Algoritmy pro spojitou optimalizaci
|
|
- Renáta Macháčková
- před 8 lety
- Počet zobrazení:
Transkript
1 Algoritmy pro spojitou optimalizaci Vladimír Bičík Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
2 Úvod Spojitá optimalizace Obecná minimalizace funkce v prostoru reálných parametrů Mnoho přístupů, dlouhodobě zkoumáno Jádro práce Nastudování řady různých algoritmů Přepsání do jednotného rozhraní Čerpáno z různých zdrojů (např. FORTRAN77, C++, Java) Sjednocený popis algoritmů, zaměření na vstupní parametry JavaDoc dokumentace a odkazy k původním publikacím Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
3 Aplikační prostředí JCool Projekt vzniknuvší jako výsledek diplomové práce M. Hvizdoše Testování a porovnávání optimalizačních metod Obsahovalo několik základních funkcí a 3 optimalizační metody Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
4 Implementované optimalizační metody Numerické optimalizační metody Gradientní metody Liší se v použití Hessovy matice: 1 Conjugate Gradient: nepoužívá vůbec 2 Levenberg Marquardt: používá a dále upravuje 3 quasi Newton: nepoužívá přímo, aproximuje 4 Orthogonal search optimalizace po dimenzích 5 Powell s method vylepšení, skládá směry Covariance Matrix Adaptation Evolution Strategy Vzorkování normálního rozdělení vektoru více proměnných Matice kovariance popisuje závislosti proměnných Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
5 Implementované optimalizační metody Optimalizační metody inspirované přírodou Mravenčí algoritmy Přímo simulující chování mravenců (CACO, API) Rozšíření původního mravenčího algoritmu o diskretizaci (AACA) Rozšíření původního mravenčího algoritmu o pravděpodobnostní vzorkování (ACO*, DACO) Genetické algoritmy Diferenciální evoluce (DE, SADE) Pravděpodobnostní vektor pro vzorkování populace (PBIL) Simulace hejna hledajícího potravu (PSO) Kombinace algoritmů (HGAPSO) Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
6 Implementované testovací funkce Sada testovacích funkcí Unimodální a multimodální funkce Vícedimenzionální funkce, mnoho z nich parametrizovatelných Zpravidla implementován předpis pro analytický gradient a Hessovu matici Dokumentované hodnoty globálních minim, včetně jejich pozic Obrázek: Některé implementované testovací funkce. Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
7 Provedené experimenty Metodologie Způsob testování 100 opakování, limit 2000 iterací Všechny parametry v plném rozsahu Pozorována úspěšnost řešení a počet iterací 100% 60 Average rate of success 80% 60% 40% 20% Average number of iterations % Parameter range Parameter range AC BE BO BR EA GP GR HI LA L3 L5 MA MI RN RA RO SH SB SW DJ TR WH ZA AC BE BO BR EA GP GR HI LA L3 L5 MA MI RN RA RO SH SB SW DJ TR WH ZA Obrázek: PBIL, pravděpodobnost mutace, krok 0,05 Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
8 Provedené experimenty Doporučené parametry implementovaných optimalizačních metod Výsledky experimentů Doporučené hodnoty parametrů metod Různá nastevení pro různé typy funkcí 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% API AACA ACO* DACO PSO PSO-FI PSO-C DE SADE PBIL HGAPSO AC BE BO BR EA GP GR HI LA L3 L5 MA MI RN RA RO SH SB SW DJ TR WH ZA Obrázek: Porovnání původních a doporučených parametrů Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
9 Provedené experimenty Vzájemné porovnání implementovaných optimalizačních metod I Zhodnocení konvergence Porovnání napříč numerickými, přírodou inspirovanými i všemi dohromady Doporučené použití metod Naznačení pokračování v meta-optimalizaci Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
10 Provedené experimenty Vzájemné porovnání implementovaných optimalizačních metod II Numerické metody Mnohem přesnější Efektivnější Chybí jim globální konvergence Možno použít i k zjištění typu funkce Metody inspirované přírodou Nepřesnější, ale zvládnou i těžké funkce Vyžadují více iterací, časově náročnější Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
11 Shrnutí Přínosy práce Implementace a popis 7 numerických a 10 přírodou inspirovaných optimalizačních algoritmů Sada 32 testovacích funkcí pokrývající širokou škálu různých problémů Popis chování algoritmů v závislosti na hodnotách parametrů Sady doporučených parametrů metod s ohledem na meta-optimalizaci Porovnání efektivnosti metod, doporučení jejich použití Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci / 11
Navrženy v 60. letech jako experimentální optimalizační metoda. Velice rychlá s dobrou podporou teorie
Evoluční strategie Navrženy v 60. letech jako experimentální optimalizační metoda Založena na reálných číslech Velice rychlá s dobrou podporou teorie Jako první zavedla self-adaptation (úpravu sebe sama)
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Princip gradientních optimalizačních metod
Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
OPTIMALIZACE. (přehled metod)
OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace
Swarm Intelligence. Moderní metody optimalizace 1
Swarm Intelligence http://pixdaus.com/single.php?id=168307 Moderní metody optimalizace 1 Swarm Intelligence Inteligence hejna algoritmy inspirované chováním skupin ptáků, hmyzu, ryb apod. Particle Swarm
Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz
Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V
Hledání extrémů funkcí
Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání
Algoritmy pro optimalizaci sítí GAME. Miroslav Janošík
České vysoké učení technické v Praze Fakulta elektrotechnická ČVUT FEL katedra počítačů Bakalářská práce Algoritmy pro optimalizaci sítí GAME Miroslav Janošík Vedoucí práce: Ing. Pavel Kordík Studijní
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Úvod do optimalizace Matematické metody pro ITS (11MAMY)
Úvod do optimalizace Matematické metody pro ITS (11MAMY) Jan Přikryl (volně dle M.T. Heathe) 10. přednáška 11MAMY úterý 22. března 2016 verze: 2016-04-01 16:10 Obsah Optimalizační problém 1 Definice 1
Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1
Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1 Efektivita optimalizačních metod Robustní metoda Efektivita Specializovaná metoda Enumerace nebo MC kombinatorický
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
A0M33EOA: Evoluční optimalizační algoritmy
A0M33EOA: Evoluční optimalizační algoritmy Zkouškový test Pátek 8. února 2011 Vaše jméno: Známka, kterou byste si z předmětu sami dali, a její zdůvodnění: Otázka: 1 2 3 4 5 6 7 8 Celkem Body: 1 3 2 1 4
Multirobotická kooperativní inspekce
Multirobotická kooperativní inspekce prostředí Diplomová práce Multirobotická kooperativní inspekce prostředí Diplomová práce Intelligent and Mobile Robotics Group Laboratory for Intelligent Decision Making
Komprese a dotazování nad XML dokumenty
Komprese a dotazování nad XML dokumenty Prezentace diplomové práce Lukáš Skřivánek České vysoké učení technické v Praze Fakulta elektrotechnická Katedra počítačů květen 2007 Vedoucí práce: Ing. Miroslav
Struktury a vazebné energie iontových klastrů helia
Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy
Newtonova metoda. 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce
PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods
CW057 Logistika (R) PŘEDNÁŠKA 03 Optimization methods Ing. Václav Venkrbec skupina obecných modelů slouží k nalezení nejlepšího řešení problémů a modelovaných reálií přináší řešení: prvky konečné / nekonečné
SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR
EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení
Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky
Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová
Změkčování hranic v klasifikačních stromech
Změkčování hranic v klasifikačních stromech Jakub Dvořák Seminář strojového učení a modelování 24.5.2012 Obsah Klasifikační stromy Změkčování hran Ranking, ROC křivka a AUC Metody změkčování Experiment
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Metaheuristiky s populacemi
Metaheuristiky s populacemi 8. března 2018 1 Společné vlastnosti 2 Evoluční algoritmy 3 Optimalizace mravenčí kolonie Zdroj: El-Ghazali Talbi, Metaheuristics: From Design to Implementation. Wiley, 2009.
Popis zobrazení pomocí fuzzy logiky
Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy
Evolučníalgoritmy. Dále rozšiřována, zde uvedeme notaci a algoritmy vznikléna katedře mechaniky, Fakulty stavební ČVUT. Moderní metody optimalizace 1
Evolučníalgoritmy Kategorie vytvořená v 90. letech, aby se sjednotily jednotlivémetody, kterévyužívaly evoluční principy, tzn. Genetickéalgoritmy, Evolučnístrategie a Evoluční programování (v těchto přednáškách
Manažerské shrnutí projektu
Identifikace možných úspor a efektivit v oblasti provozních a mandatorních výdajů Ministerstvo spravedlnosti Manažerské shrnutí projektu Vyhodnocení efektivnosti vynakládání rozpočtových zdrojů v resortu
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Základní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
Architektury počítačů
Architektury počítačů skupina Identifyingvýzkumná the Interesting Points in Geometrical Figures of Certain Class Vysoké učení technické v Brně, Fakulta informačních technologií, Božetěchova 2, 612 66 Brno
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)
Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální
1. Úvod do genetických algoritmů (GA)
Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Reranking založený na metadatech
České vysoké učení technické v Praze Fakulta informačních technologií Katedra softwarového inženýrství Reranking založený na metadatech MI-VMW Projekt IV - 1 Pavel Homolka Ladislav Kubeš 6. 12. 2011 1
Ant Colony Optimization v prostředí Mathematica
Ant Colony Optimization v prostředí Mathematica Ant Colony Optimization in Mathematica Environment Bc. Martina Vaculíková Diplomová práce 28 UTB ve Zlíně, Fakulta aplikované informatiky, 28 4 ABSTRAKT
LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA
LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky
Gramatická evoluce a softwarový projekt AGE
Gramatická evoluce a softwarový projekt AGE Adam Nohejl Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://nohejl.name/ 4. 4. 2010 Poznámka: Prezentace založené na variantách těchto slajdů
Karel Bittner bittner@humusoft.com. HUMUSOFT s.r.o. HUMUSOFT s.r.o.
Karel Bittner bittner@humusoft.com COMSOL Multiphysics Co je COMSOL Multiphysics? - sw určený k simulaci fyzikálních modelů, na něž působí jeden nebo několik fyzikálních vlivů - sw úlohy řeší metodou konečných
01 Teoretické disciplíny systémové vědy
01 Teoretické disciplíny systémové vědy (systémový přístup, obecná teorie systému, systémová statika a dynamika, úlohy na statických a dynamických systémech, kybernetika) Systémová věda je vědní disciplínou
LASEROVÉ SVAZKY PRO OPTICKÉ MANIPULACE
LASEROVÉ SVAZKY PRO OPTICKÉ MANIPULACE Katedra optiky, PřF UP 17. Listopadu 50, 772 07 Olomouc Řešitelé grantu MPO: Z. Bouchal, Z. Hradil, J. Řeháček, J. Wagner, I. Vyšín PGS studenti : R. Čelechovský,
Řešení "stiff soustav obyčejných diferenciálních rovnic
Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární
Pro tvorbu samostatně spustitelných aplikací je k dispozici Matlab library.
1.1 Matlab Matlab je interaktivní systém pro vědecké a technické výpočty založený na maticovém kalkulu. Umožňuje řešit velkou oblast numerických problémů, aniž byste museli programovat vlastní program.
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
Genetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
STOCHASTICKÉ ALGORITMY V ODHADU PARAMETRŮ REGRESNÍCH MODELŮ
ROBUST 2004 c JČMF 2004 STOCHASTICKÉ ALGORITMY V ODHADU PARAMETRŮ REGRESNÍCH MODELŮ Josef Tvrdík Klíčová slova: Globální optimalizace, řízené náhodné prohledávání, nelineární regrese. Abstrakt: V článku
Optimalizace průtokových poměrů v mazacích obvodech s progresivními rozdělovači pomocí genetických algoritmů
PREZENTACE DOKTORANDŮ BRNO, 20. 6. 2008 Optimalizace průtokových poměrů v mazacích obvodech s progresivními rozdělovači pomocí genetických algoritmů VUT v Brně Fakulta strojního inženýrství doktorand Ing.
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
Aplikace metody BDDC
Aplikace metody BDDC v problémech pružnosti P. Burda, M. Čertíková, E. Neumanová, J. Šístek A. Damašek, J. Novotný FS ČVUT, ÚT AVČR 14.9.2006 / SAMO 06 (FS ČVUT, ÚT AVČR) 14.9.2006 / SAMO 06 1 / 46 Osnova
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Integrace datových služeb vědecko- výukové
České vysoké učení technické v Praze Fakulta elektrotechnická Software Engineering & Networking Projekt Fondu rozvoje sdružení CESNET- 513/2014/1 HS: 13144 / 830 / 8301442C Integrace datových služeb vědecko-
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
ŘEŠENÍ OPTIMALIZAČNÍCH ÚLOH ALGORITMY PSO SOLVING OPTIMIZATION TASKS BY PSO ALGORITHMS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS ŘEŠENÍ OPTIMALIZAČNÍCH
Evoluční výpočetní techniky (EVT)
Evoluční výpočetní techniky (EVT) - Nacházejí svoji inspiraci v přírodních vývojových procesech - Stejně jako přírodní jevy mají silnou náhodnou složku, která nezanedbatelným způsobem ovlivňuje jejich
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
OBHAJOBA DIPLOMOVÉ PRÁCE
OBHAJOBA DIPLOMOVÉ PRÁCE Lukáš Houser FS ČVUT v Praze Ústav mechaniky, biomechaniky a mechatroniky 28. srpen 2015 Simulační modely tlumičů a jejich identifikace Autor: Studijní obor: Lukáš Houser Mechatronika
OPTIMALIZACE CHEMICKÝCH STUPŇOVÝCH PROCESŮ POMOCÍ MATLAB SYMBOLIC MATH TOOLBOXU. Vladimír Hanta
OPTIMALIZACE CHEMICKÝCH STUPŇOVÝCH PROCESŮ POMOCÍ MATLAB SYMBOLIC MATH TOOLBOXU Vladimír Hanta Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky Při modelování a simulaci chemicko-inženýrských
Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)
Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol
Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.07/2.2.00/28.0157 Numerické metody a programování Lekce 1 Tento projekt je spolufinancován Evropským
2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování
1. Teoretické základy modelování na počítačích 1.1 Lambda-kalkul 1.1.1 Formální zápis, beta-redukce, alfa-konverze 1.1.2 Lambda-výraz jako data 1.1.3 Příklad alfa-konverze 1.1.4 Eta-redukce 1.2 Základy
Faster Gradient Descent Methods
Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
Co jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka
Příklady použití tenkých vrstev Jaromír Křepelka Příklad 01 Spočtěte odrazivost prostého rozhraní dvou izotropních homogenních materiálů s indexy lomu n 0 = 1 a n 1 = 1,52 v závislosti na úhlu dopadu pro
Iterační výpočty. Dokumentace k projektu č. 2 do IZP. 24. listopadu 2004
Dokumentace k projektu č. 2 do IZP Iterační výpočty 24. listopadu 2004 Autor: Kamil Dudka, xdudka00@stud.fit.vutbr.cz Fakulta Informačních Technologií Vysoké Učení Technické v Brně Obsah 1. Úvod...3 2.
MA MULTIKRITERIÁLNÍ HODNOCENÍ A OPTIMALIZACE KONSTRUKCÍ
MA MULTIKRITERIÁLNÍ HODNOCENÍ A OPTIMALIZACE KONSTRUKCÍ Petr Hájek KRITÉRIA PRO HODNOCENÍ A OPTIMALIZACI odpady CO 2 emise SO 2 emise. trvanlivost stavební konstrukce spotřeba energie NO x emise spolehlivost
Analytické metody v motorsportu
Analytické metody v motorsportu Bronislav Růžička školitel : Doc. Ing. Ivan Mazůrek, CSc. Ústav konstruování Odbor konstruování strojů Fakulta strojního inženýrství Vysoké učení technické v Brně 12.listopadu
aneb jiný úhel pohledu na prvák
Účelná matematika aneb jiný úhel pohledu na prvák Jan Hejtmánek FEL, ČVUT v Praze 24. června 2015 Jan Hejtmánek (FEL, ČVUT v Praze) Technokrati 2015 24. června 2015 1 / 18 Outline 1 Motivace 2 Proč tolik
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ P. Chalupa, J. Novák Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Centrum aplikované kybernetiky Abstrakt Příspěvek se zabývá
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 / 16
Modelování fyzikálního okoĺı Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 25. října 2011 Evropský sociální fond Praha & EU: Investujeme
Stabilizace Galerkin Least Squares pro
Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
4.8 Jak jsme na tom v porovnání s jinými přístupy
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
VUT Brno Fakulta informačních technologií Simulační nástroje a techniky (SNT) 2014/2015 Vehicle routing problem Ant colony
VUT Brno Fakulta informačních technologií Simulační nástroje a techniky (SNT) 2014/2015 Vehicle routing problem Ant colony František Němec (xnemec61) xnemec61@stud.fit.vutbr.cz 19. července 2015 1 Úvod
Téma doktorských prací pro akademický rok 2018/2019. Pavel Novotný
Téma doktorských prací pro akademický rok 2018/2019 Pavel Novotný Představení školitele Vývoj výpočtových a experimentálních přístupů pro popis vibrací a souvisejícího hluku pohonných jednotek a tribologie
Teorie náhodných matic aneb tak trochu jiná statistika
Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava
Speciální numerické metody 4. ročník bakalářského studia. Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D.
Speciální numerické metody 4. ročník bakalářského studia Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D. 1 Základní informace o cvičení Předmět: 228-0210/01 Speciální numerické metody
Markov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.
OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství
Počítačová simulace logistických procesů II 10. přednáška Simulační experimentování
Počítačová simulace logistických procesů II 10. přednáška Simulační experimentování Jan Fábry 28.10.2017 Počítačová simulace logistických procesů II Obsah předmětu I. Úvod, organizace, semestrální projekty,
ANALÝZA ÚZEMNÍ DIMENZE DOPRAVY A JEJÍ VLIV NA KONKURENCESCHOPNOST A ZAMĚSTNANOST A DOPORUČENÍ PRO OBDOBÍ 2014+
Podkladové studie pro přípravu ČR na využívání fondů EU v období 2014+ ANALÝZA ÚZEMNÍ DIMENZE DOPRAVY A JEJÍ VLIV NA KONKURENCESCHOPNOST A ZAMĚSTNANOST A DOPORUČENÍ PRO OBDOBÍ 2014+ zpracovatel Realizační
METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI
METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně podílela Vysoká
ÚPRAVA METODY FLEXIBILNÍHO SIMPLEXU PRO ŘEŠENÍ PROBLÉMŮ GLOBÁLNÍ OPTIMALIZACE Miroslav Provazník
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky ÚPRAVA METODY FLEXIBILNÍHO SIMPLEXU PRO ŘEŠENÍ PROBLÉMŮ GLOBÁLNÍ OPTIMALIZACE Miroslav Provazník Bakalářská práce 2016 Prohlášení Prohlašuji:
Užití systému Matlab při optimalizaci intenzity tepelného záření na povrchu formy
Užití systému Matlab při optimalizaci intenzity tepelného záření na povrchu formy Radek Srb 1) Jaroslav Mlýnek 2) 1) Fakulta mechatroniky, informatiky a mezioborových studií 2) Fakulta přírodovědně-humanitní
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ
ESKÉ VYSOKÉ U ENÍ TECHNICKÉ V PRAZE Fakulta stavební MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ Studijní program: Stavební inženýrství Studijní obor: Fyzikální a materiálové inženýrství Vypracovala: Ing. Markéta
4. Přednáška: Kvazi-Newtonovské metody:
4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou