TGH04 - procházky po grafech
|
|
- Aneta Kubíčková
- před 8 lety
- Počet zobrazení:
Transkript
1 TGH04 - procházky po grafech Jan Březina Technical University of Liberec 24. března 2015
2 Theseus v labyrintu Theseus chce v labyrintu najít Mínotaura. K dispozici má Ariadninu nit a křídu. Jak má postupovat?
3 Theseus v labyrintu Theseus chce v labyrintu najít Mínotaura. K dispozici má Ariadninu nit a křídu. Jak má postupovat? Odvíjením a navíjením niti si pamatuje cestu od vchodu.
4 Theseus v labyrintu Theseus chce v labyrintu najít Mínotaura. K dispozici má Ariadninu nit a křídu. Jak má postupovat? Odvíjením a navíjením niti si pamatuje cestu od vchodu. Aby prošel všechny chodby bludiště, dělá křížky tam kde už byl.
5 Theseus v grafu Labyrint je obyčejný neorientovaný souvislý graf. Nit je zásobník vrcholů. Příchod do vrcholu - je tam nit. Odchod z vrcholu - křížek.
6 Procházení do hloubky - rekurzivní DFS - deep first search Průchod vrcholu: 1. označím vrchol za navštívený 2. pro všechny hrany vedoucí do nenevštíveného sousedního vrcholu projdu sousední vrchol 3. označím vrchol za uzavřený
7 Procházení do hloubky - zadání Vstup algoritmu: (orientovaný) graf G daný vrcholy V a seznamem sousedů Adj[v] každého vrcholu v. Výstup: d[v] - čas previzity, prvního navštívení vrcholu, zšedivění f[v] - čas postvizity, opuštění vrcholu, zčernání π[v] - předci ve lese průchodu G π
8 Procházení do hloubky - algoritmus 1 for u V do color[u] = W hite, π[u] = NULL 2 time = 1 3 for u V do 4 if color[u] == W hite then DFSVisit (u) 5 procedure DFSVisit (u) 6 color[u] = Gray, d[u] = time++ // previsit 7 for v Adj[u] do if color[v] == W hite then 8 π[v] = u 9 DFSVisit (v) color[u] = Black, f[u] = time++ // postvisit Barvy jsou pouze didaktické, potřeba je pouze odlišení bílých vrcholu a ty lze poznat vhodnou inicializací π[v], nebo d[v].
9 Procházení do hloubky - analýza Konečnost a korektnost Každou hranu projdeme právě jednou (řádek 6). Proč? Každý vrchol provede právě jednou previzit a jednou postvizit. Zobrazení π dává les obsahující všechny vrcholy. Složitost: řádky 1 3 O(V ) DFS-Visit volaná pro každý vrchol jednou cyklus 6 8 právě jednou pro každou hranu dohromady: O(V + E)
10 Závorkovací věta Theorem Pro libovolné dva vrcholy u a v jsou jajich itervaly otevřenosti (d[u], f[u]) a (d[v], f[v]) bud disjunktní, nebo do sebe vnořené, t.j. pokud d[u] < d[v] pak platí bud nebo d[u] < d[v] < f[v] < f[u] d[u] < f[u] < d[v] < f[v] vnořené disjunktní. Nemůže tedy nastat situace d[u] < d[v] < f[u] < f[v].
11 Důkaz Předpokládáme d[u] < d[v] pokud d[v] < f[u]: vrchol u je šedý při otevření v a zůstane šedý do uzavření v, tj. f[v] < f[u] máme tedy vnořené intervaly jelikož d[v] < f[v]. pokud d[v] > f[u]: vrchol u je černý při otevření v a tedy f[v] > d[v], tedy disjunktní intervaly.
12 Příklad
13 Klasifikace hran Pro orientovaný graf je hrana (u, v): stromová když je součástí vzniklého lesa, přišli jsme po ní do bílého vrcholu v zpětná pokud v je předkem u v lese G π přišli jsme po ní do šedivého vrcholu v dopředná pokud v je potomkem u v G π, ale ne bezprostředním; není stromová přišli jsme po ní do černého vrcholu a platí d[u] < d[v]; vnořené závorky d[u] < d[v] < f[v] < f[u] křížová všechny ostatní hrany přišli jsme po ní do černého vrcholu a platí d[u] > d[v]; disjunktní závorky d[v] < f[v] < d[u] < f[u] Pro neorientovaný... první typ který najdeme, tj nejsou křížové a dopředné.
