LIMIT RESPONSE OF MASONRY PLATE STRUCTURE UNDER EXPLOSION EFFECT
|
|
- Kamil Navrátil
- před 6 lety
- Počet zobrazení:
Transkript
1 LIMIT RESPONSE OF MASONRY PLATE STRUCTURE UNDER EXPLOSION EFFECT D. Makovička *, D. Makovička ** Summary: The paper is based on the variant dynamic response analysis of a masonry wall structure loaded by the shock pressure waves produced by the explosion of a methane-air mixture on the rear side of the masonry partition. The theoretical analysis is compared with the results of experimental verification. The manner of dynamic response is discussed, both the origin of the first cracks in the structure and the collapse of the whole structure in dependence on the load overpressure time function, tensile stresses in the joints and on the deflections of the structure. Finally, the paper derives the principles of the failure of the masonry structure also for the relatively long duration of the explosion. 1. Úvod Při zatížení zděných konstrukcí stěn a příček budov tlakovou vlnou jsou tyto konstrukce namáhány především ohybem. U tlakových vln s délkou trvání v řádu sekund lze očekávat odezvu konstrukce přibližně jako kvazistatickou doba působení tlakové vlny je dostatečně dlouhá ve srovnání s nejnižší vlastní periodou ohybového kmitání. Dynamická složka odezvy, kterou představuje kmitání konstrukce na nejnižších vlastních tvarech, je pak relativně malá. Kromě ohybu od působení tlakové vlny je zděná stěnodesková konstrukce také předepnuta zatížením od své vlastní tíhy a od případného stálého zatížení z vyšších podlaží. I přes toto statické přitížení je však rozhodujícím normovým kritériem pro posouzení bezpečnosti konstrukce pevnost zdiva v tahu za ohybu podle ČSN Překročení normové návrhové pevnosti zdiva podle ČSN nemusí nutně vést k celkové havárii konstrukce a dokonce přetvoření takto přetížené konstrukce mohou být stále v lineárně pružné oblasti bez zbytkových trvalých přetvoření. To ovšem znamená, že normová pevnost zdiva podle normy není skutečnou pevností, ale smluvenou hodnotou s jistou dostatečně vysokou bezpečností. Tento příspěvek je věnován odvození charakteristik degradace materiálu konstrukce při opakovaných zatíženích až do okamžiku porušení konstrukce, na základě porovnání experimentálně získaných výsledků s výpočty odezvy výpočetního modelu. * ** Doc. Ing. Daniel Makovička, DrSc.: České vysoké učení technické v Praze, Kloknerův ústav; Šolínova 7, Praha 6; tel.: , fax: ; makovic@klok.cvut.cz Ing. Daniel Makovička, Statika a dynamika konstrukcí; Šultysova 170, Kutná Hora; tel.: ; d.makovicka@makovicka.cz
2 2. Konstrukce a její charakteristiky Experimentální část práce byla provedena ve spolupráci s Vědeckovýzkumným uhelným ústavem v Ostravě Radvanicích v jeho pokusné štole ve Štramberku. Do štoly byla vestavěna opěrná železobetonová přehradní konstrukce, která umožnila postupně provádět zkoušky na zděných příčkových konstrukcích o různých tloušťkách. Pro stavbu zdí bylo použito plných cihel o formátu mm a pevnostního označení P10 a vápenocementové malty značky 4 pro zeď 65 mm a značky 10 pro zeď 290 mm. Pro výpočtovou část práce byl vytvořen výpočetní model konstrukce, který zahrnoval opěrnou železobetonovou přehradní konstrukci štoly, zděnou příčku a válcované ocelové profily, do kterých byla zděná příčka vetknuta, viz obr.1. Zděná příčka o rozměrech mm byla uvažována jako vetknutá do ocelového rámu z válcovaných U profilů. Tloušťka modelované příčky byla variantně 65 mm nebo 290 mm. Obr.1 Výpočtový model přehradní stěny se dvěma odlehčovacími otvory a vestavěnou obdélníkovou příčkou 3. Zatížení a odezva konstrukce Zatížení příčky bylo realizováno opakovanými výbuchy methanovzdušné směsi v komoře za rubem přehradní stěny. Na obr.2 jsou uvedeny normalizované naměřené časové průběhy zatížení při jednotlivých zkouškách při sérii měření č.4 na zděné příčce o tloušťce 65 mm. Z porovnání křivek je zřejmá velmi dobrá podobnost jejich tvaru a tedy i velmi podobný způsob zatížení konstrukce. Průběh zkoušky 7 na obr.2 je atypický, protože při ní došlo k destrukci zděné příčky.
3 Obr.2 Normalizované časové průběhy zatížení přehradní konstrukce, generované výbuchem Obr.3 Naměřený průhyb ve středu příčky spolu se zatížením
4 Odezva zděné konstrukce na zatížení byla měřena v průhybech (obr.3). Maximální dosažené průhyby jsou spolu se zatížením a dalšími charakteristikami uvedeny v tab.1 (pro zeď tloušťky 65 mm) a v tab.2 (pro zeď tloušťky 290 mm). Vliv klesajícího modulu deformace s opakovaným zatížením se projevuje i na poklesu jednotlivých vlastních frekvencí konstrukce (tab.3). Výpočty byly provedeny variantně pro možná rozmezí modulu přetvárnosti zdiva E def odpovídající velikosti namáhání podle ČSN Příklad výpočtu je na obr.4 (použita byla zatěžovací křivka z měření č.4 a ze zkoušky 6). Obr.4 Vypočtené časové průběhy průhybu pro různé moduly přetvárnosti zdiva Tab.1 Maximální naměřené charakteristiky zatížení a odezvy cihelné zdi tloušťky 65 mm Číslo p max y max y* max E def σ c σ t σ s r tfd ψ ψ* [kpa] [mm] [mm] [MPa] [kpa] [kpa] [kpa] [-] [deg] [%] Měření 4, zkouška: 2 6,23 Neměřen 3 2,09 4,821 2, ,552 18% 4 2,41 6,506 2, ,746 25% 5 6,76 22,640 3, ,594 86% 6 6,72 23,952 3, ,744 91% 7 5,79 Destrukce
5 Číslo p max y max y* max E def σ c σ t σ s r tfd ψ ψ* [kpa] [mm] [mm] [MPa] [kpa] [kpa] [kpa] [-] [deg] [%] Měření 5, zkouška: 1 5,23 12,859 2, ,473 49% 2 4,30 9,618 2, ,102 37% 3 3,75 9,144 2, ,048 35% 4 7,06 Destrukce Výpočet: A 1,00 2,145 2, ,246 8% B 1,00 3,058 3, ,350 12% C 1,00 6,252 6, ,716 24% Tab.2 Maximální naměřené charakteristiky zatížení a odezvy cihelné zdi tloušťky 290 mm Číslo p max y max y* max E def σ c σ t σ s r tfd ψ ψ* [kpa] [mm] [mm] [MPa] [kpa] [kpa] [kpa] [-] [deg] [%] Měření 3, zkouška: 1 20,50 0,183 0, ,021 0,7% 2 42,00 0,450 0, ,052 1,7% 3 38,00 0,396 0, ,045 1,5% 4 52,00 0,580 0, ,066 2,2% 5 93,00 1,381 0, ,158 5,3% 6 39,09 0,452 0, ,052 1,7% 7 67,08 0,922 0, ,106 3,5% 8 109,25 1,980 0, ,227 7,6% 9 51,08 0,808 0, ,093 3,1% Výpočet: A 1,00 0,013 0, ,8 17,1 18,4 0,5 0,002 0,1% B 1,00 0,017 0, ,8 17,1 18,4 0,5 0,002 0,1% C 1,00 0,026 0, ,8 16,9 19,1 0,5 0,003 0,1% D 1,00 0,036 0, ,8 17,0 18,8 0,5 0,004 0,1% E 1,00 0,071 0, ,8 16,9 19,5 0,5 0,008 0,3%
6 Vysvětlivky k veličinám v tabulkách tab.1 a tab.2: E def... modul přetvárnosti, p max... maximální přetak zatížení, y max... maximální průhyb, y* max... průhyb přepočtený pro maximální přetlak 1 kpa, σ c... maximální tahové napětí ve středu zdi, σ t... maximální tahové napětí u horního okraje zdi, σ s... maximální tahové napětí u bočního okraje zdi, r tfd... násobek překročení návrhové pevnosti v tahu za ohybu, ψ... natočení středu stěny, ψ*... dosažení úhlu lomu ve středu stěny (3 deg). Tab.3 Vypočtený posun nejnižších tří vlastních frekvencí cihelných příček s klesajícím modulem přetvárnosti E def E def [MPa] Zeď tloušťky 65 mm Vlastní frekvence [Hz] Zeď tloušťky 290 mm f (1) f (2) f (3) f (1) f (2) f (3) ,46 223,22 223, ,52 195,53 208, ,92 22,96 29,43 55,89 157,67 168, ,77 19,14 24,52 45,67 128,01 137, ,64 13,58 17,39 33,52 93,26 100,46 4. Mikrozměny v materiálu zdiva při opakujícím se zatížení Při opakovaném zatěžování se pro obě tloušťky zděných konstrukcí projevuje nárůst průhybů, viz obr.5, obr.6, tab.1 a tab.2. Tento nárůst průhybů je v oblasti lineárně pružných deformací a po odeznění výbuchového zatížení se průhyb u většiny zkoušek vrací do původní nulové pozice, bez zbytkového trvalého přetvoření. Narůstající pružný průhyb zděné konstrukce ve směru působení ohybového zatížení lze vysvětlit změnou pevnostních charakteristik zdiva, tedy především jeho integrální veličiny modulu přetvárnosti E def. Podle ČSN [1] je sečnový modul přetvárnosti E def udáván ve dvou intervalech v závislosti na velikosti poměru skutečného napětí ve zdivu σ a výpočtové pevnosti zdiva v tlaku R d, a sice pro intervaly: 0 < σ < 2 / 3 k m R d a 2 / 3 k m R d < σ < k m R d (1)
7 Obr.5 Moduly přetvárnosti z naměřených a vypočtených průhybů desky tl. 65 mm Obr.6 Moduly přetvárnosti z naměřených a vypočtených průhybů desky tl. 290 mm
8 To znamená, že norma umožňuje stanovit pro konstrukci modul přetvárnosti až do k m násobku výpočtové pevnosti zdiva v tlaku R d. Z experimentálního ověřování odezvy obou zděných konstrukcí různé tloušťky vyplynulo, že modul E def pro počáteční dvoutřetinový interval lze použít pouze pro počáteční (první) zatížení konstrukce. Při opakovaném zatížení tento modul velmi razantně klesá až na přibližně dvoutřetinové hodnoty, ne však níže, než je uvedeno v normě [1] pro zatížení v blízkosti dvojnásobku překročení meze pevnosti v tlaku. Dalším výsledkem experimentálního testování ohybově namáhaného zdiva je skutečnost, že normová mez pevnosti zdiva v tahu za ohybu R tfd je stanovena s více než řádovou bezpečností. V tab.1 a tab.2 jsou přibližně dopočteny hodnoty násobku překročení pevnosti zdiva v tahu za ohybu R tfd při experimentálním zatížení. O způsobu porušení zdiva však tato mez pevnosti v tahu za ohybu R tfd nerozhoduje. Překročení meze pevnosti R tfd, ať již zdiva jako celku nebo jeho jednotlivých prvků (cihel a maltové výplně spár), sice vede ke vzniku trhlin, ale trhliny samotné nezpůsobují ztrátu stability zdiva a jeho celkovou havárii. 5. Způsob celkové destrukce příčkové konstrukce Při ohybovém zatížení zděné konstrukce rozhoduje o jejím porušení především vliv nadměrného průhybu. Kritériem porušení je mezní pootočení (úhel lomu), které je definováno jako úhel, který svírají dvě tuhé desky po vytvoření plastických kloubů ve středu a na okrajích rozpětí konstrukce v době těsně před porušením. Podle výsledků experimentů je tento úhel pro zdivo přibližně 3. V literatuře (Koloušek, 1967) je udávána tato veličina pro železobeton hodnotou od 2,3 ~3,4 (podle A. A. Gvozdeva) až po 5,7 (podle R. Saligera a E. Bittnera). V našem případě je úhel ψ mezního pootočení definován: kde ψ = 2 arctg (2 y / l ) (2) y... je maximální dosažený průhyb desky (ve středu rozpětí), l... je rozpětí konstrukce v kratším směru. Pokud bychom celkové porušení konstrukce odvozovali z normové pevnosti zdiva v tahu za ohybu, pak bezpečnost konstrukce před celkovou havárii je více než stonásobná. Porovnání dosažení natočení ψ s velikostí překročení pevnosti zdiva v tahu za ohybu je zřejmé z tab.1 a tab.2. U zdi tloušťky 65 mm se podařilo její zatěžování až do okamžiku celkové havárie. U zdi tloušťky 290 mm k celkové havárii nedošlo vzhledem k vybavení a možnostem pokusné štoly nebylo dále možné zvyšovat intenzitu výbuchového zatížení. V našem případě bylo pro danou geometrickou konfiguraci zkoušených zdí rozhodující mezní natočení zdiva ve směru kratšího (vodorovného) rozpětí ve střední části konstrukce. Naměřené průhyby zděné konstrukce v průběhu zkoušky umožňují porovnat předpokládaný vypočtený průhyb při zavedení do výpočtů variantně jednotlivých možných rozmezí modulu přetvárnosti. Z výsledků variant výpočtů A až E v porovnání s naměřenými maximálně dosaženými průhyby bylo možné stanovit hodnoty modulu přetvárnosti pro jednotlivá zatížení (obr.4). Modul přetvárnosti E def při opakovaných zatíženích konstrukce v blízkosti nebo nad výpočtovou mezí pevnosti klesá přibližně lineárně. Protože moment setrvačnosti průřezu se nemění v průběhu jednotlivých zatížení, platí odvozený trend závislostí pro modul přetvárnosti i pro ohybovou tuhost průřezu. Podrobnější údaje o napjatosti v konstrukci při jednotlivých zkouškách jsou zřejmé z tab.1 a tab.2.
9 6. Závěr Článek je zaměřen na analýzu odezvy zděné cihelné konstrukce při kvazistatickém namáhání ohybem v důsledku působení tlakové vlny výbuchu v délce trvání několika sekund. Odvozené závěry vyplývají z porovnání numerické analýzy problému s výsledky experimentů provedených na zdech o tloušťkách 65 mm a 290 mm. Na charakter přetváření konstrukce a tedy i na její správné modelování má rozhodující vliv historie zatížení. U zděné konstrukce vystavené opakujícímu se zatížení je dominantní změnou její odezvy nárůst průhybu. Zvětšování průhybu je způsobeno především postupnou degradací materiálových vlastností zdiva, které se projevuje snižováním ohybové tuhosti. Ohybovou tuhost materiálu popisuje modul přetvárnosti E def, který pro opakované namáhání v blízkosti meze pevnosti postupně klesá přibližně až na dvě třetiny počáteční hodnoty. V porovnání s hodnotami stanovenými podle normy ČSN lze konstatovat, že normové moduly přetvárnosti jsou celkově nižší, než experimentálně naměřené, v řádu jednotek až desítek procent. Rovněž lze doporučit, že pro namáhání blízké pevnosti zdiva je přesnější použít sečnové hodnoty modulu přetvárnosti. Pro rychlost poklesu modulu přetvárnosti je rozhodující opakování zatížení, při nichž je dosažena nebo překročena mez pevnosti materiálu v tlaku. Při jednotlivých zatíženích v okolí nebo nad mezí pevnosti dochází ke vzniku trhlin ve zdících prvcích i v maltové výplni spár. I při značném rozvoji trhlin a poklesu ohybové tuhosti však konstrukce jako celek nehavaruje. Pro posouzení okamžiku celkové havárie konstrukce je rozhodující dosažení mezního průhybu, který odpovídá natočení střednice konstrukce a dosažení úhlu lomu. S opakujícím se zatížením klesá ohybová tuhost a průhyb konstrukce roste, takže mezního průhybu může být později dosaženo i při menším zatížení, než jaké konstrukce předtím již přestála. Z provedených měření a výpočtů lze závěrem shrnout, že po zatížení zděné stěny na mezi její pevnosti nelze z pevnosti zdiva v tahu za ohybu usuzovat na rozsah poškození konstrukce. Zdivo i při výrazném a dokonce řádovém překročení této tahové pevnosti se sice poruší trhlinami, ale přetváří se dále bez výrazných trvalých deformací. Při opakovaném zatížení na mezi pevnosti však může degradace ohybové pevnosti materiálu způsobit dosažení mezního průhybu, při kterém se konstrukce poruší. 7. Poděkování Práce na této problematice byla podporována grantovým projektem GAČR: 103/03/0082 Nelineární odezva konstrukcí při mimořádných zatíženích a zatíženích způsobených pohybem člověka s pokračováním podpory projektem GAČR 103/06/1521 Spolehlivost a rizika konstrukcí v extrémních podmínkách. Autoři si dovoluji touto cestou vyslovit grantové agentuře za její podporu svůj dík. 8. Literatura ČSN (1980) Navrhování zděných konstrukcí, Český normalizační institut, Praha. Makovička, D. (2000) Failures of masonry structures by explosion effects, CTU Reports, Theoretical and Experimental Research in Structural Engineering, CTU Publishing House 2, Vol. 4, Prague, pp
10 Makovička, D. & Makovička, D., Jr. (2002) Dynamic response of thin masonry wall under explosion effect, Structures Under Shock and Impact VII, eds. Jones, N., Brebbia, C. A. & Rajedran, A. M., WIT Press, Southampton, pp Makovička, D., Král, J., Makovička, D., Jr. & Šelešovský, P. (2002) Analýza odezvy tenké cihelné příčky při výbuchu plynu za jejím rubem, Požární ochrana 2002, 1. část, VŠB-TU, Ostrava, str Makovička, D. & Makovička, D., Jr. (2003) Failure of masonry partition structure under explosion effect, CTU Reports, eds. Konvalinka P. & Máca, J., CTU in Prague, Fac. of Civ. Engn., Vol. 7, Prague, pp Makovička, D. & Makovička, D., Jr. (2003) Explosive failuring of masonry structure, Transactions of 17 th International Conference on SMiRT, ed. Vejvoda, S., University of Technology, p., Brno, pp. on CD. Janovský, B., Podstawka, T., Makovička, D., Horkel, J. & Vejs, L. (2003) Pressure wave generated in vented confined gas explosions, Experiment and Simulation, Transactions of 17 th International Conference on SMiRT, ed. Vejvoda, S., University of Technology, Brno p pp. on CD. Makovička, D. & Makovička, D., Jr. (2004) Failure of masonry under explosion effect, Structures Under Shock and Impact VIII, eds. Jones, N., Brebbia, C. A., WIT Press, Southampton, pp Koloušek, V. a kolektiv (1967) Stavebné konštrukcie namáhané dynamickými účinkami, SVTL, Bratislava.
Vliv opakovaných extrémních zatížení na ohybovou únosnost zdiva
Vliv opakovaných extrémních zatížení na ohybovou únosnost zdiva Doc. Ing. Daniel Makovička, DrSc. ČVUT v Praze, Kloknerův ústav, 166 08 Praha 6, Šolínova 7 Ing. Daniel Makovička, Jr. Statika a dynamika
Odezva konstrukce budovy a ohrožení jejích obyvatel výbuchem plynu
Odezva konstrukce budovy a ohrožení jejích obyvatel výbuchem plynu Doc. Ing. Daniel Makovička, DrSc. ČVUT v Praze, Kloknerův ústav, 166 08 Praha 6, Šolínova 7 Ing. Daniel Makovička, Jr. Statika a dynamika
STANOVENÍ ODEZVY KONSTRUKCE OD VÝBUCHU PLYNU
16. medzinárodná vedecká konferencia Riešenie krízových situácií v špecifickom prostredí, Fakulta špeciálneho inžinierstva ŽU, Žilina, 1. - 2. jún 2011 STANOVENÍ ODEZVY KONSTRUKCE OD VÝBUCHU PLYNU Miroslav
Navrhování stavební konstrukce při zatížení tlakovou vlnu od výbuchu Design of building structure loaded by explosion shock wave
Navrhování stavební konstrukce při zatížení tlakovou vlnu od výbuchu Design of building structure loaded by explosion shock wave Doc. Ing. Daniel Makovička, DrSc. */, Ing. Daniel Makovička **/ */ ČVUT
Náhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
Výpočtová analýza vlivu polohy výztuže na únosnost tenkostěnných střešních panelů
Výpočtová analýza vlivu polohy výztuže na únosnost tenkostěnných střešních panelů Daniel Makovička, ČVUT v Praze, Kloknerův ústav, Šolínova 7, 166 08 Praha 6, Česká republika & Daniel Makovička, jr., Statika
RESPONSE ANALYSIS OF BUILDING UNDER SEISMIC EFFECTS OF RAILWAY TRANSPORT
RESPONSE ANALYSIS OF BUILDING UNDER SEISMIC EFFECTS OF RAILWAY TRANSPORT D. Makovička *, D. Makovička ** Summary: Building structure in the vicinity of railway line is loaded by vibrations excited by passages
Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží
EXPERIMENTÁLNÍ VÝZKUM KLENEB Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží 1 Úvod Při rekonstrukcích památkově chráněných a historických budov se často setkáváme
EXPERIMENTÁLNÍ OVĚŘOVÁNÍ STYČNÍKŮ DŘEVĚNÉHO SKELETU EXPERIMENTAL VERIFICATION OF JOINTS IN TIMBER SKELETONS
EXPERIMENTÁLNÍ OVĚŘOVÁNÍ STYČNÍKŮ DŘEVĚNÉHO SKELETU EXPERIMENTAL VERIFICATION OF JOINTS IN TIMBER SKELETONS Ing. Jiří Karas, CSc, Ing. Milan Peukert Stavební fakulta ČVUT Praha Anotace : V rámci grantového
Analýza odezvy budovy zatížené venkovním výbuchem
Analýza odezvy budovy zatížené venkovním výbuchem Doc. Ing. Daniel Makovička, DrSc. */, Ing. Daniel Makovička **/ */ **/ ČVUT v Praze, Kloknerův ústav, 166 08 Praha 6, Šolínova 7, e-mail: makovic@klok.cvut.cz
5 Analýza konstrukce a navrhování pomocí zkoušek
5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které
VLIVY VIBRACÍ A ZPŮSOBU PROVEDENÍ PRŮMYSLOVÉ DRÁTKOBETONOVÉ PODLAHY NA JEJÍ PORUŠITELNOST
VLIVY VIBRACÍ A ZPŮSOBU PROVEDENÍ PRŮMYSLOVÉ DRÁTKOBETONOVÉ PODLAHY NA JEJÍ PORUŠITELNOST Doc. Ing. Daniel Makovička, DrSc. (1) Ing. Daniel Makovička (2) (1) České vysoké učení technické v Praze, Kloknerův
13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky
13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,
VYUŽITÍ NAMĚŘENÝCH HODNOT PŘI ŘEŠENÍ ÚLOH PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM
Proceedings of the 6 th International Conference on New Trends in Statics and Dynamics of Buildings October 18-19, 2007 Bratislava, Slovakia Faculty of Civil Engineering STU Bratislava Slovak Society of
NELINEÁRNÍ ODEZVA ŽELEZOBETONOVÉ RÁMOVÉ KONSTRUKCE NA SEIZMICKÉ ZATÍŽENÍ
NELINEÁRNÍ ODEZVA ŽELEZOBETONOVÉ RÁMOVÉ KONSTRUKCE NA SEIZMICKÉ ZATÍŽENÍ Karel Pohl 1 Abstract The objective of this paper describe a non-linear analysis of reinforced concrete frame structures and assignment
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů
NK 1 Konstrukce. Volba konstrukčního systému
NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník kombinovaného studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních
Navrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
Aktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
Prvky betonových konstrukcí BL01 11 přednáška
Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav
Použitelnost. Žádné nesnáze s použitelností u historických staveb
Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,
Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
Požární zkouška v Cardingtonu, ocelobetonová deska
Požární zkouška v Cardingtonu, ocelobetonová deska Modely chování konstrukcí za vysokých teplot při požáru se opírají o omezené množství experimentů na skutečných objektech. Evropské poznání je založeno
Spolehlivost a bezpečnost staveb zkušební otázky verze 2010
1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK
VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK Deformace elastomerových ložisek při zatížení Z hodnot naměřených deformací elastomerových ložisek v jednotlivých měřících místech (jednotlivé snímače deformace) byly
Cíle řešení. Způsob řešení
Cíle řešení Tento grant byl zaměřen na rekonstrukci historických kleneb. Jednou z možností rekonstrukce kleneb je její nadbetonování vrstvou vyztuženého betonu. Jako jedna z mála sanačních metod nenarušuje
Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová
KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování
VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES ŽELEZOBETONOVÁ
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Spolehlivost nosné konstrukce Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí ezní stav únosnosti,
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A12 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Navrhování zděných konstrukcí na účinky
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Programové systémy MKP a jejich aplikace
Programové systémy MKP a jejich aplikace Programové systémy MKP Obecné Specializované (stavební) ANSYS ABAQUS NE-XX NASTRAN NEXIS. SCIA Engineer Dlubal (RFEM apod.) ATENA Akademické CALFEM ForcePAD ANSYS
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Posouzení stability svahu
Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání
DRÁTKOBETON PRO PODZEMNÍ STAVBY
DRÁTKOBETON PRO PODZEMNÍ STAVBY ABSTRAKT Václav Ráček 1 Jan Vodička 2 Jiří Krátký 3 Matouš Hilar 4 V příspěvku bude uveden příklad návrhu drátkobetonu pro prefabrikované segmentové ostění tunelu. Bude
ŽELEZOBETONOVÁ SKELETOVÁ KONSTRUKCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES ŽELEZOBETONOVÁ
POSUDEK POLOTUHÝCH STYČNÍKŮ METODOU SBRA
IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 119 23.až 24.4.2003 Dům techniky Ostrava ISN 80-02-01551-7 POSUDEK POLOTUHÝCH STYČNÍKŮ METODOU SRA Abstract Vít
ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ
ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ Doporučená literatura: ČSN EN 99 Eurokód: zásady navrhování konstrukcí. ČNI, Březen 24. ČSN EN 99-- Eurokód : Zatížení konstrukcí - Část -: Obecná zatížení - Objemové tíhy,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ODSTRANĚNÍ PILÍŘE V NOSNÉ STĚNĚ REMOVING OF MASONRY PILLAR FROM LOAD BEARING WALL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES ODSTRANĚNÍ PILÍŘE
BL06 - ZDĚNÉ KONSTRUKCE
BL06 - ZDĚNÉ KONSTRUKCE Vyučující společné konzultace, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, individuální konzultace a zápočty: - Ing. Pavel Šulák,
VYUŽITÍ VÝSLEDKŮ MATEMATICKÉHO MODELOVÁNÍ PRO NÁVRH NOVÝCH KONSTRUKCÍ BEZPEČNOSTNÍCH HRÁZÍ
Doc. RNDr. Eva Hrubešová, PhD., Prof. Ing. Josef Aldorf, DrSc. Katedra geotechniky a podzemního stavitelství Fakulta stavební VŠB-TU Ostrava L. Podéště 1875, Ostrava-Poruba tel.: +420596991373, +420596991944
Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem
2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019
Experimentální mechanika
Vysoká škola báňská - Technická univerzita Ostrava 23. 3. 2013 Zjišťujeme parametry nových typů materiálů a konstrukcí Testujeme a monitorujeme stávající konstrukce Důvody pro experimentální zkoušení Nové
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
Pilotové základy úvod
Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet
6 Navrhování zděných konstrukcí na účinky požáru
6 Navrhování zděných konstrukcí na účinky požáru 6.1 Úvod Navrhování stavebních konstrukcí na účinky požáru je nezbytnou součástí projektové dokumentace. Zděné konstrukce, které jsou užívané na nosné i
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů Stavební konstrukce Adresa.: Střední průmyslová
Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)
KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka
Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017
Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním
Základní výměry a kvantifikace
Základní výměry a kvantifikace Materi l Hmotnost [kg] Povrch [m 2 ] Objemov hmotnost [kg/m 3 ] Objem [m 3 ] Z v!sy 253537,3 1615,133 7850,0 3,2298E+01 S 355 Ðp" #n ky a pylony 122596,0 637,951 7850,0 1,5617E+01
DRÁTKOBETON PRO SEGMENTOVÁ OSTĚNÍ TUNELŮ
Sborník 19. Betonářské dny (2012) ISBN 978-80-87158-32-6 Sekce XXX: YYY DRÁTKOBETON PRO SEGMENTOVÁ OSTĚNÍ TUNELŮ Václav Ráček 1 Hlavní autor Jan Vodička 1 Jiří Krátký 1 Matouš Hilar 2 1 ČVUT v Praze, Fakulta
BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI
BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI doc. Ing. Miloš Zich, Ph.D. Ústav betonových a zděných konstrukcí VUT FAST Brno 1 OSNOVA 1. Co je to mezní stav použitelnosti (MSP)?
Sendvičové panely únosnost při celoplošném zatěžování
Sendvičové panely únosnost při celoplošném zatěžování Protokol o zkoušce Výrobce a dodavatel: ISMAT solution, s.r.o. Dolení 184, 411 85 Horní Beřkovice Obchodní rejstřík vedený u Krajského soudu v Ústí
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Část 3: Analýza konstrukce. DIF SEK Část 3: Analýza konstrukce 0/ 43
DIF SEK Část 3: Analýza konstrukce DIF SEK Část 3: Analýza konstrukce 0/ 43 Požární odolnost řetěz událostí Θ zatížení 1: Vznik požáru ocelové čas sloupy 2: Tepelné zatížení 3: Mechanické zatížení R 4:
POSUDEK PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ NOSNÉ SOUSTAVY S PŘIHLÉDNUTÍM K MONTÁŽNÍM TOLERANCÍM
I. ročník celostátní konference SPOLEHLIVOST ONSTRUCÍ Téma: Rozvoj koncepcí posudku spolehlivosti stavebních konstrukcí 5..000 Dům techniky Ostrava ISBN 80-0-0- POSUDE PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ
Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků
1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012
Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní
Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)
Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5
Interakce ocelové konstrukce s podložím
Rozvojové projekty MŠMT 1. Úvod Nejrozšířenějšími pozemními konstrukcemi užívanými za účelem průmyslové výroby jsou ocelové haly. Základní nosné prvky těchto hal jsou příčné vazby, ztužidla a základy.
Porušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM
PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM 1. Úvod Tvorba fyzikálních modelů, tj. modelů skutečných konstrukcí v určeném měřítku, navazuje na práci dalších řešitelských týmů z Fakulty stavební Vysokého
Posouzení mikropilotového základu
Inženýrský manuál č. 36 Aktualizace 06/2017 Posouzení mikropilotového základu Program: Soubor: Skupina pilot Demo_manual_36.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu GEO5 SKUPINA
BL06 - ZDĚNÉ KONSTRUKCE
BL06 - ZDĚNÉ KONSTRUKCE Vyučující společné konzultace, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, individuální konzultace a zápočty: - Ing. Pavel Šulák,
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem
Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním
Průvodní zpráva ke statickému výpočtu
Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství
Přednášející: Ing. Zuzana HEJLOVÁ
NAVRHOVÁNÍ ZDĚNÝCH KONSTRUKCÍ ČSN EN 1996 Přednášející: Ing. Zuzana HEJLOVÁ 28.3.2012 1 ing. Zuzana Hejlová NORMY V ČR Soustava národních norem (ČR - ČSNI) Původní soustava ČSN - ČSN 73 1201 (pro Slovensko
Sendvičové panely smykový test výplňového materiálu čtyřbodovým ohybem
Sendvičové panely smykový test výplňového materiálu čtyřbodovým ohybem Protokol o zkoušce Výrobce a dodavatel: ISMAT solution, s.r.o. Dolení 184, 411 85 Horní Beřkovice Obchodní rejstřík vedený u Krajského
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV POZEMNÍCH KOMUNIKACÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF ROAD STRUCTURES ADMINISTRATIVNÍ BUDOVA V BRNĚ ADMINISTRATIVE
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Posuzování betonových sloupů Masivní sloupy
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET
TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET realizačního projektu Akce: Investor: Místo stavby: Stupeň: Projektant statiky: KANALIZACE A ČOV TŘEBENICE - ČOV sdružený objekt obec Třebenice, 675 52 Lipník u Hrotovic
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení,
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝM ROZPĚTÍM NÁSLEDUJÍCÍCH POLÍ
P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝ ROZPĚTÍ NÁSLEDUJÍCÍCH POLÍ Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský
METODOU SBRA Miloš Rieger 1, Karel Kubečka 2
OHYBOVÁ ÚNOSNOST ŽELEZOBETONOVÉHO MOSTNÍHO PRŮŘEZU METODOU SBRA Miloš Rieger 1, Karel Kubečka 2 Abstrakt The determination of the characteristic value of the plastic bending moment resistance of the roadway
STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) DŘEVĚNÉ KONSTRUKCE
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) DŘEVĚNÉ KONSTRUKCE Uplatnění dřevěných konstrukcí v minulosti DŘEVĚNÉ KONSTRUKCE DŘEVĚNÉ KONSTRUKCE Uplatnění dřevěných konstrukcí
METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU.
METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU. THE METHODOLOGY OF THE BEAM STIFFNESS SUBSTITUTION CALCULATION. Jiří Podešva 1 Abstract The calculation of the horizontal mine opening steel support can be performed
DYNAMICKÝ EXPERIMENT NA SADĚ DŘEVĚNÝCH KONZOLOVÝCH NOSNÍKŮ
International Conference 7 Years of FCE STU, December 4-5, 28 Bratislava, Slovakia DYNAMICKÝ EXPERIMENT NA SADĚ DŘEVĚNÝCH KONZOLOVÝCH NOSNÍKŮ D. Lehký a P. Frantík 2 Abstract Proposed paper describes results
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NOSNÁ ŽELEZOBETONOVÁ KONSTRUKCE OBCHODNÍHO DOMU REINFORCED CONCRETE STRUCTURE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES NOSNÁ ŽELEZOBETONOVÁ
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Předpjatý beton 1. část - úvod Obsah: Podstata předpjatého
KIA ŽILINA ŽELEZOBETONOVÉ KONSTRUKCE V OBLASTI S VYSOKOU SEISMICITOU
KIA ŽILINA ŽELEZOBETONOVÉ KONSTRUKCE V OBLASTI S VYSOKOU SEISMICITOU Zdeněk Kolman, Daniel Makovička, Daniel Makovička,ml., Jiří Čížek 1 Úvod Příspěvek pojednává návrh konstrukce administrativní budovy
Prvky betonových konstrukcí BL01 5. přednáška
Prvky betonových konstrukcí BL01 5. přednáška Dimenzování průřezů namáhaných posouvající silou. Chování a modelování prvků před a po vzniku trhlin, způsob porušení. Prvky bez smykové výztuže. Prvky se
STATICKÉ POSOUZENÍ. Tel.: Projekční ateliér: Projektant: Ing. Alexandr Cedrych IČO: Razítko:
STATICKÉ POSOUZENÍ ENGINEERS CZ Tel.: +420 252546463 Projekční ateliér: IČO: 24127663 s.r.o. info@engineers-cz.cz Projektant: Ing. Alexandr Cedrych IČO: 43082734 Razítko: Kraj. úřad: Praha Investor: Vězeňská
Dodatečné zesilování a stabilizace tlačených stěn z cihelného zdiva pásy uhlíkové tkaniny
146 Dodatečné zesilování a stabilizace tlačených stěn z cihelného zdiva pásy uhlíkové tkaniny prof. Ing. Jiří WITZANY, DrSc., dr. h. c. doc. Ing. Tomáš ČEJKA, Ph.D. Ing. Radek ZIGLER, Ph.D. Ing. Jan KUBÁT