FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
|
|
- Františka Černá
- před 6 lety
- Počet zobrazení:
Transkript
1 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová Ostrava 03 Prof. RNDr. Vilém Mádr, CSc., Prof. Ing. Libor Hlaváč, Ph.D., Doc. Ing. Irena Hlaváčová, Ph.D., Mgr. Art. Dagmar Mádrová Vysoká škola báňská Technická univerzita Ostrava ISBN Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF) a rozpočtu České republiky v rámci řešení projektu: CZ..07/..00/5.0463, MODERNIZACE VÝUKOVÝCH MATERIÁLŮ A DIDAKTICKÝCH METOD
2 OBSAH ROVNOMĚRNÝ, ROVNOMĚRNĚ ZRYCHLENÝ A NEROVNOMĚRNĚ ZRYCHLENÝ ROTAČNÍ POHYB Úvod Definice Úhlová dráha, úhlová rychlost a úhlové zrychlení Vztah mezi obvodovou a úhlovou rychlostí Vztah mezi obvodovým a úhlovým zrychlením Velikost tečného a normálového zrychlení otáčivého pohybu Klasifikace otáčivých pohybů Pohyb rovnoměrný po kružnici Pohyb rovnoměrně zrychlený po kružnici Moment síly Moment dvou sil působících na dvě částice Dvojice sil Moment hybnosti... 9 PŘEDNÁŠKOVÝ TEXT SE VZTAHUJE K TĚMTO OTÁZKÁM... CZ..07/..00/5.0463
3 3 ROVNOMĚRNÝ, ROVNOMĚRNĚ ZRYCHLENÝ A NEROVNOMĚRNĚ ZRYCHLENÝ ROTAČNÍ POHYB STRUČNÝ OBSAH PŘEDNÁŠKY: Úhlová dráha, úhlová rychlost a úhlové zrychlení Vztah mezi obvodovou a úhlovou rychlostí Vztah mezi obvodovým a úhlovým zrychlením Pohyb rovnoměrný po kružnici Pohyb rovnoměrně zrychlený po kružnici MOTIVACE: S otáčivým pohybem částice nebo tělesa se setkáme v podstatě u každého pohybu tělesa. Výjimku tvoří pohyb částic nebo těles po přímce. S otáčivým pohybem je nutno počítat téměř ve všech technických problémech. Jde o rotaci turbíny, setrvačníků, dopravních vozidel, aj. CZ..07/..00/5.0463
4 4. ÚVOD Pro popis rovnoměrného, rovnoměrně zrychleného a nerovnoměrně zrychleného rotačního pohybu je třeba znalost základních veličin otáčivého pohybu, které jsou uvedeny v dalším textu.. DEFINICE.. Úhlová dráha, úhlová rychlost a úhlové zrychlení Při otáčivém pohybu hmotného bodu je trajektorií pohybu kružnice. Kromě kinematických veličin r, v a a při vyšetřování otáčivých pohybů pracujeme s úhlovými veličinami ϕ, ω a ε, které jsou také funkcí času. Úhlová dráha je jako vektor vyjádřená funkční závislostí: ϕ = ϕ( t ) (.8) Velikost úhlové dráhy je rovna velikosti středového úhlu ϕ příslušejícího oblouku s délky s mezi polohami bodu P 0 v čase t = 0 s a P t v následujícím čase t, kde ϕ =. R Platí ϕ 0 = ϕ. ϕ, (.9) 0 kde ϕ je jednotkový vektor kolmý na osu otáčení a je orientován na tu stranu, ze které vidíme otáčení bodu P v kladném smyslu (proti směru hodinových ručiček), viz obr..3. Obr..3 K definici úhlové dráhyϕ CZ..07/..00/5.0463
5 5 Úhlovou rychlost ) Obr..4 K určení vztahu mezi obvodovou (v) a úhlovou (ϕ) rychlostí ω = ω(t definujeme jako časovou změnu úhlové dráhy ϕ dϕ ω = (.30) Platí dϕ ω = ωϕ 0, kde ω = Úhlové zrychlení ε = ε (t) definujeme jako časovou změnu úhlové rychlosti ω ε = dω = d ϕ (.3) dω d ϕ Platí ε = εϕ 0, kde ε = = Úhlové zrychlení lze vyjádřit i jinak dω dϕ dω ε = = ω (.3) dϕ dϕ Jednotka úhlové dráhy [ϕ] = rad, úhlové rychlosti [ω] = rad s, úhlového zrychlení [ε] = rad s... Vztah mezi obvodovou a úhlovou rychlostí Odvodíme vztah mezi obvodovou v a úhlovou ω rychlostí. V obr..4 jsou vyznačeny veličiny charakterizující pohyb částice v bodě P. Poloha bodu P je určena vůči počátku 0 polohovým vektorem r, který s osou rotace svírá úhel α. Z definice velikosti okamžité rychlosti (.0) a použitím vztahu ds = R dϕ plyne CZ..07/..00/5.0463
6 6 ds dϕ v = = R = Rω Z obr..4 také plyne, že R = r sin α, pak v = r ω sinα v = ω r a (.33)..3 Vztah mezi obvodovým a úhlovým zrychlením Dále odvodíme vztah mezi obvodovým a a úhlovým ε zrychlením. Z definice (.6) plyne dv d dω dr a = = ( ω r ) = r + ω = ε r + ω v (.34) Vektor ε r je vektor kolmý k r a ose rotace, v níž leží ω, tj. má stejný směr s vektorem v. Je to vektor tečného zrychlení a t. Vektor ω v je vektor kolmý na ω a v a má směr do středu křivosti. Je to vektor normálového zrychlení a n...4 Velikost tečného a normálového zrychlení otáčivého pohybu Velikosti tečného a normálového zrychlení jsou: dv d dω a t = = ( Rω ) = R = Rε (.35) v R ω a n = = = Rω R R v a n = v = vω R nebo (.36)..5 Klasifikace otáčivých pohybů Klasifikace vychází z analogie vztahů mezi veličinami φ, ω a ε u otáčivých pohybů a veličinami s, v a a u pohybů posuvných. Stejný otáčivý pohyb popsaný veličinami φ, ω a ε konají všechny body tělesa (vyjma středu otáčení) kapitola... Z definice úhlového zrychlení ε lze určit závislost ω = ω(t) dω ε =, dω = ε, dω = ε ω = ε + konst. (.4) Z definice úhlové rychlosti ω lze určit závislost ϕ = ϕ(t) dϕ ω =, dϕ = ω, dϕ = ω CZ..07/..00/5.0463
7 7 ϕ = ω + konst. (.43)..6 Pohyb rovnoměrný po kružnici Pohyb rovnoměrný po kružnici: ε = 0 Pro ϕ = 0 0 je ϕ = ωt a pro ϕ = π je ω = 0 = konst. ϕ = ω = ωt + C, kde C = ϕ0 ϕ ϕ + ωt = 0 (.44) π ω = = π f T f T = a (.45) kde T je perioda (doba, za kterou se částice otočí o plný úhel) a f je frekvence...7 Pohyb rovnoměrně zrychlený po kružnici Pohyb rovnoměrně zrychlený po kružnici: ε = konst. a dosazením (.46) do vztahu (.43) ω = ε = εt + C kde C = ω0, ω ω + εt = 0 (.46) ϕ = ( ω0 + εt ) = ω0t + εt + C, kde C = ϕ0 ϕ = ϕ 0 + ω 0 t + εt (.47)..8 Moment síly Označme F výslednici vnějších sil působících na tuhé těleso otáčivé kolem nehybné osy 0 0 (obr..33). Předpokládejme, že vektorová přímka síly F neprotíná osu otáčení a není s ní rovnoběžná, dále že leží v rovině σ kolmé k ose otáčení. CZ..07/..00/5.0463
8 8 Obr..33 K definici momentu síly Velikost momentu síly M je součin velikosti síly F a kolmé vzdálenosti bodu 0 od vektorové přímky vektoru F v rovině σ, tzv. ramene síly d M = Fd (.40) Z obr..33 je d = r sin α, pak M = rf sinα což je velikost vektorového součinu polohového vektoru r působiště síly a vektoru síly F (.4) kde M je moment síly F vzhledem k bodu 0. M = r F (.4) V souřadnicích M M M x y z = y F z F z = z F x F = x F x y y z y F x π Pro α = je sin α = a M = Fr. Směr vektoru M určuje směr vektoru úhlového zrychlení ε, jež by charakterizovalo rotační pohyb částice, vyvolaný tímto momentem. Je proto velmi důležitou veličinou při sledování a popisu rotačních pohybů...9 Moment dvou sil působících na dvě částice Výsledný moment dvou sil F a F působících na dvě částice podle obr..34 je M = M + M = r F + r a s ohledem na F = F je F CZ..07/..00/5.0463
9 9 neboť vektor ( ) M = F (.43) ( r r ) = 0, r r je rovnoběžný s vektorem F. Obr..34 K výpočtu momentu dvou sil Obr..35 K výpočtu momentu dvojice sil Obr..35 K výpočtu momentu dvojice sil..0 Dvojice sil Určíme výsledný moment dvou rovnoběžných stejně velikých sil opačně orientovaných, které působí v různých bodech tuhého tělesa (obr..35). Nazývají se dvojice sil. Z obr..35 r = r + r a podle definice momentu sil je r F + r F = r F + r + r F = r F + r F + r M d ( ) F = M d = r F M d = r F sin α = p F (.44) kde p = r sin α je rameno dvojice sil (obr..35)... Moment hybnosti Moment hybnosti b částice je definován jako vektorový součin polohového vektoru r částice a její hybnosti p (obr..36) a uvádí se někdy jako točivost. CZ..07/..00/5.0463
10 0 Jeho velikost b = r p = r m v (.45) b = r p sin α = r m v sin α (.46) Obr..36 K definici momentu hybnosti částice Jednotky: [ M ] = kg m s = N m [ b ] = kg m s CZ..07/..00/5.0463
11 Přednáškový text se vztahuje k těmto otázkám PŘEDNÁŠKOVÝ TEXT SE VZTAHUJE K TĚMTO OTÁZKÁM Veličiny otáčivého pohybu Odvození vztahu mezi obvodovou a úhlovou rychlostí Odvození vztahu mezi obvodovým a úhlovým zrychlením Klasifikace otáčivých pohybů Moment síly, dvojice sil a moment hybnosti CZ..07/..00/5.0463
FYZIKA I VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová Ostrava 03
VíceFYZIKA I. Složené pohyby (vrh šikmý)
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar
VíceFYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
VíceKinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
VíceBIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
VíceFYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Více1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
VíceKLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
VíceObsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
Více2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
VíceFYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová
VíceBIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VíceMoment síly výpočet
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného
VíceFYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený translační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Ronoměrný, ronoměrně zrychlený neronoměrně zrychlený trnslční pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hláč, Ph.D. Doc.
VícePohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
VíceRovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
VíceMECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceMechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
VíceFYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Více5. Mechanika tuhého tělesa
5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit
Více1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
VíceMechanika II.A Třetí domácí úkol
Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení
VícePřipravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
VíceIng. Oldřich Šámal. Technická mechanika. kinematika
Ing. Oldřich Šámal Technická mechanika kinematika Praha 018 Obsah 5 OBSAH Přehled veličin A JEJICH JEDNOTEK... 6 1 ÚVOD DO KINEMATIKY... 8 Kontrolní otázky... 8 Kinematika bodu... 9.1 Hmotný bod, základní
VíceTUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Více3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.
Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma
Více2.5 Rovnováha rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice
Více= (1.21) a t. v v. což je výraz v závorce ve vztahu (1.19). Normálové zrychlení a H jednoduše jako rozdíl = (1.20)
Tečné zrychlení získáme průmětem vektoru zrychlení a vynásobením jednotkovým vektorem ve směru rychlosti do směru rychlosti a a t v v a v v = (1.19) Podotýkáme, že vektor tečného zrychlení může být souhlasně
Více3. Obecný rovinný pohyb tělesa
. Obecný rovinný pohyb tělesa Při obecném rovinném pohybu tělesa leží dráhy jeho jednotlivých bodů v navzájem rovnoběžných rovinách. Těmito dráhami jsou obecné rovinné křivky. Všechny body ležící na téže
VíceK L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V
ČÁST III K L A S I C K Á T E O R I E P O H Y B U Č Á S T I C A J E J I CH S O U S T A V 10. Pohyb hmotného bodu 11. Dynamika hmotného bodu 12. Dynamika systému hmotných bodů 13. Statistická mechanika 14.
VíceF - Mechanika tuhého tělesa
F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem
VíceDigitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
VíceFyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
VíceStřední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
VíceBIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly
BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého
VíceFyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
VíceShrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:
Více3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
VíceZavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
VíceKapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
VíceIntegrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_12 Název materiálu: Druhy pohybů. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k výuce pohybů, jejich dělení a vlastností. Očekávaný výstup:
Vícen je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně
Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING
Víceb) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
VíceMechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
VíceŠroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice
VícePrůmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
VíceB. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
Více6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
VíceFYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
VíceKINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218
KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího
VíceKapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Více1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
VíceÚvod. 1 Převody jednotek
Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve
VíceZavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
Více1 Rozdělení mechaniky a její náplň 2
Obsah 1 Rozdělení mechaniky a její náplň 2 2 Kinematika hmotného bodu 6 2.1 Křivočarý pohyb bodu v rovině................. 7 2.2 Přímočarý pohyb hmotného bodu................ 9 2.2.1 Rovnoměrný pohyb....................
VíceGE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
VíceZavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
VíceRovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
VíceFyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
VícePRUŽNOST A PEVNOST 2 V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PRUŽNOST A PEVNOST V PŘÍKLADECH Kvadratický moment II doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. Richard Klučka
VíceVýukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma
Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady a grafická vizualizace k určení souřadnicových systémů výrobních strojů Autor: Doc. Ing. Josef Formánek, Ph.D.
VíceVZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
VíceZákladní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
VíceCyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Více17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?
1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností
Vícegeometrická (trigonometrická, nebo goniometrická) metoda (podstata, vhodnost)
1. Nalezení pólu pohybu u mechanismu dle obrázku. 3 body 2. Mechanismy metoda řešení 2 body Vektorová metoda (podstata, vhodnost) - P:mech. se popíše vektor rovnicí suma.ri=0 a následně provede sestavení
VíceKinematika II. Vrhy , (2.1) . (2.3) , (2.4)
Kinematika II Vrhy Galileo Galilei již před čtyřmi staletími, kdy studoval pád různých těles ze šikmé věže v Pise, zjistil, že všechna tělesa se pohybují se stálým zrychlením směřujícím svisle dolů můžemeli
VíceTest jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
VíceGraf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
VíceStatika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.
1. přednáška Úvod & Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 22. února 2016 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Kloknerův ústav, ČVUT v Praze Šolínova 7 166 08
VíceKinematika pístní skupiny
Kinematika pístní skupiny Centrický mechanismus s = r( cos(α)) + l [ ( λ 2 sin 2 α) 2] Dva členy z binomické řady s = r [( cos (α)) + λ ( cos (2α))] 4 I. harmonická s I = r( cos (α)) II. harmonická s II
VíceHmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
Více2. Dynamika hmotného bodu
. Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy
VíceKINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
Více8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy
VíceŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
VíceMatematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
VíceMatematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
VíceFyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
VíceMatematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
VícePočty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
VíceObr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
VíceJEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt
SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting
Vícel, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
VíceDYNAMIKA ROTAČNÍ POHYB
DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)
VíceDynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
VíceROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
VícePřímková a rovinná soustava sil
Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit
VícePodmínky k získání zápočtu
Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné
VíceKinematika hmotného bodu
Kinematika hmotného bodu (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 17. října 2009 Obsah Hmotný bod, poloha a vztažná soustava Trajektorie. Dráha Polohový vektor. Posunutí Rychlost
VíceK výsečovým souřadnicím
3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové
VíceF n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
VíceRychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
Více6 Pohyb částic v magnetickém poli
Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova
Více3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
Více