernetiky s.r.o. - pokorny.michael@ssakhk.cz 21. června 211
2 Úvod Nedeterministická metoda optimalizace Scott Krikpatrick, C. Daniel Gelatt, Mario P. Vecchi 1983, Vlado Černý 1985 Intuice: postupné chlazení kovu Vznikají velké a pravidelné krystaly bez nepravidelností Molekuly hledají minimum vnitřní energie Zahřátí umožňuje uvolnění z lokálního minima Užitečné na velký stavový prostor bez nutnosti zcela ideálního řešení nebo na černé skříňky
3 Popis Molekula stav, energie ohodnocení stavu, teplota se přimyslí Stav fluktuuje podle velikosti teploty a podle toho, jestli jde do kopce nebo z kopce Stav R, Z, R N,...
4 Algoritmus Vstup: T (počáteční teplota), x (počáteční stav) T T, x x, k opakuj x n stav z okolí x f( x) f( xn) T ) p g( x x n s pravděpodobností p k k + 1 T h(t, k) dokud k < k max ;
5 Charakteristické funkce Skoková funkce g a ochlazovací funkce h charakterizují optimalizaci Obvyklé kombinace: { exp(x) x < Klasická : g 1 (x) = 1 x, h 1 (T, k) = T Q k 1 Moderní : g 2 (x) = (1 + exp( x)) 1, h 2 (T, k) = T log 2 (K+2) FSA (fast simulated annealing): g 3 (x) = arctan x π, h 3 (T, k) = T + Cauchyho rozdělení vzdálenosti nového 1+ K N stavu v závislosti na teplotě rychlé a přesné
6 1D funkce f(x) x Minimalizace f(x) = exp( x 1 ) cos(x) na intervalu ; 2
7 Výsledky - 1D funkce 2 Stav Energie Teplota Michael Pokorný - Střední škola aplikované kybernetiky s.r.o. Krok - pokorny.michael@ssakhk.cz
8 Výsledky - 1D funkce 2 18 Stav Energie Teplota Michael Pokorný - Střední škola aplikované kybernetiky s.r.o. Krok - pokorny.michael@ssakhk.cz
9 Výsledky - 1D funkce - FSA Stav Energie Teplota Michael Pokorný - Střední škola aplikované kybernetiky s.r.o. Krok - pokorny.michael@ssakhk.cz
10 Rosenbrockova funkce f(x,y) 6 5 y x R(x, y) = (1 x) 2 + 1(y x 2 ) 2
11 Himmelblauova funkce 4 35 y f(x,y) x H(x, y) = (x 2 + y 11) 2 + (x + y 2 7) 2
12 y Problém batohu -1 knapsack problem: různé předměty s různou hmotností, každý s jinou hodnotou. Batoh má omezenou hmotnost. Jak vypadá nejhodnotnější batoh? NP-complete, ale lze rozumně řešit žíháním Stav je věcí v batohu, energie je (cenav cvbatohu) x
13 Shrnutí Simulované žíhání je rychlé a funkce může být černá skříňka FSA je ještě rychlejší a lepší
14 Poděkování Děkuji doc. Ing. Jaromíru Kukalovi, Ph.D. za inspirující odborné vedení miniprojektu a Ing. Vojtěchu Svobodovi, CSc. za organizaci Fyzikálního týdne vědy na Jaderce 211.
Simulované žíhání jako nástroj k hledání optimálního řešení
Simulované žíhání jako nástroj k hledání optimálního řešení Michael Pokorný Střední škola aplikované kbernetik s.r.o., Hradecká 5, Hradec Králové pokorn.michael@ssakhk.cz Abstrakt Simulované žíhání je
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:
OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
8. Simulované ochlazování Simulated Annealing, SA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
metodou Monte Carlo J. Matěna, Gymnázium Českolipská, Praha
Výpočet obsahu plošných obrazců metodou Monte Carlo J. Löwit, Gymnázium Českolipská, Praha jakub.lowit@gmail.com J. Matěna, Gymnázium Českolipská, Praha matenajakub@gmail.com J. Novotná, Gymnázium, Chomutov
Numerické řešení variačních úloh v Excelu
Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com
Princip gradientních optimalizačních metod
Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1
Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1 Efektivita optimalizačních metod Robustní metoda Efektivita Specializovaná metoda Enumerace nebo MC kombinatorický
BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír
Metoda Monte Carlo, simulované žíhání
co byste měli umět po dnešní lekci: integrovat pomocí metody Monte Carlo modelovat jednoduché mnočásticové systémy (Brownův pohyb,...) nalézt globální minimum pomocí simulovaného žíhání Určení čísla metodou
Zpracování digitalizovaného obrazu (ZDO) - Segmentace
Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu
Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)
Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
OPTIMALIZACE. (přehled metod)
OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Evolučníalgoritmy. Dále rozšiřována, zde uvedeme notaci a algoritmy vznikléna katedře mechaniky, Fakulty stavební ČVUT. Moderní metody optimalizace 1
Evolučníalgoritmy Kategorie vytvořená v 90. letech, aby se sjednotily jednotlivémetody, kterévyužívaly evoluční principy, tzn. Genetickéalgoritmy, Evolučnístrategie a Evoluční programování (v těchto přednáškách
Detekce interakčních sil v proudu vozidel
Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké
ÚPRAVA METODY FLEXIBILNÍHO SIMPLEXU PRO ŘEŠENÍ PROBLÉMŮ GLOBÁLNÍ OPTIMALIZACE Miroslav Provazník
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky ÚPRAVA METODY FLEXIBILNÍHO SIMPLEXU PRO ŘEŠENÍ PROBLÉMŮ GLOBÁLNÍ OPTIMALIZACE Miroslav Provazník Bakalářská práce 2016 Prohlášení Prohlašuji:
Markov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
Technická univerzita v Liberci ROBUST
Optimalizace řízení redundantního systému k z n pomocí metody simulovaného žíhání Čeněk Jirsák Fakulta přírodovědně-humanitní a pedagogická, Technická univerzita v Liberci ROBUST 2018 25. 1. 2018 Obsah
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Struktury a vazebné energie iontových klastrů helia
Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy
Základní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
y H = c 1 e 2x + c 2 xe 2x, Partikularni reseni hledam metodou variace konstant ve tvaru c 1(x)e 2x + c 2(x)xe 2x = 0
1 Urcete vsechna maximalni reseni: y + 4y + 4y = e 2x x + 1 Definicni obor: x 1, tj. resim na intervalech (, 1) a ( 1, ) Charakteristicky polynom λ 2 + 4λ + 4 ma dvojnasobny koren -2, tedy tvar homogenniho
4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?
A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,
NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8
Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl
Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský
Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/
Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5.
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, 6.2.204 60 minut 2 3 4 5 6 Jméno:................................... Součet Koeficient Body. [2 bodů] V následující tabulce do každého z šesti
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
Charakterizují kvantitativně vlastnosti předmětů a jevů.
Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost
Heuristiky UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY. Vypracovala:
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Heuristiky Vedoucí bakalářské práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
ENVIRONMENTÁLNÍ OPTIMALIZACE KOMŮRKOVÉ ŽELEZOBETONOVÉ DESKY
ENVIRONMENTÁLNÍ OPTIMALIZACE KOMŮRKOVÉ ŽELEZOBETONOVÉ DESKY Ctislav Fiala, Petr Hájek 1 Úvod Optimalizace v environmentálních souvislostech se na přelomu tisíciletí stává významným nástrojem v oblasti
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Znalostní technologie proč a jak?
Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ P. Chalupa, J. Novák Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Centrum aplikované kybernetiky Abstrakt Příspěvek se zabývá
Hledání optimální cesty v dopravní síti
Hledání optimální cesty v dopravní síti prezentace k diplomové práci autor DP: Bc. Rudolf Koraba vedoucí DP: doc. Ing. Rudolf Kampf, Ph.D. oponent DP: Ing. Juraj Čamaj, Ph.D. Vysoká škola technická a ekonomická
Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x
Numerické metody 6. května FJFI ČVUT v Praze
Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
3. Přednáška: Line search
Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum
Definice. Na množině R je dána relace ( R R), operace sčítání +, operace násobení a množina R obsahuje prvky 0 a 1 tak, že platí
1. Úvod 1.1. Výroky a metody důkazů Výrok je tvrzení, o kterém má smysl říci, že je pravdivé či ne. Vytváření nových výroků: Logické spojky & a, Implikace, Ekvivalence, Negace. Obecný kvatifikátor a existenční
7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
ČVUT FEL X36PAA - Problémy a algoritmy. 5. úloha - Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu
ČVUT FEL X36PAA - Problémy a algoritmy 5. úloha - Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu Jméno: Marek Handl Datum: 4. 2. 2009 Cvičení: Pondělí 9:00 Zadání Zvolte si heuristiku,
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka
Příklady použití tenkých vrstev Jaromír Křepelka Příklad 01 Spočtěte odrazivost prostého rozhraní dvou izotropních homogenních materiálů s indexy lomu n 0 = 1 a n 1 = 1,52 v závislosti na úhlu dopadu pro
PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods
CW057 Logistika (R) PŘEDNÁŠKA 03 Optimization methods Ing. Václav Venkrbec skupina obecných modelů slouží k nalezení nejlepšího řešení problémů a modelovaných reálií přináší řešení: prvky konečné / nekonečné
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )
Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)
Tématické celky { kontrolní otázky.
Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te
Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]
Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální
Návrhy bakalářských prací pro akademický rok 2019/2020
Návrhy bakalářských prací pro akademický rok 2019/2020 Téma č. 1 Kryogenní zpracování slinutých karbidů Ing. Vojtěch Průcha Téma č. 2 Porušování korozí pod napětím v prostředí nízkotlaké páry Ing. Jaromír
State Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node
State Space Search Po spuštění appletu se na pracovní ploše zobrazí stavový prostor první předpřipravené úlohy: - Zeleným kroužkem je označen počáteční stav úlohy, který nemůže být změněn. - Červeným kroužkem
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
České vysoké učení technické v Praze vyhlašuje 8. ročník celoškolské FREKTORYSOVY SOUTĚŽE. v aplikované matematice
FREKORYSOVY SOUĚŽE Fakulty jaderné a fyzikálně inženýrské ČVU, rojanova 13, Praha 2, 120 00. Kontaktní osoba (Fakulta dopravní - Ústav aplikované matematiky): RNDr. Olga Vraštilová vrastilova@fd.cvut.cz
HYBRIDNÍ NÁVRH DÍLŮ PRO ADITIVNÍ ZPŮSOB VÝROBY
HYBRIDNÍ NÁVRH DÍLŮ PRO ADITIVNÍ ZPŮSOB VÝROBY Ondřej Vaverka ÚSTAV KONSTRUOVÁNÍ Fakulta strojního inženýrství VUT v Brně Obhajoba projektu disertační práce, 23.4.2018 OBSAH MOTIVACE PRÁCE SHRNUTÍ SOUČASNÉHO
Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Počítačové simulace fyzikálních problému TASEP
Počítačové simulace fyzikálních problému TASEP Jakub Doležal 1, Jakub Kantner 2, Tomáš Zahradník 3 1 Gymnázium Špitálská Praha, 2 Gymnázium Českolipská Praha, 3 Gymnázium Oty Pavla Praha 1 janjansen@centrum.cz,
Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;
3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)
Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová
Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
ODR metody Runge-Kutta
ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Různé algoritmy mají různou složitost
/ 1 Různé algoritmy mají různou složitost 1/ 1 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená?? 2/ 1 Asymptotická složitost y y x x Každému algoritmu
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika
Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky
Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:
Petr Hasil
Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny
APLIKACE. Poznámky Otázky
APLIKACE Následující úlohy lze zhruba rozdělit na geometrické, algebraické a úlohy popisující různé stavy v některých oblastech jiných věd, např. fyziky nebo ekonomie. GEOMETRICKÉ ÚLOHY Mezi typické úlohy
ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová
PŘEDNÁŠKA 1 ÚVOD DO ROZHODOVÁNÍ Organizační Vyučující Ing., Ph.D. email: belinova@k620.fd.cvut.cz Doporučená literatura Dudorkin J. Operační výzkum. Požadavky zápočtu docházka zápočtový test (21.5.2015)
MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ
ESKÉ VYSOKÉ U ENÍ TECHNICKÉ V PRAZE Fakulta stavební MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ Studijní program: Stavební inženýrství Studijní obor: Fyzikální a materiálové inženýrství Vypracovala: Ing. Markéta
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
Úvod do mobilní robotiky AIL028
SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce
Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118
Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je
2.4.7 Omezenost funkcí, maximum a minimum
..7 Omezenost funkcí, maimum a minimum Předpoklady: 03, 0 Př. : Nakresli vedle sebe grafy funkcí: y =, y =, y3 =. Urči jejich obory hodnot. f - - - - - - - - - - - - H ( f ) = R H ( f ) = ; ) H ( f ) =
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému
2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Newtonova metoda. 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
JAK MĚNÍ ADITIVNÍ TECHNOLOGIE VÝUKU?
JAK MĚNÍ ADITIVNÍ TECHNOLOGIE VÝUKU? Martin Hartl, prof. Ing., Ph.D. ÚSTAV KONSTRUOVÁNÍ Fakulta strojního inženýrství VUT v Brně FSI VUT v Brně, 10. 5. 2018 Strojírenské fórum moderní výrobní technologie
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
4.3.2 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
4.2.5 Orientovaný úhel II
.2.5 Orientovaný úhel II Předpoklady: 20 Minulá hodina Orientovaný úhel rozlišujeme: směr otáčení (proti směru hodinových ručiček je kladný směr), počáteční rameno. Každý úhel má nekonečně mnoho velikostí:...,
Statistické metody v digitálním zpracování obrazu. Jindřich Soukup 3. února 2012
Statistické metody v digitálním zpracování obrazu Jindřich Soukup 3. února 2012 Osnova Úvod (Neparametrické) odhady hustoty pravděpodobnosti Bootstrap Použití logistické regresi při klasifikaci Odhady
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost