VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
|
|
- Antonie Pospíšilová
- před 8 lety
- Počet zobrazení:
Transkript
1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
2 2
3 OBSAH 1 Úvod Cíle Požadované znalosti Doba potřebná ke studiu Klíčová slova Mechanika soustavy hmotných bodů Soustava hmotných bodu První impulsová věta Druhá impulsová věta Autotest Klíč Korespondenční úkol Závěr Mechanika tuhého tělesa Těžiště tuhého tělesa Síly v tuhém tělese Pohybové rovnice tuhého tělesa Moment setrvačnosti tělesa Kinetická energie tuhého tělesa, práce a výkon Autotest Klíč Korespondeční úkol Závěr Studijní prameny Seznam použité literatury Seznam doplňkové studijní literatury
4
5 1 Úvod 1.1 Cíle Cílem látky uvedené v tomto modulu je prohloubení znalostí v oblasti mechaniky tuhých těles. Jedná se zejména o problematiku soustavy hmotných bodů, impulsové věty, pohybové rovnice tuhého tělesa, moment setrvačnosti, kinetickou energii, práci a výkon při otáčení tuhého tělesa. 1.2 Požadované znalosti Předpokládají se znalosti látky fyziky z gymnázia, a to jak rozsahem pojmů, tak i řazením jednotlivých částí, z matematiky se předpokládá zvládání derivací a integrálního počtu. 1.3 Doba potřebná ke studiu Modul je rozdělen do dvou základních kapitol. Celková doba na nastudování modulu tak představuje 28 hodin. 1.4 Klíčová slova Soustava hmotných bodů, vnitřní a vnější síly, první impulsová věta, druhá impulsová věta, moment setrvačnosti, kinetická energie, práce a výkon
6 2 Mechanika soustavy hmotných bodů 2.1 Soustava hmotných bodů Text je uveden na str učebního textu [2]. Příklad 2.1 Viz příklad 3.1 na str. 12 UT [2]. Úkol 2.1 Určete polohu těžiště soustavy složené ze čtyř malých kuliček o hmotnosti 10g, 20g, 40g a 80g, které leží na přímce v uvedeném pořadí ve vzájemné vzdálenosti 5 cm. [11,33 cm od první kuličky]. Kontrolní otázky 1. Kolik stupňů volnosti má soustava tří volných hmotných bodů pohybujících se v rovině? 2. Zdůvodněte, proč je součet vnitřních sil v soustavě těles nulový. 3. Zdůvodněte, proč je součet momentů všech vnitřních sil k libovolnému bodu nulový. 4. Jaký vztah platí mezi hmotným středem soustavy hmotných bodů a těžištěm? 2.2 První impulsová věta Text je uveden na str UT [2]. Příklad 2.2 Viz příklad 3.2 na str. 14 UT [2]. Úkol 2.2 Do jaké výšky se vychýlí z rovnovážné polohy balistické kyvadlo o hmotnosti 10 kg, jestliže v něm uvízne střela o hmotnosti 100 g letící rychlostí 200 m.s -1? [0,2m]. 6
7 Kontrolní otázky V jakém vztahu jsou první impulsová věta a zákon zachování celkové hybnosti soustavy? 2.3 Druhá impulsová věta Text je uveden na str UT [2]. Kontrolní otázky Viz otázky 1-5 na str. 16 UT [2]. 2.4 Autotest 1. Jak je charakterizováno tuhé těleso? 2. Co je počet stupňů volnosti? 3. Jak vypočteme celkovou hmotnost soustavy hmotných bodů (SHB)? 4. Jak získáme celkovou hybnost SHB? 5. Co je vnější síla? 6. Co jsou vnitřní síly SHB? 7. Jaká je výslednice vnitřních sil SHB? 8. Jaký je výsledný moment všech vnitřních sil SHB? 9. Jaké vlastnosti má hmotný střed? 10. Jak zní první impulsová věta? 11. Co je izolovaná soustava? 12. Jaká je celková hybnost izolované SHB? 13. Jaká je celková mechanická energie izolované SHB? 14. Jaké je znění druhé impulsové věty? 15. Jaký je celkový moment hybnosti izolované soustavy? 7
8 2.5 Klíč 1. Tuhé těleso je charakterizováno časově neproměnnými vzájemnými vzdálenostmi všech hmotných bodů. 2. Počet stupňů volnosti je počet nezávislých souřadnic, nutných k jednoznačnému určení polohy hmotného bodu. 3. Celková hmotnost SHB je součet hmotností jednotlivých bodů, m = n m k k = Celková hybnost SHB je vektorovým součtem hybností všech hmotných bodů, p = n r r. p k k = 1 5. Okolní tělesa působí na soustavu hmotných bodů vnějšími silami. 6. Vnitřní síly jsou síly, kterými na sebe působí jednotlivé hmotné body soustavy. 7. Výslednice vnitřních sil SHB je rovna nule. 8. Výsledný moment všech vnitřních sil SHB je roven nule 9. Je v něm soustředěna celková hmotnost soustavy, pohybuje se tak, jako by na něj působila výslednice vnějších sil a jeho hybnost je rovna celkové hybnosti soustavy. 10. Časová změna celkové hybnosti soustavy hmotných bodů je rovna výsledné vnější síle. 11. Soustava, na kterou nepůsobí vnější síly se nazývá izolovaná soustava. 12. Celková hybnost izolované soustavy SHB je konstantní. 13. Celková mechanická energie izolované SHB je konstantní. 14. Časová změna momentu hybnosti SHB vzhledem k libovolnému pevnému bodu je rovna výslednému momentu všech vnějších sil vzhledem k tomuto bodu. 15. Celkový moment hybnosti izolované soustavy vzhledem k libovolnému pevnému bodu je konstantní. 2.6 Korespondenční úkol 1. Odpovězte písemně na otázky 1 6 na str. 12; 1-5 na str. 16 UT [2] 2. Vypracujte řešení následujícího příkladu: 8
9 Určete souřadnice těžiště soustavy čtyř hmotných bodů o hmotnostech 5g, 10g, 15g, 20g, jsou-li umístěny v rovině xy v daném pořadí v bodech [2; 6] m, [6; 4] m, [4; 0] m, [-2; -2] m, [1,8 m; 0,6 m]. 3. Vypracujte řešení úkolu 2.2 v podkapitole Závěr Soustavou hmotných bodů rozumíme množinu dvou a více hmotných bodů, kterou vyšetřujeme jako celek. Hmotné body v soustavě mezi sebou působí vnitřními silami, tělesa mimo soustavu vyvozují vnější síly. Soustavu můžeme nahradit hmotným bodem s celkovou hmotností soustavy, umístěným v hmotném středu soustavy. Pohyb soustavy je popsán první a druhou impulsovou větou. 3 Mechanika tuhého tělesa 3.1 Těžiště tuhého tělesa Text je uveden na str UT [2]. Příklad 3.1 Viz příklad 3.2 na str UT [2]. Úkol 3.1 Vypočtěte souřadnice těžiště ocelového drátu ve tvaru poloviny kružnice o poloměru R a hmotnosti m. 2R π Kontrolní otázky 1. Kolik stupňů volnosti má tuhé těleso nepodrobené vazbám? 2. Kolik stupňů volnosti má těleso, které rotuje kolem pevné osy? 3. Uveďte obecné vztahy pro souřadnice těžiště homogenního tělesa. 9
10 3.2 Síly v tuhém tělese Text je uveden na str UT [2]. Příklad 3.2 Viz příklad 3.3 na str. 26 UT [2]. Příklad 3.3 Viz příklad 3.4 na str. 26 UT [2]. Kontrolní otázky 1. Jakým způsobem lze nalézt nositelku výslednice dvou rovnoběžných sil působících na tuhé těleso? 2. Proč nemůžeme posunout rovnoběžně sílu v tuhém tělese mimo její nositelku? 3. Moment dvojice sil můžeme nahradit jakoukoliv jinou dvojicí, která má stejný vektor D r. V jaké rovině bude ležet tato nová dvojice? 4. Jaké jsou podmínky rovnováhy tuhého tělesa? 3.3 Pohybové rovnice tuhého tělesa Text je uveden na str UT [2]. Kontrolní otázky Viz otázka 1-5 na str. 30 UT [2]. 3.4 Moment setrvačnosti tělesa Text je uveden na str UT [2]. 10
11 Příklad 3.4 Viz příklad 3.5 na str. 35 UT [2]. Příklad 3.5 Viz příklad 3.6 na str UT [2]. Příklad 3.6 Viz příklad 3.7 na str. 36 UT [2]. Úkol 3.2 Brusný kotouč o poloměru 18cm a tloušťce 3cm je zhotoven z materiálu o hustotě 3,8 g.cm -3. Vypočtěte jeho moment setrvačnosti a) k ose rotace, b) k ose splývající s některou povrchovou přímkou. [0,188 kg.m 2 ; 0,564 kg.m 2 ] Kontrolní otázky 1. Jak se pohybuje hmotný střed tělesa, na které působí vnější síly? 2. Jak se pohybuje hmotný střed tělesa, je-li vnější působící síla nulová? 3. Jaký je charakteristický rys posuvného pohybu? 4. Jaký je rozdíl mezi pohybovou rovnicí tuhého tělesa při posuvném a otáčivém pohybu? 5. Na čem závisí časová změna momentu hybnosti tuhého tělesa? 6. Kdy se zachovává moment hybnosti tuhého tělesa? 3.5 Kinetická energie tuhého tělesa, práce a výkon Text je uveden na str UT [2]. Příklad 3.7 Viz příklad 3.8 na str. 39 UT [2]. Příklad 3.8 Viz příklad 3.9 na str UT [2]. 11
12 Příklad 3.9 Viz příklad 3.11 na str. 42 UT [2]. Úkol 3.3 Vypočtěte celkovou kinetickou energii válce o hmotnosti 100 kg, který se valí po vodorovné rovině rychlostí 0,5 m.s -1. [18,75 J]. Kontrolní otázky 1. Vysvětlete pojem valivý pohyb tělesa. Jak souvisí s výpočtem kinetické energie? 2. V jakém poměru jsou kinetická energie posuvného a otáčivého pohybu při valení válce? 3. Jaká je souvislost práce vnější síly působící na těleso při otáčení kolem pevné osy a momentu síly k této ose? 3.6 Autotest 1. Jak je definována hustota tuhého tělesa? 2. Jak vypočteme pomocí hustoty celkovou hmotnost tuhého tělesa (TT)? 3. Kolik stupňů volnosti má tuhé těleso v prostoru? 4. Jak je definována dvojice sil? 5. Jak vypočteme moment dvojice sil? 6. Na čem závisí rovnováha tělesa? 7. Z jakých pohybů se skládá obecný pohyb tělesa? 8. Jak je charakterizován posuvný pohyb? 9. Jak je charakterizován otáčivý pohyb? 10. Jak je definován moment setrvačnosti tělesa? 11. Jaký je fyzikální rozměr veličiny momentu setrvačnosti? 12. Co umožňuje vypočítat Steinerova věta? 13. Uveďte vztah pro Steinerovu větu. 14. Uveďte vztah pro Königovu větu. 15. Uveďte vztah pro práci při otáčení tuhého tělesa okolo pevné osy. 16. Uveďte vztah pro výkon při otáčení tuhého tělesa. 12
13 3.7 Klíč dm 1. Hustotu tuhého tělesa můžeme získat z výrazu ρ =. dv 2. Celkovou hmotnost TT vypočteme: m = ρ dv. 3. TT v prostoru má 6 stupňů volnosti. 4. Dvojice sil jsou dvě rovnoběžné síly, stejně veliké, stejného směru, opačných orientací, které neleží v téže přímce. 5. r r r r Moment dvojice sil je roven D = d x F, kde d je rameno dvojice sil. 6. Rovnováha tělesa závisí na velikosti základny, hmotnosti tělesa a poloze těžiště. 7. Obecný pohyb tělesa se skládá z posuvného pohybu (translace) a otáčivého pohybu (rotace) okolo osy procházející těžištěm. 8. Při posuvném pohybu se všechny body tělesa pohybují po stejných, vzájemně rovnoběžných trajektoriích a mají v určitém okamžiku stejnou rychlost a stejné zrychlení. Posuvný pohyb je popsán pohybem jediného bodu tělesa, kterým může být těžiště tělesa. 9. Při otáčivém pohybu kolem osy všechny body tělesa opisují kruhové oblouky se středy na ose rotace. V daném okamžiku mají všechny body tuhého tělesa stejnou úhlovou rychlost ω = konst. a stejné úhlové zrychlení ε = konst. 10. Moment setrvačnosti je dán pro soustavu hmotných bodů vztahem J = n k = 1 m k r k 2, 2 potom J = r dm. m u tuhého tělesa se spojitým rozdělením hmotnosti 11. Rozměr momentu setrvačnosti je kg.m Steinerova věta umožňuje vypočítat moment setrvačnosti kolem osy rovnoběžné s osou jdoucí těžištěm J = J T + a m kde JT je moment kolem osy jdoucí těžištěm, a je vzdálenost os. 14. Výraz pro Königovu větu zní 1 1 E k = mv Jω. 15. Výraz pro práci vnějších sil při otáčení tuhého tělesa okolo pevné osy je W = Θ 0 MdΘ. 16. Výkon při otáčení tuhého tělesa. P = M ω 13
14 3.8 Korespondeční úkol 1. Vypracujte písemně odpovědi na kontrolní otázky 1-3 v podkapitole Vypracujte písemně odpovědi na kontrolní otázky 1-4 v podkapitole Vypracujte písemně odpovědi na otázky 1-3 v podkapitole Po nakloněné rovině délky 75m a úhlu sklonu 32 se účinkem tíhové síly valí (bez klouzání) homogenní válec průměru 68 cm, délky 120 cm a hustoty 2400 kg.m -3. Určete rychlost válce na konci nakloněné roviny, byla-li počáteční rychlost nulová. [22,8 m.s -1 ]. 5. Homogenní těleso tvaru válce o poloměru 8 cm a o hmotnosti 1,5 kg se otáčí kolem své osy s konstantním úhlovým zrychlením 0,125 s -2. Určete kinetickou energii v čase 5 s, bylo-li těleso na počátku otáčení v klidu. [9, J]. 6. Na homogenní válec o poloměru 0,4 m a o hmotnosti 200 kg působí silový moment 10 N.m. Jak dlouho bude trvat, než válec získá takovou úhlovou rychlost, aby konal 4 otáčky za sekundu? [40,21 s]. 3.9 Závěr Tuhé těleso je tvořeno velkým počtem hmotných bodů, jejichž vzdálenosti jsou časově neproměnné. Pohyb tuhého tělesa se dá rozložit na posuvný pohyb těžiště a otáčivý pohyb kolem osy procházející těžištěm. Je proto popsán první pohybovou rovnicí pro pohyb posuvný a druhou pohybovou rovnicí pro pohyb otáčivý. Toto rozdělení pohybů je třeba uplatnit i při výpočtu kinetické energie. Zatímco v prvním případě se kinetická energie vyhodnotí jako pro hmotný bod, ve druhém případě je třeba určit moment setrvačnosti k ose otáčení a úhlovou rychlost otáčení. Pro výpočet práce je třeba uplatnit obdobný postup, práce síly při otáčení tělesa závisí na momentu dané síly k ose otáčení jako funkci úhlu otočení a je definována obecně integrálem ϕ 2 ϕ 1 ( ) M ϕ dϕ. Výkon je potom dán jako M ( ϕ)ω. 14
15 4 Studijní prameny 4.1 Seznam použité literatury [1] Šikula, J., Vašina, P.: Mechanika tuhých těles, CERM, Brno, 1995, v Průvodci 03 uváděn jako Učební text [2], UT [2] 4.2 Seznam doplňkové studijní literatury [3] Halliday, D., Resnick, R., Walker, J.: Fyzika, VUTIUM Brno a PROMETHEUS Praha, 2000 [4] Horák, Z.: Fyzika, SNTL Praha,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
F - Mechanika tuhého tělesa
F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Dynamika soustav hmotných bodů
Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
DYNAMIKA ROTAČNÍ POHYB
DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
5. Mechanika tuhého tělesa
5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit
6. MECHANIKA TUHÉHO TĚLESA
6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu
Moment síly výpočet
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
2.5 Rovnováha rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy
MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly
BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého
1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.
1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.
Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
Ing. Oldřich Šámal. Technická mechanika. kinematika
Ing. Oldřich Šámal Technická mechanika kinematika Praha 018 Obsah 5 OBSAH Přehled veličin A JEJICH JEDNOTEK... 6 1 ÚVOD DO KINEMATIKY... 8 Kontrolní otázky... 8 Kinematika bodu... 9.1 Hmotný bod, základní
Název: Konstrukce vektoru rychlosti
Název: Konstrukce vektoru rychlosti Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanika kinematika
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně
Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt
SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny
2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem
30. Fyzikální kyvadlo 1. Klíčová slova Fyzikální kyvadlo, matematické kyvadlo, kmitavý pohyb, perioda, doba kyvu, tíhové zrychlení, redukovaná délka fyzikálního kyvadla, moment setrvačnosti tělesa, frekvence,
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 2. Kinematika Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
Úvod. 1 Převody jednotek
Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština
12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
Rychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Derivace goniometrických. Jakub Michálek,
Derivace goniometrických funkcí Jakub Michálek, Tomáš Kučera Shrnutí Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech limitách, odvodí se také dvě důležité limity. Vypočítá
hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano
Tuhé těleso, hmotný bod, počet stupňů volnosti hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Stupně volnosti konstanta určující nejmenší
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.
STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
FYZIKA Mechanika tuhých těles
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
2. Dynamika hmotného bodu
. Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy
FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
TŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
a polohovými vektory r k
Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
Theory Česky (Czech Republic)
Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
Momenty setrvačnosti a deviační momenty
Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují
Počty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.
Obsah VYBRANÉ PŘÍKLADY DO CVIČENÍ 2007-08 Vybrané příklady [1] Koktavý, Úvod do studia fyziky... 1 Vybrané příklady [2] Koktavý, Mechanika hmotného bodu... 1 Vybrané příklady [3] Navarová, Čermáková, Sbírka
Derivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky Základní pojmy Pojem hmota, základní formy existence (atributy) hmoty Čím se liší pojmy hmota a hmotnost Axiomy statiky Mechanický
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
7. Mechanika tuhého tělesa
7. Mechanika tuhého tělesa 7. Základní poznatky Dosud jsme se při studiu pohybových účinků sil na těleso nahrazovali pevné těleso hmotným bodem. Většinou jsme nebrali v úvahu tvar a rozměry tělesa, neuvažovali
3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
STATIKA Fakulta strojní, prezenční forma, středisko Šumperk
STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným