Mechanické vlastnosti a charakteristiky materiálů I
|
|
- Radim Beran
- před 6 lety
- Počet zobrazení:
Transkript
1 Mechanické vlastnosti a charakteristiky materiálů I 1
2 Materiály jsou charakterizovány svými vlastnostmi. Nejdůležitější mechanické vlastnosti pružnost elasticita tvárnost plasticita pevnost houževnatost 2
3 Nejdůležitější mechanické vlastnosti Pružnost je schopnost materiálu deformovat se před porušením pružně. Pružná deformace je vratná, při odlehčení se rozměry tělesa vrátí na původní hodnoty. Při pružné deformaci neplatí zákon zachování objemu. Tvárnost je schopnost materiálu deformovat se před porušením plasticky. Plastická deformace je deformace nevratná, při odlehčení se rozměry tělesa nevrátí na původní hodnoty. Při plastické deformaci platí zákon zachování objemu. 3
4 Nejdůležitější mechanické vlastnosti Pevnost je odolnost materiálu proti trvalému porušení soudružnosti částic. Houževnatost je odolnost materiálu vůči vzniku deformace nebo porušení. Mírou houževnatosti je množství mechanické práce potřebné k vytvoření deformace nebo k porušení materiálu. 4
5 Hlavní faktory ovlivňující mechanické vlastnosti Mechanické vlastnosti jsou velmi výrazně ovlivněny mnoha interními a externími faktory. Mezi nejdůležitější patří: Interní faktory chemické složení a chemická heterogenita struktura a strukturní heterogenita velikost a tvar tělesa koncentrátory napětí (konstrukční a technologické vruby) stav povrchu Externí faktory: teplota rychlost deformace druh a časový průběh zatěžování okolní prostředí 5
6 Rozdělení mechanických zkoušek Základní zkoušky mechanických vlastností 1. Zkoušky statické 2. Zkoušky tvrdosti 3. Zkouška rázem v ohybu Zkoušky pro hodnocení mezních stavů materiálů 1. Zkoušky křehkolomových vlastností materiálů 2. Únavové zkoušky 3. Zkoušky tečení materiálů 6
7 Základní zkoušky mechanických vlastností Zkoušky statické Zkouška tahem Zkouška tlakem Zkouška ohybem Zkouška krutem Zkouška střihem Zkoušky tvrdosti Metoda Brinellova Metoda Vickersova Metoda Rockwelova Jiné metody Zkouška rázem v ohybu Charpyho zkouška 7
8 Zkoušky pro hodnocení mezních stavů Zkoušky křehkolomových vlastností materiálů (koncepce lomové mechaniky ) Zkoušky statické lomové houževnatosti Zkoušky dynamické lomové houževnatosti Zkoušky únavových vlastností materiálů Zkoušky v nízkocyklové oblasti Zkoušky ve vysokocyklové oblasti Zkoušky v gigacyklové oblasti Stanovení rychlosti šíření únavových trhlin Analýza únavových lomů Zkoušky tečení materiálu Vlastní tečení neboli creep Relaxace 8
9 Chování pevného tělesa za působení vnějších sil Působí-li na pevné těleso vnější síla, mění těleso svůj tvar, t.j. deformuje se. Vnitřní síly v tělese této změně tvaru brání, a tím současně vzniká v tělese napětí. 9
10 Deformace Změna tvaru tělesa se nazývá deformace neboli přetvoření. Deformaci v podélném směru můžeme definovat (kvantifikovat) veličinou, která se nazývá poměrná deformace ε a je definována takto: L L 0 D D 0 L L L D 0 0 D 0 0 D [ ] Obdobně deformace v příčném směru je definována: [ ] 10
11 Poissonovo číslo Poměr příčné a podélné deformace se nazývá Poissonovo číslo: [ ] Obvyklé hodnoty pro: Kovy 0,25 0,35 Keramiku 0,25 Polymery 0,4 materiál Slitiny hliníku 0,33 Beton 0,20 Poissonovo číslo Litiny 0,21-0,26 Sklo 0,24 Jíly 0,30-0,45 Měď 0,33 Korek ca. 0,00 Hořčík 0,35 Nerezové oceli 0,30-0,31 Pryž 0,50 Oceli 0,27-0,30 Molitan 0,10 to 0,40 Titan 0,34 Písek 0,20-0,45 auxetics záporné 11
12 Skutečná deformace Skutečná deformace je definována takto: dl d L [ ] L L 0 dl L ln L L 0 [ ] Vztah mezi skutečnou a poměrnou deformací: ln( 1 ) [ ] 12
13 Napětí Vnitřní síly deformaci brání, a tím vzniká v tělese napětí. Smluvní napětí F S 0 [ MPa] Skutečné napětí F S [MPa] Vztah mezi skutečným a smluvním napětím: ( 1 ) [ MPa] 13
14 Smykové a normálové napětí F S 0 [ MPa] F n F cos, F s F sin [ N] Síla působící v obecné rovině: S S 0 [ mm 2 ] cos n F n S cos 2 [ MPa] F s S sin cos 1 sin 2 2 [ MPa] 14
15 Napětí a elastická deformace Podle tvaru závislosti mezi napětím a elastickou deformací se materiály dělí na dvě skupiny: 1. Materiály s lineární závislostí σ ε 2. Materiály s nelineární závislostí σ ε (Toto chování je typické pro elastomery) 15
16 Materiály s lineární závislostí σ - ε Pro tyto materiály platí Hookeův zákon: E e [MPa] E modul pružnosti v tahu neboli Youngův modul Pro ocel platí: E = 2, MPa Původní znění (Robert Hooke 1678): L k F [m] Prodloužení tělesa je přímo úměrné působící síle. 16
17 Materiály s lineární závislostí σ - ε Analogie Hookeova zákona pro smykové namáhání: G [MPa].. Smykové napětí G. Modul pružnosti ve smyku (Coulombův modul) Pro ocel platí: G = 0, MPa.. Poměrná smyková deformace Pro izotropní materiály platí: G E 2 ( 1) [ MPa] 17
18 Hodnoty Youngova modulu Material E/GPa metals Tungsten 411 nickel alloys ferritic steels austenitic steels cast iron copper alloys titanium alloys brasses and bronzes aluminium alloys magnesium alloys ceramics polymers E e [MPa]
19 Mechanismus elastické deformace Při elastické deformaci se atomy v uzlových bodech mřížky vlivem působení vnějšího zatížení oddálí nebo přiblíží (parametr mřížky sezvětší nebo zmenší), aniž by došlo k jejich přesunu do jiného uzlového bodu. Po odlehčení se atomy vrátí do své původní rovnovážné polohy. 19
20 Celková a plastická deformace Překročí-li vnější zatížení určitou mez, vytvoří se v materiálu plastická, tj. trvalá deformace. Celková deformace pak sestává ze dvou složek: e p [ ] V okamžiku, kdy na těleso přestane působit vnější zatížení, elastická deformace vymizí, zatímco plastická deformace zůstane zachována. 20
21 Celková a plastická deformace 2. zatížení 21
22 Mechanismy plastické deformace 1. Skluz dislokací 2. Dvojčatění 22
23 Skluz v rovině 45 na vnější tahovou sílu na Cu drátku 23
24 Skluz dislokací Nejčastější a nejznámější mechanismus plastické deformace, který se realizuje pohybem dislokací ve skluzových systémech. Skluz dislokací probíhá v určitých krystalografických rovinách a směrech, pro které platí: 1. Směr skluzu je totožný s některým směrem, který je nejhustěji obsazený atomy. 2. Skluz probíhá většinou v rovině nejhustěji obsazené atomy. 3. Ze souboru skluzových systémů (rovina, směr) je aktivní ten skluzový systém, který je optimálně orientován vůči vnějšímu zatížení, to je ve kterém je maximální smykové napětí. 24
25 Proč probíhá deformace v nejhustěji obsazených rovinách a směrech? 2 - Mechanické vlastnosti I Hustě obsazená rovina nebo směr Nedokonale vyplněná rovina nebo směr
26 Kritické napětí Původní Frenkelova teorie Upřesněný vzorec kr kr G 2 G 30 G b 2 L R, kde L Kritické napětí dle Taylora 2 1 Vztah po úpravě R G b [ MPa] 26
27 Vliv krystalové mřížky na vlastnosti materiálu Krystalová mřížka FCC BCC HCP Kritické skluzové napětí MPa Počet skluzových systémů 0,3 až 0,8 30 až 80 0,3 až 0,8 12 ( 5) 12 ( 5) 3 ( 5) Příčný skluz je možný možný nemožný Výsledná materiálová vlastnost tvárnost pevnost relativní křehkost 27
28 Skluzové systémy u vybraných krystalografických mřížek 28
29 Skluzové systémy u vybraných krystalografických mřížek Kov Mřížka Čistota Skluzová rovina Směr skluzu KR [MPa] Zn HCP 99,999 (0001) [1010] 0,18 Mg HCP 99,996 (0001) [1010] 0,77 Cd HCP 99,996 (0001) [1010] 0,58 Ti HCP 99,990 (1010) [1120] 14,00 Ag FCC 99,990 (111) [110] 0,48 FCC 99,970 (111) [110] 0,73 FCC 99,930 (111) [110] 1,31 Cu FCC 99,999 (111) [110] 0,65 FCC 99,980 (111) [110] 0,94 Ni FCC 99,800 (111) [110] 5,80 Fe BCC 99,960 (110) [111] 28,00 (112) (123) Mo BCC 99,800 (110) [111] 50,00 29
30 Plastická deformace - shrnutí 30
31 Pohyb hranové dislokace 31
32 Pohyb dislokací Po překročení kritického napětí dochází k pohybu dislokací. F F 32
33 Pohyb šroubové dislokace Skluzová rovina 33
34 Nekonzervativní pohyb dislokací Difuzní šplhání hranové dislokace Příčný skluz šroubové dislokace 34
35 Vznik dislokací v materiálech Frankův-Readův zdroj (1) (2) (3) (4) (5) (6) 35
36 Frankův-Readův zdroj 36
37 Zpevnění polykrystalu Průběh zpevnění u polykrystalů se liší od zpevňování monokrystalů, neboť se zde uplatňuje několik dalších mechanismů. Mezi nejdůležitější patří: Zpevnění substitučními atomy Zpevnění intersticiálními atomy Deformační zpevnění Zpevnění hranicemi zrn Zpevnění precipitační 37
38 Zpevnění Zpevnění substituční Zpevnění intersticiálními atomy Zpevnění deformační 38
39 Zpevnění hranicemi zrn 39
40 Zpevnění hranicemi zrn Hallův-Petchův vztah: R el 1 2 k d [ MPa] 0 y kde σ 0 je třecí napětí potřebné pro pohyb dislokací (pro nízkolegovanou ocel σ 0 = 40 MPa) k y je materiálová konstanta [N*mm -3/2 ] d je střední průměr zrna [mm] 40
41 Interakce dislokací s překážkamiprecipitační zpevnění Dislokace překonává tvrdé nekoherentní částice(orowanův mech.) Dislokace překonává měkké koherentní částice (Friedlův mech) 41
42 Dvojčatění Druhý nejvýznamnější mechanismus plastické deformace, který se uplatňuje zvláště u kovů s mřížkou kubickou plošně středěnou a mřížkou hexagonální těsně uspo-řádanou. Jeho výskyt je podporován zejména vysokou rychlostí deformace a nízkou teplotou. Při dvojčatění se atomy v části krystalu přesunou o necelou meziatomovou vzdálenost, a to tak, že vznikne oblast mřížky souměrná podle roviny dvojčatění s neposunutou mřížkou. 42
43 Dvojčatění Přesun atomů při dvojčatění je výsledkem pohybu neúplných dislokací, na rozdíl od deformace kluzem, kde se jedná o pohyb úplných dislokací. 43
44 Hadfieldova ocel, deformovaná výbuchem. Dvojčatovým mechanismem dochází k fázové transformaci 44
45 Skluz dislokací a dvojčatění skluz dvojčatění 45
46 Makroskopické projevy skluzu Skluzové pásy 46
47 Zkouška tahem (statická) 47
48 Zkouška tahem, tahový diagram Zkouška tahem patří mezi nejdůležitější mechanické zkoušky. Cílem je stanovit tahový diagram a určit základní mechanické charakteristiky (R e, R m, A, Z), případně další napěťové a deformační charakteristiky, např. R 0,005, ε f atd. Tahový diagram vyjadřuje závislost F L, nebo po přepočtu ε při zkoušce jednoosým tahem. 48
49 (c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. 2 - Mechanické vlastnosti I Tahový diagram pro různé materiály 49
50 Tahové diagramy různých materiálů 1. Nízkouhlíková ocel 2. Litina s lupínkovým grafitem 3. Polystyren 4. Polyethylen 5. Kaučuk 6. Keramické materiály 50
51 Zkušební vzorky Zkušební tyče se používají: válcové (d 0 3mm) se závitovými hlavami s osazenými hlavami s válcovými hlavami 2. ploché a*b (a 0.5mm) 51
52 engineering stress 2 - Mechanické vlastnosti I Tahový diagram F max y Typical response of a metal strain engineering strain 52
53 napětí 2 - Mechanické vlastnosti I Tahový diagram s horní a dolní mezí kluzu Lüdersovy čáry Lüdersova deformace deformace 53
54 Charakteristiky určované ze zkoušky tahem 54
55 Tahový diagram 55
56 Stanovení meze kluzu 56
57 Tahový diagram s výraznou mezí kluzu vliv teploty Smluvní tahový diagram oceli Smluvní napětí [MPa] C 500 C 0 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 Poměrná deformace [-] 57
58 Tahový diagram bez výrazné meze kluzu Tahový diagram oceli C Smluvní napětí [MPa] ,000 0,050 0,100 0,150 0,200 0,250 0,300 Poměrná deformace [-] 58
59 Tahová houževnatost f w d [ J 0 ] w p.plastická složka t.h. w e elastická složka t.h. 59
60 Měření tvrdosti 60
61 Tvrdost Tvrdost je mechanická vlastnost definovaná jako odpor, který klade materiál proti vnikání cizího tělesa Podstata metod měření tvrdosti se zakládá na vtlačování malého tělíska (indentoru) do povrchu zkoušeného materiálu určitou silou za definovaných podmínek. Měřítkem tvrdosti je velikost stopy, která vznikla vtlačováním tělesa vhodného tvaru a z dostatečně tvrdého materiálu (Zkoušky tvrdosti se podle charakteru zátěžné síly dělí na statické a dynamické.) 61
62 Měření tvrdosti podle Brinella Indentor : tvrdokovová kulička D = 10 mm (případně 5, 2,5 nebo až 1 mm) Zátěžná síla : F = 3000 Kp Doba zatěžování : sec. Zápis : např. 250 HB Výsledná tvrdost má povahu napětí 62
63 Měření tvrdosti podle Vickerse Indentor : Diamantový pravidelný čtyřboký jehlan s vrcholovým úhlem 136 Zátěžná síla : F = 30 Kp Doba zatěžování : sec. Zápis : např. 250 HV Výsledná tvrdost má povahu napětí 63
64 Měření tvrdosti podle Rockwella Indentor : Diamantový kužel s vrcholovým úhlem 120 nebo kalená ocelová kulička D =1/16 (1,5875 mm) Zátěžná síla : F = F 0 +F 1 Doba zatěžování : 3-6 sec. Zápis : např. 89 HRB (kulička) 52 HRC (HRA) (kužel) 64
65 Zkouška rázem v ohybu 65
66 Zkušební zařízení (Charpyho kladivo) 66
67 Zkušební tělesa s V-vrubem s U-vrubem 67
68 Nárazová práce a vrubová houževnatost Nárazová práce = Potenciální energie kladiva před zkouškou - Potenciální energie kladiva po zkoušce K = m*g*h - m*g*h [J] Vrubová houževnatost KCV KV S 0 [ J cm 2 ] KCU KU S 0 [ J cm 2 ] 68
69 Teplotní závislost nárazové práce u různých materiálů 2 - Mechanické vlastnosti I 69
70 Tranzitní chování, tranzitní teploty 70
71 71
72 Historická vložka: April 14, 1912, R.M.S. Titanic 2 - Mechanické vlastnosti I 72
73 Doporučená literatura Ptáček, L. a kol.: Nauka o materiálu I. Akademické nakladatelství CERM, Brno, 2001, (2. opravené a doplněné vydání 2003) Pluhař, J. a kol.: Nauka o materiálech. SNTL, Praha, 1989 Askeland, D.R.- Phulé, P.P.: The Science and Engineering of Materials. Thomson-Brooks/Cool, 4th ed (5th ed. 2005) Callister, W.D., Jr.: Materials Science and Engineering. An Introduction. John Wiley & Sons, Inc., 6th ed.,
74 Deformační zpevnění monokrystalu Zpevnění kovu s mřížkou FCC Zpevnění kovu s mřížkou BCC Zpevnění kovu s mřížkou HCP 74
ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
Plastická deformace a pevnost
Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových
Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů
Nauka o materiálu Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které lze získat
Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů
Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které
Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.
Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných
18MTY 1. Ing. Jaroslav Valach, Ph.D.
18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce
Poruchy krystalové struktury
Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch
Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?
Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I
NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností
Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.
Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.0029 Statické zkoušky (pevnost, tvrdost) Dynamické zkoušky (cyklické,
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Požadavky na technické materiály
Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
Přetváření a porušování materiálů
Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
Zkoušky vlastností technických materiálů
Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:
BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky
Téma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 5 _ Z K O U Š K Y M A T E R I Á L U _ P W P
A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 5 _ Z K O U Š K Y M A T E R I Á L U _ P W P Název školy: Číslo a název projektu: Číslo a název šablony
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 14.10.2012
Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_17 Název materiálu: Mechanické vlastnosti materiálů Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí mechanické vlastnosti
DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.
DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -
Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5
Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru
Vlastnosti a zkoušení materiálů typové otázky ke zkoušce
Vlastnosti a zkoušení materiálů typové otázky ke zkoušce Přednáška č. 1 Definujte pojem materiál. Vyjmenujte degradradační procesy materiálů. Stručně popište Bohrův model atomu. Jaké znáte druhy vazeb
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)
NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu
Minule vazebné síly v látkách
MTP-2-kovy Minule vazebné síly v látkách Kuličkový model polykrystalu kovu 1. Vakance 2. Když se povede divakance, je vidět, oč je pohyblivější než jednovakance 3. Nejzávažnější je ovšem prezentování zrn
Struktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky.
Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky. 1. Stavba atomu a čísla charakterizující strukturu atomu 2. Valenční elektrony co to je, proč jsou důležité, maximální počet a proč
Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep
Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti 1 Obsah Teoretický úvod... 3 Rozdělení pevných látek... 3 Mechanické vlastnosti pevných
A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku
1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram
OVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
Stavební hmoty. Přednáška 3
Stavební hmoty Přednáška 3 Mechanické vlastnosti Pevné látky Pevné jsou ty hmoty, které reagují velmi mohutně proti silám působícím změnu objemu i tvaru. Ottova encyklopedie = skupenství, při kterém jsou
Porušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012
Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či
Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň
Pracoviště zkušební laboratoře: 1. Zkušebna Analytická chemie 2. Zkušebna Metalografie 3. Mechanická zkušebna včetně detašovaného pracoviště Orlík 266, 316 06 Plzeň 4. Dynamická zkušebna Orlík 266, 316
Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky
Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících
Nauka o materiálu typové otázky ke zkoušce
Nauka o materiálu typové otázky ke zkoušce Přednáška č. 1 Definujte pojem materiál. Vyjmenujte degradradační procesy materiálů. Stručně popište Bohrův model atomu. Jaké znáte druhy vazeb mezi atomy? Rozdělte
TEORIE TVÁŘENÍ. Lisování
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 2299 příspěvková organizace zřízená HMP Lisování TEORIE TVÁŘENÍ TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM, STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
3.2 Mechanické vlastnosti
3.2 Mechanické vlastnosti Mechanickými vlastnostmi je kvantitativně hodnoceno chování materiálu za působení vnějších mechanických sil. Mezi základní mechanické vlastnosti patří pružnost, pevnost, plasticita,
DESTRUKTIVNÍ ZKOUŠKY SVARŮ II.
DESTRUKTIVNÍ ZKOUŠKY SVARŮ II. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -
Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,
BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.
Elektrická vodivost - testové otázky:
Elektrická vodivost - testové otázky: 1) Elektrický náboj (proud) je přenášen? a) elektrony b) protony c) jádry atomu 2) Elektrický proud prochází pouze kovy? a) ano b) ne 3) Nejlepšími vodiči elektrického
2. Molekulová stavba pevných látek
2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se
MŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)
Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická
LETECKÉ MATERIÁLY. Úvod do předmětu
LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých
Úloha 12. Mechanické vlastnosti pevných látek (zejména kovů)
Úloha 12. Mechanické vlastnosti pevných látek (zejména kovů) prof. RNDr. Bohumil Vlach, CSc. a doc. Ing. Rudolf Foret, CSc. Ústav materiálových věd a inženýrství, FSI VUT Brno 12.1 Úvod 12.1.1 Základní
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV KONSTRUOVÁNÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN SROVNÁNÍ VYBRANÝCH
Mechanické vlastnosti pevných látek
Mechanické vlastnosti pevných látek reakce na mechanické zatěžování v závislosti na poměru vnějších deformačních a vnitřních vazebných sil. namáhání v tahu, tlaku, smyku, zkrutu, ohybu, působící síla pevnou
Reologické modely technických materiálů při prostém tahu a tlaku
. lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu
1. cvičení. Strojírenské materiály
1. cvičení Strojírenské materiály Akademický rok 2007 / 2008 2 / 40 Program cvičen ení 1. Elastická, anelastická a plastická deformace 2. Zkouška tahem kovy 3. Diskontinuální průběh síly na mezi kluzu,
Stavební hmoty. Přednáška 3
Stavební hmoty Přednáška 3 Mechanické vlastnosti Pevné látky Pevné jsou ty hmoty, které reagují velmi mohutně proti silám působícím změnu objemu i tvaru. Ottova encyklopedie = skupenství, při kterém jsou
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné
Mechanické vlastnosti pevných látek
Mechanické vlastnosti pevných látek reakce na mechanické zatěžování v závislosti na poměru vnějších deformačních a vnitřních vazebných sil. namáhání v tahu, tlaku, smyku, zkrutu, ohybu, působící síla pevnou
Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Jižní Předměstí, Plzeň
Pracoviště zkušební laboratoře: 1. Zkušebna metalografie Tylova 1581/46, 301 00 Plzeň 2. Mechanická zkušebna Tylova 1581/46, 301 00 Plzeň 3. Dynamická zkušebna Orlík 266/15, Bolevec, 316 00 Plzeň korespondenční
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné
Zkoušky rázem. Vliv deformační rychlosti
Zkoušky rázem V provozu působí často na strojní součásti síla, která se cyklicky mění, popř. Její působení je dynamického charakteru. Rázové působení síly je velmi nebezpečné, neboť to může iniciovat náhlou
Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22
Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI Jaroslav Krucký, PMB 22 SYMBOLY Řecká písmena θ: kontaktní úhel. σ: napětí. ε: zatížení. ν: Poissonův koeficient. λ: vlnová délka. γ: povrchová
Fyzikální těmito vlastnosti se zabývá fyzika a patří sem např. teplota tání, délková a objemová roztažnost, tepelná vodivost atd.
Vlastnosti materiálu Rozdělení vlastností : Abychom mohli správně a hospodárně použít materiál, musíme dobře znát jeho vlastnosti ( některé typické vlastnosti přímo určují jeho použití např. el. Vodivost,
Namáhání na tah, tlak
Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
POLOTOVARY VYRÁBĚNÉ TVÁŘENÍM ZA TEPLA
POLOTOVARY VYRÁBĚNÉ TVÁŘENÍM ZA TEPLA Obsah: 1) Teorie tváření 2) Druhy mřížek 3) Vady mřížek 4) Mechanismus plastické deformace 5) Vliv teploty na plastickou deformaci 6) Způsoby ohřevu materiálu 7) Stroje
Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství
1.5 Fyzikální degradace materiálů Dalibor Vojtěch, Pavel Novák ml., Ústav kovových materiálů a korozního inženýrství 1.5.1. Plastická deformace Při zatěžování materiálu mechanickou silou dojde k jeho deformaci,
Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň
Pracoviště zkušební laboratoře: 1. Materiálová zkušebna včetně detašovaného pracoviště Orlík 266/15, Bolevec, 316 00 Plzeň 2. Dynamická zkušebna Orlík 266/15, Bolevec, 316 00 Plzeň korespondenční adresa:
Nástrojové oceli. Ing. Karel Němec, Ph.D.
Nástrojové oceli Ing. Karel Němec, Ph.D. Rozdělení nástrojových ocelí podle chemického složení dle ČSN EN Podle ČSN EN-10027-1 Nástrojové oceli nelegované C35U (19065) C105U (19191) C125U (19255) Nástrojové
Tváření. produktivní metody výroby polotovarů a hotových výrobků, které se dají dobře mechanizovat i automatizovat (velká výkonnost, minimální odpad)
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace materiálů. Děkuji Ing. D. Kavková
Pevnost kompozitů obecné zatížení
Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní
BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU
BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU MECHANICKÉ VLASTNOSTI BIOLOGICKÝCH MATERIÁLŮ Viskoelasticita, nehomogenita, anizotropie, adaptabilita Základní parametry: hmotnost + elasticita (akumulace
tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání
tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání Reologie obor mechaniky - zabývá obecnými mechanickými vlastnostmi látek vztahy mezi napětím, deformacemi
Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ
DIEVAR DIEVAR 2 DIEVAR Charakteristika DIEVAR je Cr-Mo-V legovaná vysoce výkonná ocel pro práci za tepla s vysokou odolností proti vzniku trhlin a prasklin z tepelné únavy a s vysokou odolností proti opotřebení
Únava (Fatigue) Úvod
Únava (Fatigue) Úvod Únavové křivky napětí - historie 9. století rozvoj technického poznání rozšíření možnosti využití oceli a kovových materiálů v běžné praxi. Rozvoj železniční dopravy parní lokomotiva
Laboratoř mechanického zkoušení kovových materiálů
Teorie Mechanickým zkoušením materiálu rozumíme sledování jeho vlastností při působení mechanických sil. Působení vnější mechanické síly na těleso vyvolá změnu jeho tvaru - deformaci. Velikost a charakter
Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008
Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl
Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života
Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu
Polotovary vyráběné tvářením za studena
Polotovary vyráběné tvářením za studena Úvodem základní pojmy z nauky o materiálu Krystalová mřížka Krystalová mřížka je myšlená konstrukce, která vznikne, když krystalem proložíme tři vhodně orientované
2. VNITŘNÍ STAVBA MATERIÁLŮ
2. VNITŘNÍ STAVBA MATERIÁLŮ 2.1 Krystalová mřížka Atomy - Bohrův model (kladně nabité jádro + elektronový obal) Energetické stavy elektronů - 3 kvantová čísla (hlavní, vedlejší, magnetické - Pauliho princip
OVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUE OF MATERIALS SCIENCE AND ENGINEERING
Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
2 MECHANICKÉ VLASTNOSTI SKLA
2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost
ČSN EN ISO 472 ČSN EN ISO
Související normy: ČSN EN ISO 3834-1 až 6 - Požadavky na jakost při tavném svařování kovových materiálů, tj. s aplikací na plasty. (Využití prvků kvality pro oblast svařování a lepení plastů) ČSN EN ISO
Mechanické zkoušky ZKOUŠKY TVRDOSTI MATERIÁLU
Mechanické zkoušky ZKOUŠKY TVRDOSTI MATERIÁLU Základní pojmy tvrdost - odpor, který klade materiál proti vnikání cizího tělesa tvrdost materiálů - mimořádná důležitost - zjišťuje se nejrychleji, nejlevněji,
Kontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
Poškození strojních součástí
Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami
1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu
Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr
DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ
Úvod PLASTICITA DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ I. Návrh konstrukce z "mezního stavu Zahrnuje relativně malá plastická přetvoření často stejného řádu jako jsou souběžná elastická přetvoření. Analýza
SVÚM a.s. Zkušební laboratoř vlastností materiálů Tovární 2053, Čelákovice
Pracoviště zkušební laboratoře: 1. Pracoviště Čelákovice 2. Pracoviště Praha Areál VÚ, Podnikatelská 565, 190 11 Praha-Běchovice 1. Pracoviště Čelákovice Pracoviště je způsobilé aktualizovat normy identifikující