Jana Musilová ROTACE V PRVNÍM AXIOMU Rotation in the First Axiom
|
|
- Romana Říhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Jana Musilová ROTACE V PRVNÍM AXIOMU Rotation in the First Axiom The today already proved fact that Newton himself included the possibility of uniform rotation in his first axiom, gives a negative answer to the frequently asked question whether the first axiom is a consequence of the second one. A detailed analysis of Newton s original formulation discloses additional questions that, when asked and answered from the point of view of both possible interpretations corresponding to "Newtonian period" on the one hand, and the contemporary era on the other, can be fruitful for the development of thinking in physical terms for the students in Bachelor s degree basic physics course. In the context of physics education, this paper deals with the following questions: What is or should be the meaning of the following words in the first axiom: "... in statu suo quiescendi vel movendi uniformiter in directum"? Is Newton s mechanics first axiom, in the interpretation admitting rotation, a consequence of both the second and the third ones? Is the first axiom a consequence of both the second and third ones from the contemporary point of view, and what could be its corresponding reformulation? MUSILOVÁ, Jana. Rotace v prvním axiomu. In: DUB, Petr a Jana MUSILOVÁ. Ernst Mach Fyzika Filosofie Vzdělávání. 1. vyd. Brno: Masarykova univerzita, 2010, s ISBN DOI: /CZ.MUNI.M
2 . Rotace v prvním axiomu Jana Musilová Úvod Charakteristickým rysem fyzikálního vzdělávání, ať již na úrovni gymnaziální či univerzitní, je skutečnost, že vstupní disciplínou kurzů obecné fyziky je takřka bez výjimky klasická (newtonovská) mechanika. Zdůvodnění této volby především snadností a názorností mechaniky a její přístupností smyslovému vnímání patří k základním omylům ve fyzikálním vzdělávání. Zkušenosti naopak ukazují, že pochopení principů newtonovské mechaniky Newtonových zákonů, a zdánlivě paradoxně především prvního z nich, je pro studenty značně obtížné. Tuto skutečnost si často neuvědomují nejen sami studenti, ale i jejich učitelé. Podrobný rozbor Newtonových zákonů, včetně úvah týkajících se historických aspektů, je pro rozvoj fyzikálního myšlení studentů přínosem. Z tohoto hlediska se jeví nejzajímavější první Newtonův zákon, tzv. první axiom, studentům nejbližší pod názvem zákon setrvačnosti. Učebnice fyziky na všech úrovních od základních až po univerzitní, zejména ty současné, formulují první axiom sice pro těleso, hovoří však pouze o přímočarém rovnoměrném pohybu. Ignorují tak dnes již nesporně prokázanou skutečnost, že možnost rovnoměrné rotace byla do prvního axiomu explicitně zahrnuta samotným Newtonem (viz např. studie [1], [2], [3] a originální formulaci v Newtonových Principiích [4]): Lex I. Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare. Zákon I. Každé těleso setrvává ve svém stavu klidu nebo rovnoměrného pohybu v daném směru, ledaže je vtištěnými silami nuceno svůj stav změnit. (Překlad viz např. v[3].) Důsledný rozbor této formulace prvního axiomu, včetně diskuse týkající se historických aspektů, je důležitý nejen pro pochopení základních zákonitostí mechaniky, ale především z hlediska rozvoje fyzikálního myšlení. DOI: /CZ.MUNI.M
3 Je první axiom nezávislý? Standardní otázka kladená v diskusích o závislosti souboru Newtonových axiomů, zda první axiom je důsledkem druhého, je jednoduše zodpovězena: První axiom zahrnující rovnoměrnou rotaci ze samotného druhého axiomu nevyplývá. S uvážením axiomu třetího však již ano, a to za přirozeného předpokladu centrálních sil vzájemného působení mezi jednotlivými částicemi zkoumaného tělesa. Cesta k tomuto zjištění však není pro studenty zcela jednoduchá. Vznikají totiž překážky, jejichž překonání vyžaduje důslednost v interpretaci Newtonovy formulace prvního axiomu. První axiom a impulzové věty