2 SEGMENTY Z DRÁTKOBETONU
|
|
- Miloslav Bartoš
- před 6 lety
- Počet zobrazení:
Transkript
1 Zkušenosti s využitím tunelových ostění z prefabrikovaných drátkobetonových segmentů M. Hilar 3G Consulting Engineers s.r.o. a FSv ČVUT v Praze, Praha, Česká republika J. Beňo Metrostav a.s. a FSv ČVUT v Praze, Praha, Česká republika ABSTRAKT: Drátkobeton začíná v současné době stále častěji nahrazovat standardní beton a železobeton. Rovnoměrně rozptýlené drátky ztužují strukturu prostého betonu a mění tak křehký prostý beton na houževnatý drátkobeton. Vhodným výběrem drátků, jejich zakomponováním do čerstvého prostého betonu při jeho výrobě, optimálním složením čerstvého betonu a optimálním postupem výroby je možné vyrobit prefabrikované drátkobetonové segmenty ostění, kterými je možné nahradit standardní železobetonové dílce. Využití drátkobetonu pro segmentová ostění tunelů je obecně ve světě rostoucí trend vzhledem k možným výhodám oproti běžným železobetonovým segmentům. Mezi hlavní výhody patří následující aspekty: Možnost snížení ceny konstrukce ostění tunelu Jednodušší a rychlejší výroba (odpadá výroba a osazení armokošů) Nižší nároky na prostor při výrobě (menší plochy potřebné pro skladování výztuže) Úspora oceli (úspora energie a omezení produkce CO2) Jednodušší osazení vybavení tunelu (odpadá nebezpečí navrtání výztuže) Snížení nebezpečí ulamování rohů a hran segmentů při manipulaci (nižší nároky na opravy) Nižší nároky na údržbu během doby životnosti Předpoklad delší životnosti (odpadá nebezpečí koroze výztuže) Z uvedených důvodů byl drátkobeton pro segmentová ostění využit na řadě projektů. Převážně se jednalo o tunely menších profilů (vodovodní, plynovodní či teplovodní tunely), v některých případech šlo o úseky metra (Londýn, Barcelona, Neapol). Nejrozsáhlejší využití drátkobetonových segmentů bylo na tunelech pro vysokorychlostní železnici Paříž Londýn (projekt Channel Tunnel Rail Link - CTRL), kde bylo pomocí plnoprofilových tunelovacích strojů postaveno 2 x 24 km jednokolejných tunelů, jejichž prefabrikované ostění bylo složeno z drátkobetonových segmentů bez použití běžně užívané ocelové výztuže. Problematika využití drátkobetonu pro segmentová ostění tunelů včetně dosavadních aplikací je v příspěvku podrobněji probrána. 1 OSTĚNÍ Z PREFABRIKOVANÝCH SEGMENTŮ Vývoj moderních tunelovacích metod a materiálů zásadně zefektivnil, zatraktivnil a v neposlední řadě zrychlil výstavbu podzemních konstrukcí. Počet realizovaných staveb rok od roku stoupá. V závislosti na geologických podmínkách, výšce nadloží, hladině podzemní vody, průměru tunelu a jeho délce se v dnešní době především používá buď tzv. konvenční ražba (zpravidla NRTM) nebo mechanizovaná ražba pomocí plnoprofilových tunelovacích strojů (technologie TBM). S prováděním mechanizovaných ražeb pomocí štítů úzce souvisí realizace definitivní konstrukce ostění, která je budována bezprostředně na místě ražby přímo za tunelovacím strojem (obrázek1). Toto ostění kruhového tvaru je tvořeno prstenci, které jsou zpravidla složeny z prefabrikovaných železobetonových segmentů, jednotlivé dílce jsou umísťovány do požadované pozice pomocí erektoru (hydraulické rameno v zadní části tunelovacího stroje). Jeden prstenec bývá většinou složen z několika tvarově shodných dílců, závěrečný dílec (klenák) bývá větši- 1
