FYZIKÁLNÍ VLASTNOSTI LÁTEK, JEJICH DEMONSTRACE, DOPADY V TECHNICKÉ PRAXI SVOČ FST 2013
|
|
- Marcel Pokorný
- před 6 lety
- Počet zobrazení:
Transkript
1 FYZIKÁLNÍ VLASTNOSTI LÁTEK, JEJICH DEMONSTRACE, DOPADY V TECHNICKÉ PRAXI SVOČ FST 2013 Tým Autorů SPŠ Tachov, Jaroslav Filípkek, Milan Šmolík, Jakub Charvát, Josef Marek, Střední Průmyslová Škola Tachov Světce 1, Tachov ANOTACE: V této práci jde o rozšíření základních fyzikálních znalostí v oblasti roztažnosti látek, konfrontace teoretických znalostí s praktickými pokusy a konstrukcí demonstračních pomůcek včetně demonstrací v praktickém použití. Součástí této práce jsou tudíž matematické výpočty a jejich srovnání s praktickými pokusy, které byly vykonány na pomůckách vyrobených v rámci odborného výcviku na základě konstrukční dokumentace (viz přílohy). KLÍČOVÁ SLOVA Délková roztažnost, laboratorní měření, výpočty, praktické důsledky, konstrukční dokumentace pomůcek. PRVNÍ ETAPA V 1. etapě jsme zkonstruovali standardní pomůcky k demonstraci roztažnosti kovů: Dilatometr s aplikací komparativního měřidla umožňující odečet absolutního prodloužení Demonstrační pomůcka známá jako Gravesův kroužek. Na základě námi zpracované dokumentace byly pomůcky vyrobeny se zapojením žáků učňovských oborů. Obr č.1 Obr č.2 Na dilatometru jsme si zopakovali standardní pokusy s měřením roztažnosti za současného měření teploty a při porovnání našich výsledků s tabulkovými hodnotami jsme si uvědomili, že většina příkladů používá zjednodušující předpoklad celé zkušební těleso je zahřáno na stejnou teplotu. My jsme následně uplatňovali zprůměrovanou teplotu z měření na více místech. Tab č.1
2 Ocel α = 0, K -1 Hliník α = 0, K -1 Měď α = 0, K -1 TeplotaºC Δl teor. Δl nam TeplotaºC Δl teor. Δl nam.. Teplotaº C Δl teor. Δl nam ,039 0, ,078 0, ,0595 0, ,069 0, ,108 0, ,119 0, ,090 0, ,15 0, ,157 0, ,129 0, ,186 0, ,191 0, ,159 0, ,228 0, ,2295 0, ,216 0, ,276 0, ,2805 0,30 Zkušební vzorky byly 500 mm dlouhé válcového tvaru, původní teplota t = 20ºC Δlteor = teoreticky vypočtená hodnota prodloužení Δlnam = naměřená hodnota na dilatometru PŘÍKLAD VÝPOČTU: Δl = α. l 0. Δt (1) Δl teor = 0, ,5 = 0,039 mm Δl teor = 0, ,5 = 0,078 mm Δl teor = 0, ,5 = 0,0595 mm pro ocel pro hliník pro měď GRAVESŮV KROUŽEK Kulička má ø 24 mm, Gravesův kroužek má vnitřní ø mm. Při jaké teplotě dojde k tomu, že kulička projde otvorem Gravesova kroužku (materiál Gravesova kroužku mosaz α = 0, K -1 ) Teoreticky : l = l 20 ( 1 + αδt) Δt = ( l /l 20 1) / α = (75,398/74,927 1 ) / 0, = 314 ºC (2) Praktická zkouška: Kulička prošla při Δt = 330ºC DRUHÁ ETAPA V 2. etapě jsme zkonstruovali demonstrační pomůcky k demonstraci technického užití roztažnost a pomůcku ukazující negativní dopad roztažnosti. Obr č.3 Obr č.4 Bimetalový proužek z železného a hliníkového plechu. Pomůcka znázorňující boční vyhnutí vetknutého zkušebního tělíska jaké se projevuje při letních vedrech na železničních kolejích. I tyto pomůcky byly vyrobeny ve školních dílnách.
3 BIMETALOVÝ PÁSEK: Na pomůcce jsme provedli měření závislosti prohnutí na teplotě: Obr č.5 Schéma ohybu bimetalového pásku a tabulka naměřených hodnot Obr č.6 Naměřené hodnoty jsme zkusili porovnat s výpočty provedenými na základě tabulkových hodnot použitých materiálů.
4 Tab č.2 Naměřený průhyb Δt ºC Vypočtený poloměr oblouku Vypočtený průhyb , , , , ,6 3, ,8 3, ,2 4, ,6 5, ,3 5, ,3 6, ,8 7, ,1 8, ,9 8, ,2 9,4 VÝPOČTY: Δt = (t 1 +t 2 )/2 (3) R = d/[(α Al -α Fe).Δt], kde d = 1mm, α Al = K -1, α Fe = K -1 (4) sinφ = l 0 / R, kde l 0 = 170 mm, (5) a = R.cosφ, vypočtený průhyb = R a (6) 2.,,Vybočení koleje Na pomůcce jsme provedli měření závislosti vyhnutí na teplotě :
5 Schéma a tabulka naměřených hodnot Obr č.7 Z naměřených hodnot jsme provedli výpočet silových poměrů v upevnění tělíska a vypočtené hodnoty porovnali s hodnotami naměřenými. Tato měření jsme museli opakovat s rozdílnými materiály. Z počátku jsme použili za zkušební tělísko hliníkový pásek pro větší roztažnost, následně pak v pásku zůstávaly trvalé deformace. Dobrých výsledků jsme dosáhli při použití zkušebního tělesa ze strojní pily na kov. Tab č.3 Průhyb y Δt Poloměr oblouku Úhel oblouku φ [ºC] r [ º ] Δt teor [ºC] ,475 1,249 4, ,06 2,498 12, ,55 3,747 25,4 VÝPOČTY Poloměr oblouku byl vypočten na základě předpokladu, že oblouk je částí kružnice. Tím, že známe 3 body této kružnice a po dosazení těchto bodů do obecné rovnice kružnice, jsme vypočetli poloměr oblouku r. Na základě trigonometrických funkcí jsme poté vypočetli úhel oblouku φ a délku oblouku l. l = π r φ (7) Po odečtení délky oblouku l a původní délky l 0 jsme dostali prodloužení Δl. Δl = l l 0 (2) Na závěr jsme si vypočetli teoretické zvýšení teploty Δt teor. Δt teor = Δl/(l 0. α) (1) Případně jsme mohli zjistit napětí v deskách při Δt =30ºC, které přidržují plátek ze strojní pily. σ= E. α. Δt = , = 72 [MPa], (8) odtud F= σ.s= ,2 = 2678,4[N] (9)
6 ZÁVĚR U všech hodnot získaných měřením (Δt, průhyby) jsme při porovnání s vypočtenými hodnotami zjistili určité odchylky, které dle našeho názoru byly zapříčiněny různými faktory, jako např. teplota ve vzorcích byla brána jako průměrná, při měření průhybu z důvodu teploty vzorku mohlo dojít k chybě apod. I přesto nám dané úlohy pomohly udělat si konkrétní představu o problematice dilatace kovových materiálů a jejich důsledků v konstruování strojních součástí. LITERATURA Při zpracování tohoto článku byly využity následující zdroje: Učebnice fyziky Sbírka řešených úloh z fyziky Sborník veletrhu nápadů učitelů fyziky Učebnice mechaniky Tento příspěvek byl podpořen formou odborné konzultace Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu č. CZ.1.07/2.3.00/ Popularizace výzkumu a vývoje ve strojním inženýrství a jeho výsledků (POPULÁR).
Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Namáhání na tah, tlak
Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále
NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I
NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
OVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
SEZNAM MATURITNÍCH OKRUHŮ STUDIJNÍHO OBORU PROVOZNÍ TECHNIKA L/51 Školní rok 2017/2018
SEZNAM MATURITNÍCH OKRUHŮ STUDIJNÍHO OBORU PROVOZNÍ TECHNIKA 23-43-L/51 Školní rok 2017/2018 Písemná maturitní zkouška zahrnuje učivo všech odborných vyučovacích předmětů, ústní maturitní zkouška TECHNOLOGIE
Měření hodnoty g z periody kmitů kyvadla
Měření hodnoty g z periody kmitů kyvadla Online: http://www.sclpx.eu/lab2r.php?exp=8 Úvod Při určení hodnoty tíhové zrychlení z periody kmitů kyvadla o délce l vycházíme ze známého vztahu (2.4.1) pro periodu
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu
Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr
BEZSTYKOVÁ KOLEJ NA MOSTECH
Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce
Téma práce: Konstrukce a výroba pneumatického montážního lisu s automatickým pracovním cyklem SVOČ FST Jakub Ježdík, Jaroslav Šroubek
Téma práce: Konstrukce a výroba pneumatického montážního lisu s automatickým pracovním cyklem SVOČ FST 2015 Jakub Ježdík, Jaroslav Šroubek Střední průmyslová škola, Tachov, Světce 1 Česká republika Anotace:
1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem
MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná
OVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
Měření magnetické indukce elektromagnetu
Měření magnetické indukce elektromagnetu Online: http://www.sclpx.eu/lab3r.php?exp=1 V tomto experimentu jsme využili digitální kuchyňské váhy, pomocí kterých jsme určovali sílu, kterou elektromagnet působí
Laboratorní práce (č.10)
Laboratorní práce (č.10) Název:Měření ploch Integrovaná Střední škola technická Mělník (K učilišti 2566 276 01 Mělník ) Datum :25.4.2010 Třída :2T Vypracoval:Michal Rybnikár Hodnocení: Zadání: Určete velikost
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
Praktikum I úloha IX. Měření modulu pružnosti v tahu
Praktikum I úloha IX. Měření modulu pružnosti v tahu Štěpán Roučka úkol 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu
Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a. ročník čtyřletého studia Laboratorní práce č. : Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
Základním praktikum z laserové techniky
Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr
1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.
1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 4 Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky Pracoval: Jakub Michálek
Požadavky na technické materiály
Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: 4. 10. 2012 Ročník: 7., 8.
VY_52_INOVACE_2NOV43 Autor: Mgr. Jakub Novák Datum: 4. 10. 2012 Ročník: 7., 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Látky a tělesa, Mechanické vlastnosti tekutin
Ing. Jan BRANDA PRUŽNOST A PEVNOST
Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická
Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo.
Mechanické kmitání (SŠ) Pracovní list vzdáleně ovládaný experiment Určení tíhového zrychlení z doby kmitu matematického kyvadla Fyzikální princip Matematickým kyvadlem rozumíme abstraktní model mechanického
Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,
RUČNÍ OHÝBAČKA NA HÁKY OKAPOVÝCH ŽLABŮ SVOČ FST 2016
RUČNÍ OHÝBAČKA NA HÁKY OKAPOVÝCH ŽLABŮ SVOČ FST 2016 Tomáš Franěk Západočeská univerzita v Plzni, Borová 328, 33008 Zruč-Senec, Česká republika ABSTRAKT Tématem bakalářské práce je konstrukce ruční ohýbačky
Mechanika s Inventorem
Mechanika s Inventorem 5. Aplikace tahová úloha CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah cvičení: Zadání
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IV Název: Měření malých odporů Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10.10.2008 Odevzdal
MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů operačních zesilovačů, část 3-7-4
MĚŘENÍ Laboratorní cvičení z měření Měření parametrů operačních zesilovačů, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 21 Číslo materiálu:
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín
III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Název projektu Registrační číslo projektu Autor Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky CZ.1.07/1.5.00/34.1003
Mechanika II.A Třetí domácí úkol
Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení
Únosnost kompozitních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:
Odporový dělič napětí a proudu, princip superpozice
Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 1 Odporový dělič napětí a proudu, princip superpozice Datum měření: 20.
SCLPX 11 1R Zákon zachování mechanické energie
Klasické provedení a didaktické aspekty pokusu Zákony zachování mají ve fyzice významné postavení. V učivu mechaniky se na střední škole věnuje pozornost zákonu zachování hybnosti a zákonu zachování energie
KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ
KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ Rozdíl teplot při montáži a provozu potrubí způsobuje změnu jeho délky. Potrubí dilatuje, prodlužuje se nebo smršťuje. Provozní teplota potrubí soustav vytápění je vždy
Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.
oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00
Příloha č. 1. Pevnostní výpočty
Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této
VYUŽITÍ NAMĚŘENÝCH HODNOT PŘI ŘEŠENÍ ÚLOH PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM
Proceedings of the 6 th International Conference on New Trends in Statics and Dynamics of Buildings October 18-19, 2007 Bratislava, Slovakia Faculty of Civil Engineering STU Bratislava Slovak Society of
Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer
Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................
1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
PROTAHOVÁNÍ A PROTLAČOVÁNÍ
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek
LABORATORNÍ ZKOUŠKY Jednou z hlavních součástí grantového projektu jsou laboratorní zkoušky elastomerových ložisek. Cílem zkoušek je získání pracovního diagramu elastomerových ložisek v tlaku a porovnání
Bezstyková kolej. (Continuous Welded Rail) Otto Plášek, doc. Ing. Ph.D. Ústav železničních konstrukcí a staveb
(Continuous Welded Rail) Otto Plášek, doc. Ing. Ph.D. Ústav železničních konstrukcí a staveb Co je bezstyková kolej? Kolej s průběžně svařenými kolejnicemi o délce nejméně: q 150 m (podle předpisu SŽDC
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu VÝUKA V TERÉNU Z GEODÉZIE 1, 2 - VY1 kód úlohy název úlohy K PŘÍMÉ
Klíčová slova: zvedák, kladkostroj, visutá kočka, naviják
Předmět: Stavba a provoz strojů Ročník: 4. Anotace: Digitální učební materiál zpracovaný na téma zdvihadla, představuje základní přehled o stavbě a rozdělení zvedáků, kladkostrojů a navijáků. Rovněž je
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO
FYZIKÁLNÍ PRAKTIK Ústav fyziky FEI VT BRNO Spolupracoval Příprava Šuranský Radek Opravy Jméno Ročník Škovran Jan Předn. skup. B ěřeno dne 8.03.00 čitel Stud. skupina Kód 7 Odevzdáno dne 5.04.00 Hodnocení
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).
Projekt: Cíl projektu: Určení hmotnosti Země Místo konání: Černá věž - Klatovy, Datum: 28.10.2008, 12.15-13.00 hod. Motto: Krása středoškolské fyziky je především v její hravosti, stejně tak jako je krása
POTŘEBA TEPLA NA VYT vs. TV REKUPERACE TEPLA ZÁSADY NÁVRHU INŽENÝRSKÝCH SÍTÍ
POTŘEBA TEPLA NA VYT vs. TV REKUPERACE TEPLA ZÁSADY NÁVRHU INŽENÝRSKÝCH SÍTÍ Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/20 Potřeba tepla na vytápění Křivka trvání venkovních
Buffonova jehla. Jiří Zelenka. Gymnázium Zikmunda Wintra Rakovník
Buffonova jehla Jiří Zelenka Gymnázium Zikmunda Wintra Rakovník jirka-zelenka@centrum.cz Abstrakt Zaměřil jsem se na konstantu π. K určení hodnoty jsem použil matematický experiment nazývaný Buffonova
ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku
ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů operačních zesilovačů, část 3-7-3
MĚŘENÍ Laboratorní cvičení z měření Měření parametrů operačních zesilovačů, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 21 Číslo materiálu:
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec
Laboratorní testování rázové þÿ h o u~ e v n a t o s t i dy e v a
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a s t a v e b n í / C i v i l E n g i n e e r i n g S e r i e s þÿx a d a s t a v e b n í. 2 0 1 0, r o. 1 0 / C i v i l E n g i n e e r i n g Laboratorní
Laboratorní práce č. 3: Měření součinitele smykového tření
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně
VY_52_INOVACE_2NOV47. Autor: Mgr. Jakub Novák. Datum: Ročník: 7.
VY_52_INOVACE_2NOV47 Autor: Mgr. Jakub Novák Datum: 10. 9. 2012 Ročník: 7. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Mechanické vlastnosti kapalin Téma: Vztlaková síla
STROJÍRENSKÁ TECHNOLOGIE I - přehled látky
STROJÍRENSKÁ TECHNOLOGIE I - přehled látky technologičnost konstrukce odlitků, výhody a nevýhody slévání v porovnání s ostatními technologiemi, slévárenské materiály - vlastnosti a podmínky odlévání, technologické
Úkol 1) Proměřit transformaci napětí pro cívky 300 a 300 závitů. Stvořit společný graf závislosti U 2 na U 1 pro hodnoty teoretické a naměřené.
Laboratorní práce z fyziky Jména autorů: Třída: 9.B Téma: Měření transformačního poměru Školní rok: 13/1 Úkoly: Úkol 1) Proměřit transformaci napětí pro cívky 3 a 3 závitů. Stvořit společný graf závislosti
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice.
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika, fyzika Téma: Cyklistický převod výpočet délky řetězu a převodového poměru Věk žáků:
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8.
VY_52_INOVACE_2NOV51 Autor: Mgr. Jakub Novák Datum: 17. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Pohyb těles, síly Téma: Nakloněná rovina Metodický
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Hustota Číslo DUM: III/2/FY/2/1/9 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Hustota Číslo DUM: III/2/FY/2/1/9 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:
Stroje - nástroje. nástroje - ohýbadla. stroje - lisy. (hydraulický lis pro automobilový průmysl)
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace materiálů. Děkuji Ing. D. Kavková
STANOVENÍ MIKROTVRDOSTI TENKÝCH OCHRANNÝCH POVRCHOVÝCH VRSTEV. Laboratorní cvičení předmět: Experimentální metody v tváření
STANOVENÍ MIKROTVRDOSTI TENKÝCH OCHRANNÝCH POVRCHOVÝCH VRSTEV Laboratorní cvičení předmět: Experimentální metody v tváření Zadání / Cíl Na dodaných vzorcích hlubokotažného plechu používaného v automobilovém
VY_52_INOVACE_2NOV52. Autor: Mgr. Jakub Novák. Datum: 14. 3. 2013 Ročník: 6., 7, 8.
VY_5_INOVACE_NOV5 Autor: Mgr. Jakub Novák Datum: 14. 3. 013 Ročník: 6., 7, 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Pohyb těles, síly Téma: Průměrná rychlost Metodický
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU V. Pelikán, P. Hora, A. Machová Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory záměru ÚT AV ČR AV0Z20760514. VÝPOČTOVÁ MECHANIKA
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet povrchu, objemu a hmotnosti kovových rour
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Výpočet povrchu, objemu a hmotnosti kovových rour Věk žáků: 13 15 let Časová dotace:
s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
ZPRACOVÁNÍ KOVOVÝCH MATERIÁLŮ SELEKTIVNÍM LASEROVÝM TAVENÍM ZA ZVÝŠENÝCH TEPLOT
ZPRACOVÁNÍ KOVOVÝCH MATERIÁLŮ SELEKTIVNÍM LASEROVÝM TAVENÍM ZA ZVÝŠENÝCH TEPLOT Martin Malý, Ing. ÚSTAV KONSTRUOVÁNÍ Fakulta strojního inženýrství VUT v Brně V Brně, 26. 2. 2018 Obsah Motivace pro řešení
Tryskací materiál Tryskací materiál pro Shot Peening Ventily Magna Valve Almen Gage Almen Strip
Tryskací materiál Tryskací materiál pro Shot Peening Ventily Magna Valve Almen Gage Almen Strip Tryskací materiály Mnohostranný materiál, mnohostranné použití Ocelový granulát -Steel shot Ocelová drť -Steel
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
Měření odporu ohmovou metodou
ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího
Laboratorní práce č. 4: Určení hustoty látek
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 4: Určení hustoty látek ymnázium Přírodní vědy moderně a interaktivně FYZIKA 3. ročník
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IXX Název: Měření s torzním magnetometrem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 31.10.2008
Rozkladný transformátor podruhé
Rozkladný podruhé JAN HRDÝ Přírodovědecká fakulta UP, Olomouc Rozkladný je pomůcka již dlouho ve škole používaná a ve školské fyzice má své pevné místo [1]. Vyjmenovat všechny pokusy v nichž se používá
Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování
BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.
Příloha č.1.: Výpočtová zpráva - převodovka I Návrh čelních ozubených kol Návrh rozměru čelních ozubených kol je proveden podle ČSN 01 4686 ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL. Návrhovým výpočtem
Měření vlastností střídavého zesilovače
Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. Měření vlastností střídavého zesilovače Datum měření: 1. 11. 011 Datum
MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova
Požární zkouška v Cardingtonu, ocelobetonová deska
Požární zkouška v Cardingtonu, ocelobetonová deska Modely chování konstrukcí za vysokých teplot při požáru se opírají o omezené množství experimentů na skutečných objektech. Evropské poznání je založeno
DRÁTKOBETON PRO PODZEMNÍ STAVBY
DRÁTKOBETON PRO PODZEMNÍ STAVBY ABSTRAKT Václav Ráček 1 Jan Vodička 2 Jiří Krátký 3 Matouš Hilar 4 V příspěvku bude uveden příklad návrhu drátkobetonu pro prefabrikované segmentové ostění tunelu. Bude