Se současnými matematickými prostředky snadno odvodíme první a druhou impulzovou větu pro časovou derivaci celkové hybnosti p a časovou derivaci celkového momentu hybnosti L libovolné soustavy částic, tedy tělesa: d p dt = F ext, d L dt = M ext. Pravé strany těchto vztahů představují výslednici všech vnějších sil a výsledný moment všech vnějších sil působících na těleso. V případě, že vnější (vtištěné) síly na těleso nepůsobí, jedná se tedy o tzv. izolovanou soustavu, zachovává se jak celková hybnost (motus), tak celkový moment hybnosti tělesa. Při obecně nepřípustném zjednodušení by tento výsledek mohl být interpretován tak, že zákon zachování hybnosti izolované soustavy představuje rovnoměrnou translaci a zákon zachování momentu hybnosti rovnoměrnou rotaci. V prvém případě lze interpretaci snadno zpřesnit zavedením středu hmotnosti tělesa, rovnoměrná translace, tj. rovnoměrný přímočarý pohyb, se pak týká právě tohoto bodu. V případě rotace je však situace komplikovanější. Zákon zachování momentu hybnosti a rovnoměrná rotace Pro představu souvislosti zákona zachování momentu hybnosti a rovnoměrnosti rotace si pro jednoduchost představme experiment s tuhým tělesem na obr. 1. Tuhé těleso může rotovat kolem osy, která je volně pohyblivá v kloubu O, přičemž tření v ložisku je zanedbatelné a předpokládáme, že před experimentem bylo těleso ve statické rovnováze. Těleso roztočíme. Pro těleso s hmotností symetricky rozloženou vůči rotační ose (obr. 1a) platí mezi momentem hybnosti a úhlovou rychlostí vztah prosté úměry L = J Ω,kdeJ je moment setrvačnosti tělesa vzhledem k ose. V souladu se zákonem zachování momentu hybnosti je konstantní úhlová rychlost tělesa, těleso koná rovnoměrný pohyb v daném směru, v tomto případě rovnoměrně rotuje. Směr rotační osy bude pevný, bez působení vtištěných sil (s výjimkou tíhové síly a tlakové síly podložky, které se kompenzují). U tělesa s nesymetrickým rozložením hmotnosti (obr. 1b) 244 Jana Musilová
4 je vztah mezi momentem hybnosti a úhlovou rychlostí rovněž lineární, uplatní se však tenzorový charakter momentu setrvačnosti, L j = 3 k=1 J jkω k. V takovém případě se bez působení vtištěných sil opět zachovává moment hybnosti, obecně však nikoli úhlová rychlost. Pro docílení rovnoměrné rotace je třeba pomocí dodatečného silového působení udržet rotační osu pevnou. V takovém případě je jednoduchou úměrou vyjádřen vztah mezi průmětem momentu hybnosti do osy rotace a úhlovou rychlostí, L = JΩ. L = J L=J L O (a) O (b) Obrázek 1: Rotace tuhého tělesa kolem pevné osy. Odporuje výsledek předchozího pokusu rotační formulaci prvního axiomu? Rotace tuhého tělesa s nesymetrickým rozložením hmotnosti vůči rotační ose není v případě absence vtištěných sil rovnoměrná, nejde tedy o stav rovnoměrného pohybu v daném směru. Důslednost při čtení formulace prvního axiomu dává vysvětlení. Pro ně je důležitá první část formulace. Aby těleso mohlo setrvávat ve svém stavu klidu nebo rovnoměrného pohybu v daném směru, muselo by se v takovém stavu nacházet. To ovšem není případ na obr. 1b. Rovnoměrná rotace a inherentní síly Při běžné výuce zůstává nepovšimnuta tato Newtonova úvaha, objevující se v rukopise jenž předcházel prvnímu vydání [4]. Uvedeme ji jen v doslovném českém překladu podle [3]: Inherentní silou setrvává každé těleso ve svém stavu klidu nebo rovnoměrného pohybu po přímce, pokud není interakčními silami přinuceno onen stav měnit. Tento rovnoměrný pohyb je však dvojí, postupný po přímce, kterou těleso opisuje svým rovnoměrně se pohybujícím středem, a rotační kolem určité osy tělesa, která je buď v klidu, nebo pohybujíc se rovnoměrně zůstává stále rovnoběžná se svými předchozími polohami. Nezabývejme se skutečností, že z druhé věty této formulace je explicitně jasné, co měl Newton na mysli slovním spojením motus uniformis in directum, a všimněme si věty úvodní. Co Newton myslel inherentní silou, z jeho díla nevyčteme. Z dnešního pohledu Rotace v prvním axiomu 245
5 se nabízí interpretace související s existencí hlavních os tenzoru momentu setrvačnosti (viz také [5]), tvořících soustavu souřadnic, v níž je tenzor momentu setrvačnosti diagonální. Za předpokladu, že rotační osou bude jedna z těchto os, má lineární vztah mezi momentem hybnosti a úhlovou rychlostí zjednodušený tvar, L k = J k Ω k, k =1, 2, 3. Při zachování momentu hybnosti je tedy konstantní i úhlová rychlost tělesa. Hlavní osy tenzoru momentu setrvačnosti tělesa jsou ovšem bytostnou vlastností tělesa závislou pouze na rozložení jeho hmotnosti. Význam prvního axiomu z pohledu dnešní klasické mechaniky Na základě předchozích úvah se první axiom jeví skutečně jako nadbytečný. Má tedy smysl jej v současných kurzech obecné fyziky uvádět jinak než jako historickou zajímavost? Odpověď je nasnadě: Newtonovy úvahy vycházely z existence absolutního prostoru a s ním spojených preferovaných vztažných soustav, vzhledem k nimž byl veškerý pohyb popisován a vzhledem k nimž byly také (implicitně) formulovány pohybové axiomy. Vztažné soustavy preferované v tomto smyslu však neexistují. Jedinou preferenční vlastností vztažné soustavy z fyzikálního hlediska je její inerciálnost. Nejbezpečnější způsob, jak definovat inerciální vztažné soustavy na samém počátku výuky v základním kurzu klasické mechaniky, je zůstat na pevné půdě Newtonovy mechaniky a nepouštět se hned do úvah o homogenitě času a prostoru a izotropnosti prostoru. Prvního axiomu bez uvážení jeho rotační části pak lze dobře použít k vybudování pojmu inerciální soustavy. Prvním krokem je kvalitativní zavedení pojmu volné (izolované) částice, resp. hmotného bodu jako částice oproštěné od vlivu okolních objektů. První pohybový axiom (i když jej již nelze bez značné nepřesnosti nazvat Newtonovým) lze pak formulovat například jako tvrzení, že vzájemný pohyb volných částic je rovnoměrný přímočarý. S volnými částicemi pak lze spojit preferované vztažné soustavy. Nejpřirozenějším příkladem inerciální soustavy je soustava Galileiova, jejíž počátek je spojen se Sluncem (přesněji těžištěm sluneční soustavy) a osy jsou namířeny ke stálicím. Přechod k pohodlnější vztažné soustavě s asociovanou kartézskou soustavou souřadnic je již otázkou jednoduché algebry. Závěr Argumenty ve prospěch názoru, že má smysl věnovat se ve výuce klasické mechaniky základního univerzitního kurzu obecné fyziky důkladnějšímu rozboru Newtonových axiomů v jejich originální formulaci a studentům tak usnadnit nejen jejich hlubší pochopení, ale i rozvíjení fyzikálního myšlení, dává samo Newtonovo dílo. Ukázkou toho jsou úvahy týkající se prvního axiomu. Navíc, ačkoli je první axiom v Newtonově chápání popisu pohybu důsledkem zbývajících dvou axiomů, může být z dnešního pohledu předkládán jako nezávislý princip deklarující existenci inerciálních vztažných soustav. 246 Jana Musilová
6 Seznam odkazů [1] M. Černohorský: Problém interpretace Newtonovy formulace prvního pohybového zákona. Folia facultatis scientiarum naturalium Universitatis Purkynianae brunensis 20 (1979), Physica 28, opus 3, Univerzita J. E. Purkyně, Brno 1979, [2] M. Černohorský: Devět Newtonových formulací prvního pohybového zákona: V: Pocta Newtonovi (Ed.: M. Černohorský, M. Fojtíková). Odborná skupina Pedagogická fyzika FVS JČSMF, Brno 1986, [3] M. Černohorský: Newtonova translačně-rotační formulace prvního zákona pohybu. Následující stať. [4] I. Newton: Principia Mathematica Philosophiae Naturalis. Editio ultima. Sumptibus Societatis, Amstaelodami [5] J. Langer: Martin Černohorský a setrvačníky, od Isaaca k Ernstovi. Čs. čas. fyz. 58 (2008), 2, Rotace v prvním axiomu 247
Dynamika hmotného bodu
Dynamika hmotného bodu Dynamika Dynamika odvozeno odřeckéhoδύναμις síla Část mechaniky, která se zabývá příčinami změny pohybového stavu tělesa Je založena na třech Newtonových zákonech pohybu Dynamika
V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony.
Dynamika I Kinematika se zabývala popisem pohybu, ale ne jeho příčinou. Například o vrzích jsme řekli, že zrychlení je konstantní a směřuje svisle dolů, ale neřekli jsme proč. Dynamika se zabývá příčinami
Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools
Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools When explaining the inertial forces to secondary school students, one can expect to be asked
Strukturní prvky - pokračování
Strukturní prvky - pokračování Fyzický strukturní prvky jsou reálné, mají měřitelnou geometrii a orientaci. Geometrické strukturní prvky jsou myšlené plochy a čáry, jsou neviditelné, ale identifikovatelné
Martin Černohorský NEWTONOVA TRANSLAČNĚ-ROTAČNI FORMULACE PRVNÍHO ZÁKONA POHYBU Newton s Translational-Rotation Formulation of the First Law of Motion
Martin Černohorský NEWTONOVA TRANSLAČNĚ-ROTAČNI FORMULACE PRVNÍHO ZÁKONA POHYBU Newton s Translational-Rotation Formulation of the First Law of Motion The generally accepted translation of Newton s first
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_09_FY_B
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 9. 11. 2012 Číslo DUM: VY_32_INOVACE_09_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
Dynamika soustav hmotných bodů
Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Martin Černohorský Newtonova formulace prvního pohybového zákona Pokroky matematiky, fyziky a astronomie, Vol. 20 (1975), No. 6, 344--349 Persistent URL: http://dml.cz/dmlcz/137923
Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem Slunce kolem barycentra
Úvaha nad slunečními extrémy - 2 A consideration about solar extremes 2 Jiří Čech Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem
12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
2. Dynamika hmotného bodu
. Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
POZNÁVÁNÍ TECHNICKÝCH PAMÁTEK Z HLEDISKA MECHANICKÝCH JEVŮ
Abstrakt POZNÁVÁNÍ TECHNICKÝCH PAMÁTEK Z HLEDISKA MECHANICKÝCH JEVŮ Technical knowledge of monuments in terms of mechanical phenomena Prof. RNDr. Vilém Mádr, CSc., Bc. Petr Zezulka, Bc. Jana Skřivánková
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Ukázky z Newtonových Principií
Ukázky z Newtonových Principií JINDŘIŠKA SVOBODOVÁ Katedra fyziky, chemie a odborného vzdělávání, Masarykova univerzita, Brno Abstrakt Dílo "Matematické principy přírodní filozofie", zkráceně Principia,
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
5. Mechanika tuhého tělesa
5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:
Projekt Efektivní Učení Reforou oblastí gynaziálního vzdělávání je spolufinancován Evropský sociální fonde a státní rozpočte České republiky. MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojy: Setrvačnost:
Mechanika úvodní přednáška
Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je
6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy
Dynamika hmotného bodu
Dynamika hmotného bodu (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Newtonovy zákony První Newtonův zákon Druhý Newtonův zákon Třetí Newtonův zákon Zákon zachování
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_87 Jméno autora: Mgr. Eva Mohylová Třída/ročník:
Studentovo minimum GNB Dynamika hmotného bodu. Dynamika slovo odvozené z řeckého dynamis = síla studuje příčiny změny pohybu tělesa, tj.
1 Základní pojmy Dynamika slovo odvozené z řeckého dynamis = síla studuje příčiny změny pohybu tělesa, tj. síly zákony klasické dynamiky platí pro tělesa pohybující se rychlostmi malými ve srovnání s rychlostí
F - Mechanika tuhého tělesa
F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem
2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF
Dynamika systémů s proměnnou hmotností Buquoyovy úlohy Práce a energie v řešení Buquoyových úloh Mnohočásticové modely Problém rakety Pružné a nepružné srážky Fundemtální zákon vs. kinematická podmínka
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt
F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD
F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu
I. MECHANIKA 2. Dynamika hmotného bodu
I. MECHANIKA. Dynamika hmotného bodu 1 Obsah Pojem dynamika, síla, superpozice sil. Druhy silových interakcí. Newtonovy zákony formulace, setrvačnost, hybnost, zobecnění druhého zákona, moment síly, moment
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
Počty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
03 - síla. Síla. Jak se budou chovat vozíky? Na obrázku jsou síly znázorněny tak, že 10 mm odpovídá 100 N. Určete velikosti těchto sil.
1 03 - síla Síla Tato veličina se značí F a její jednotkou je 1 newton = 1 N. Často se zakresluje jako šipkou (vektorem), kde její délka odpovídá velikosti síly, začátek jejímu působišti a šipka udává
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
Pohyby HB v některých význačných silových polích
Pohyby HB v některých význačných silových polích Pohyby HB Gravitační pole Gravitační pole v blízkém okolí Země tíhové pole Pohyb v gravitačním silovém poli Keplerova úloha (podrobné řešení na semináři)
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Pokyny k řešení didaktického testu - Dynamika
Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se
ELEKTRICKÉ STROJE - POHONY
ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V
ČÁST III K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V 10. Pohyb hmotného bodu 11. Dynamika hmotného bodu 12. Dynamika systému hmotných bodů 13. Statistická mechanika 14.
Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:
ÚVOD DO TERMODYNAMIKY
ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních
Nesprávnost dosavadních překladů Newtonova prvního zákona pohybu. Kuriozita Machova překladu.
Odborná skupina Organizace výzkumu České fyzikální společnosti Jednoty českých matematiků a fyziků AF-LXVIII Praha, Vídeň a Brno Ernstu Machovi (18.2.1838 19.2.1916) 14.1.2016 Nesprávnost dosavadních překladů
MECHANIKA. Mechanický pohyb změna vzájemných poloh těles (přemísťování těles) DYNAMIKA příčiny pohybu speciální případ STATIKA rovnováhy
16.0.017, str. 1 MECHANIKA Mechanický pohyb změna vzájemných poloh těles (přemísťování těles) KINEMATIKA geometrie pohybu DYNAMIKA příčiny pohybu speciální případ STATIKA rovnováhy Různá skupenství látek
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:
1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.
1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
Theory Česky (Czech Republic)
Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce
Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika
1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská
VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková. Mechanika. Mechanický pohyb. Fyzika 2. ročník, učební obory. Bez příloh. Identifikační údaje školy
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf,
JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt
SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky Základní pojmy Pojem hmota, základní formy existence (atributy) hmoty Čím se liší pojmy hmota a hmotnost Axiomy statiky Mechanický
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Dynamika vázaných soustav těles
Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro
Dynamika rotačního pohybu
Číslo úlohy: 11 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 2. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Dynamika rotačního
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro
Momenty setrvačnosti a deviační momenty
Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
f x = f y j i y j x i y = f(x), y = f(y),
Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 5: Měření kinematiky a dynamiky pohybu osoby v prostoru pomocí ultrazvukového radaru Ing. Patrik Kutílek, Ph.., Ing.
Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
Úvod. 1 Převody jednotek
Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
Když se sejde více částic aneb Mechanika tuhého tělesa
Nástraha šestá Když se sejde více částic aneb Mechanika tuhého tělesa Po odhalení nejtypičtějších Nástrah, které se skrývají v oblasti mechaniky hmotného bodu, přichází čas položit si obecnější otázku:
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.20 Autor Mgr. Jiří Neuman Vytvořeno Základy relativistické dynamiky
Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.20 Autor Mgr. Jiří Neuman Vytvořeno 12.3.2013 Předmět, ročník Fyzika, 1. ročník Tematický celek Fyzika 1. Téma Druh učebního materiálu Prezentace Anotace
DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL HLAVNĚ ABY SE NEDOTKL ZEMĚ
46 DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL HLAVNĚ ABY SE NEDOTKL ZEMĚ HLAVNĚ ABY SE NEDOTKL ZEMĚ 47 pohyb, rotace, valivý pohyb, translační kinetická energie, rotační kinetická energie, tření
Pohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
MECHANIKA. Mechanický pohyb změna vzájemných poloh těles (přemísťování těles) KINEMATIKA geometrie pohybu
Mechanika 4/04/018, str. 1 MECHANIKA Mechanický pohyb změna vzájemných poloh těles (přemísťování těles) KINEMATIKA geometrie pohybu DYNAMIKA příčiny pohybu speciální případ STATIKA rovnováhy Různá skupenství
Newtonovy pohybové zákony
Newtonovy pohybové zákony Zákon setrvačnosti = 1. Newtonův pohybový zákon (1. Npz) Zákon setrvačnosti: Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, jestliže na něj nepůsobí jiná tělesa (nebo