14 Příklad
15 CPM - critical path method Motivační problém: dosažení složitého cíle (postavit dům, oblekaní dvouleté dcerky, napsání bakalářské práce) rozdělení na mnoho dílčích činností (vrcholy) určení minimálního času pro jejich splnění (ohodnocení vrcholů w[v]) určení jejich závislostí (orientované hrany), hrana vede z činnosti u do činnosti v, pokud v závisí na u Úloha: Jsou dány činnosti jejich doby a závislosti. Urči minimální čas potřebný k provedení všech činností. Pro každou činnost uči, kdy nejdříve může skončit a kdy nejpozději musí skončit, aby zůstal zachován celkový minimální čas. Najdi činnosti, pro které je rozdíl těchto časů nulový. Tyto tvoří kritickou cestu.
16 Gantt chart červeně: kritická cesta modře: nekritické činnosti černě: intervaly mezi minimálním a mximální časem dokončení
17 Grafová formulace Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující cykly. Obsahuje alespoň jeden (startovní) uzel bez vstupní hrany a alespoň jeden (cílový) uzel bez výstupní hrany. BÚNO jeden startovní a jeden cílový (spojení startovních/cílových uzlu do jednoho) Grafová úloha: Pro daný orientovaný acyklický graf G(V, E) s ohodnocenými vrcholy w(v) najdi nejmenší číslo T tak, aby délka každé cesty (součet jejích vrcholů) ze startovního do cílového uzlu byla menší než T. Najdi cestu jejíž délka je rovna T.
18 Topologické třídění - algoritmus Jednodušší varianta CPM: Pro orientovaný graf zjisti jestli je to DAG a setřid vrcholy tak, aby hrana vždy šla z vrcholu s nižším číslem do vrcholu s vyšším číslem. 1. DFS, urči f[u] pro všechny vrcholy 2. ukončené vrcholy přidávej na začátek seznamu (seznam vrcholů setříděný sestupně podle f[u]) implementace: nepotřebujeme π[] ani f[], d[] pouze kvůli barvení při postvizitě vrcholu u: order.push_front(u) nebo efektivněji: back_order.push_back(u)
19 Topologické třídění - důkaz správnosti Lemma Graf je DAG právě tehdy, pokud DFS nenajde žádnou zpětnou hranu. Theorem Pro každou hranu (u, v) platí f[u] > f[v], t.j. výsledný seznam bude dobře setříděný. Důkaz podle druhu hrany procházené hrany (u, v), u šedý: stromová a dopředná - (v bílý) v je potomkem u, t.j. f[u] > f[v] zpětná - nemůže nastat (lemma) křížová - disjunktní závorky d[v] < f[v] < d[u] < f[u]
20 CPM - algoritmus 1. Proved topologické setřídění bez ohledu na ohodnocení. 2. Nastav t start [:] = 0, minimální časy začátků činností. 3. Procházej výsledný seznam dopředu a pro každý vrchol u a jeho hranu (u, v) proved t start [v] = max(t start [v], t start [u] + w[u]), (maximum z délek cest které vedou do v). Pro cílový vrchol v end dostáváme t start (v end ) = T = t end (v end ).
21 CPM - algoritmus 1. Proved topologické setřídění bez ohledu na ohodnocení. 2. Nastav t start [:] = 0, minimální časy začátků činností. 3. Procházej výsledný seznam dopředu a pro každý vrchol u a jeho hranu (u, v) proved t start [v] = max(t start [v], t start [u] + w[u]), (maximum z délek cest které vedou do v). Pro cílový vrchol v end dostáváme t start (v end ) = T = t end (v end ). 4. Nastav t end [:] = T, maximální časy ukončení činností. 5. Procházej seznam pozpátku a počítej pro každý vrchol u a jeho hranu (u, v) t end [u] = min(t end [u], t end (v) w(u)), (kdy nejpozději musím skončit, abych neposunul následující činnosti) 6. Průběžně zaznamenej kritickou cestu tvořenou vrcholy, pro které t end (v) t start (v) = w(v).
22 Silně souvislé komponenty orientovaného grafu silně souvislá komponenta je maximální množina vrcholů, kde pro každou uspořádanou dvojici (u, v) existuje cesta kontrakce hrany Splynutí jejích vrcholů v grafu. Necht W V G a indukovaný podgraf G[W ] je souvislý, pak kontrakce množiny W, je graf G.W který vznikne kontrakcí všech hran v G[W ]. metagraf orientovaného grafu vznikne kontrakcí jeho SSK
23 Příklad
24 Hledání SSK Algoritmus (Kosarajův algortimus) pro hledání SSK pomocí DFS: 1. DFS(G) urči časy postvisit f[u] 2. sestav transponovaný graf G T (opačně orientovaný) 3. DFS(G T ) hlavní cyklus sestupně podle hodnot f[u] 4. každý strom opovídá jedné komponentě Alterantivní mírně rychlejší jednopruchodový, ale složitější : Tarjanův algoritmus
25 správnost algoritmu Značení: d(c) = min{d[u], u C}, f(c) = max{f[u], u C} Lemma (kĺıčové) Necht C a C jsou SSK a existuje hrana z C do C, pak f(c) > f(c ). (největší časy postvisit jejich uzlů v prvním DFS) Důkaz: Než opustím C nutně musím projít C. V druhém DFS začínám na komponentě s max. f(c), tj. na G T z ní nevede hrana po jejím průchodu jdu do hlavního cyklu
26 Eulerova cesta úloha: Pro neorientovaný graf zjistit, zda se dá nakreslit jedním uzavřeným tahem a najít takový tah. Lemma V neorientovaném grafu G existuje uzavřený sled obsahující každou hranu právě jednou právě tehdy, když stupně všech vrcholů jsou sudé: v V : deg(v) = 2n
27 algoritmus 1. Z vrcholu v procházej graf (jako do hloubky, ale bez návratů) dokud se nevrátíš do v, označuj použité hrany. 2. Najdi ve výsledném sledu vrchol v s neprojitou hranou. Pokud takový neexistuje skonči. 3. Proved bod 1) a vlož nový sled do výsledného sledu na místo vrcholu v. 4. Pokračuj na 2) Pokud se pro ukládání sledu použije spojový seznam, má algoritmus složitost O(V + E).
28 detaily
29 Procházení do šířky I Vstup: graf G daný vrcholy V a sousednostmi Adj[i], počáteční vrchol s Výstup: vzdálenosti d[i] od s, předci π[i] průchodového stromu 1 for u V do Color[u] = W hite 2 Color[s] = Gray; d[s] = 0; π[s] = NULL 3 ClearQueue ; EnQueue(s) 4 while u =DeQueue do 5 for v Adj[u] do 6 if Color[v] == W hite then 7 Color[v] = Gray; d[v] = d[u] + 1; π[v] = u 8 EnQueue(v) 9 Color[u] = Black
30 Procházení do šířky II Breadth First Search (BFS) pro orientované i neorientované grafy vygeneruje kořenový strom vrcholů dosažitelných z s (stejná komponenta) čas: V (vložení a vybrání z fronty)+každá hrana= Θ( V + E ) pamět : reprezentace grafu V + E d[v] je délka nejkratší cesty z s do v kostra souvislého grafu je jeho maximální indukovaný podstrom... zde strom daný předky π[v] Vnější inicializací a cyklem přes všechny bílé vrcholy detekování komponent
31 Příště třídění, pokročilé datové struktury časová a pamět ová složitost
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
VíceTGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
VíceHledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
VíceMatice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
VíceTGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení
VíceJan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
VícePROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
VíceTGH10 - Maximální toky
TGH10 - Maximální toky Jan Březina Technical University of Liberec 23. dubna 2013 - motivace Elektrická sít : Elektrická sít, jednotlivé vodiče mají různou kapacitu (max. proud). Jaký maximální proud může
VíceTGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
VíceTGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
VíceÚvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
VíceAlgoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
VíceTGH09 - Barvení grafů
TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít
VíceVzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
VíceOperační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
VíceJan Březina. Technical University of Liberec. 30. dubna 2013
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 30. dubna 2013 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
VíceJan Březina. Technical University of Liberec. 21. dubna 2015
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 21. dubna 2015 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
VíceZdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
VíceORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
VíceAlgoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
VíceGraf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
VíceObsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
VíceSTROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
VíceZáklady informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Více07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
VíceGrafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
VíceStromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
VíceZáklady informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
Vícebfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
VíceGrafové algoritmy. Aktualizováno: 29. listopadu / 228
Grafové algoritmy Zbyněk Křivka, Tomáš Masopust Aktualizováno: 29. listopadu 2017 1 / 228 Obsah Úvod Grafy Reprezentace grafů Prohledávání do šířky Prohledávání do hloubky Topologické uspořádání Silně
VíceModely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
VíceTGH12 - Problém za milion dolarů
TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
VíceŘešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
VíceDijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
VíceMetody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
Více3. Prohledávání grafů
3. Prohledávání grafů Prohledání do šířky Breadth-First Search BFS Jde o grafový algoritmus, který postupně prochází všechny vrcholy v dané komponentě souvislosti. Algoritmus nejprve projde všechny sousedy
Vícebfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
VíceProhledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
VíceStromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
VíceZákladní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
VíceZákladní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
VíceKostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
VíceAlgoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
VíceTeorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014
Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová
VíceNEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Více6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
VíceParalelní grafové algoritmy
Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u
VícePoužití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
VíceALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Vícebfs, dfs, fronta, zásobník
bfs, dfs, fronta, zásobník Petr Ryšavý 25. září 2018 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší cesty, plánování cest. Prohledávání
VíceVýhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
VíceTeorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66
Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný
Více10 Podgrafy, isomorfismus grafů
Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší
Více5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
VíceStromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Více4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
VíceH {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Více4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.
4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a
VíceKapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
Více4EK212 Kvantitativní management. 7.Řízení projektů
4EK212 Kvantitativní management 7.Řízení projektů 6.5 Řízení projektů Typická aplikace teorie grafů Projekt = soubor činností Příklady: Vývoj a uvedení nového výrobku Výstavba či rekonstrukce objektu Plán
VíceTEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
VíceDiskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
VíceSTROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy
STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou
Více= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
VíceÚloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
VíceBinární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
VíceTGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
VíceState Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node
State Space Search Po spuštění appletu se na pracovní ploše zobrazí stavový prostor první předpřipravené úlohy: - Zeleným kroužkem je označen počáteční stav úlohy, který nemůže být změněn. - Červeným kroužkem
VíceALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky
LG 04 Zásobník Fronta Operace nqueue, equeue, Front, mpty... yklická implementace fronty Průchod stromem do šířky Grafy průchod grafem do šířky průchod grafem do hloubky Ořezávání a heuristiky 1 Zásobník
VíceDrsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
VíceRekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
Více4EK311 Operační výzkum. 6. Řízení projektů
4EK311 Operační výzkum 6. Řízení projektů 6. Řízení projektů Typická aplikace teorie grafů Projekt = soubor činností Příklady: Vývoj a uvedení nového výrobku Výstavba či rekonstrukce objektu Plán výrobního
VíceTGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
VíceVLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
Více10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
Více1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
VíceUkážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,
VíceČasová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Více4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
VíceIB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
VíceAlgoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
VícePředmět: Algoritmizace praktické aplikace
Předmět: Algoritmizace praktické aplikace Vytvořil: Roman Vostrý Zadání: Vytvoření funkcí na stromech (reprezentace stromu haldou). Zadané funkce: 1. Počet vrcholů 2. Počet listů 3. Součet 4. Hloubka 5.
VíceInformatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
VíceTeorie grafů Jirka Fink
Teorie grafů Jirka Fink Nejprve malý množinový úvod Definice. Množinu {Y; Y X} všech podmnožin množiny X nazýváme potenční množinoumnožiny Xaznačíme2 X. Definice. Množinu {Y; Y X, Y =n}všech n-prvkovýchpodmnožinmnožiny
VícePřijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
VíceDynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
VíceDefinice 1 eulerovský Definice 2 poloeulerovský
Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá
VíceMartin Milata, <256615@mail.muni.cz> 27.11.2007. Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už je od
IB000 Lámání čokolády Martin Milata, 27.11.2007 1 Čokoláda s alespoň jedním sudým rozměrem Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
VíceGRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
VíceZáklady umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
VíceProblém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.
Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
VíceCílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž
Zadání příkladů pro semestrální práci 9 Cílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž člověk nejlépe pochopí až pokud jej sám implementuje,
VíceJarníkův algoritmus. Obsah. Popis
1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného
Více