2 nou tvarově odlišný. Během výstavby jsou jednotlivé dílce spojovány pomocí šroubů a prostor mezi ostěním a horninovým masivem bývá vyplňován injektážní směsí. Segmenty z prefabrikovaného betonu mohou být instalovány po dosažení požadované pevnosti. Ostění tunelů ražených plnoprofilovými tunelovacími stroji je kruhové, což je výhodný tvar z hlediska zamezení vzniku vyšších ohybových momentů. V běžných geotechnických podmínkách jsou tedy segmenty tvořící prstenec kruhového ostění tunelu namáhány především tlakovými normálovými silami. Obrázek 3. Skladování prefabrikovaných železobetonových segmentů Obrázek 1. Ostění tunelu z prefabrikovaných betonových segmentů To však neplatí během výstavby. Segmenty musí odolávat namáhání ohybovými momenty během vyndávání z forem (obrázek 2), během skladování (obrázek 3) a přepravy, dále musí odolávat silám vzniklým teplotním namáháním dílců, zejména však musí odolávat velkému zatížení hned po zabudování do ostění tunelu, které je vyvozeno hydraulickými lisy posouvající štít vpřed. Poslední ze zmiňovaných namáhání bývá často rozhodující pro návrh segmentů. 2 SEGMENTY Z DRÁTKOBETONU Drátkobeton je beton s příměsí krátkých ocelových vláken (drátků) obrázek 4. Ačkoliv je drátkobeton znám již delší dobu, jeho použití jako ostění tunelu je poměrně nové. Rovnoměrně rozptýlené krátké drátky ztužují strukturu prostého betonu a mění tak křehký prostý beton na houževnatý drátkobeton. Vhodným výběrem drátků, jejich zakomponováním do čerstvého prostého betonu při jeho výrobě, optimálním složením čerstvého betonu a optimálním postupem výroby je možné vyrobit prefabrikované drátkobetonové dílce ostění, kterými je možné nahradit standardní železobetonové dílce. Obrázek 4. Čerstvý drátkobeton (délka drátků je 60 mm) Obrázek 2. Manipulace se segmenty během výroby Délka drátků by měla odpovídat přibližně trojnásobku maximální velikosti zrna kameniva. Důvodem je dostatečné překlenutí trhlin, které se tvoří právě na hranicích jednotlivých zrn a zabránění vytrhnutí drátku z betonu při vzniku těchto trhlin. Aby byla zajištěna dostatečná odolnost proti vytrhnutí, bývají konce drátků ohnuté, rozšířené, apod. Nejběžnější je typ s oh- 2
3 nutými konci. Během vytrhávání drátku z betonu se musí ohnutý konec deformovat až do zcela rovného tvaru, čímž je odolnost proti vytrhnutí výrazně zvýšena. Díky jednoduššímu dávkování se někdy používají drátky slepené vodou rozpustným lepidlem. Tyto svazky se během míchání rozlepí a rovnoměrně rozmístí v betonové směsi. Polypropylenová vlákna nemohou být použita jako výztuž nosných betonových konstrukcí, protože mají nízký modul pružnosti (nižší než beton) a i při nízkém zatížení se značně deformují. Navíc ztrácí mechanické vlastnosti při 50 C a při 165 C tají. Polypropylenová vlákna je však možné do drátkobetonu či železobetonu přidávat a to z důvodu zvýšení požární odolnosti. Pro výrobu drátkobetonových segmentů se většinou používá beton třídy C40-C60. Velmi důležité je zajistit rovnoměrné rozmístění drátků, dobrou soudržnost drátků s betonem a dostatečnou zpracovatelnost směsi. Dávkování vláken se určuje pomocí teorie McKee, minimální množství vláken v kg/m 3 betonu závisí na jejich délce a tloušťce. Vzdálenost mezi vlákny určuje hustotu drátků a tím kvalitu vyztužení a neměla by být nižší než 0,45 délky vlákna. 3 POROVNÁNÍ DRÁTKOBETONOVÝCH A ŽELEZOBETONOVÝCH SEGMENTŮ Výrobní náklady drátkobetonových segmentů vycházejí mírně lépe než železobetonových, přestože vlastní materiál (ocelové drátky) je dražší než klasická betonářská výztuž. Úspory vznikají především díky nižším nárokům na práci, manipulaci a skladování. Počet segmentů poškozených při montáži je nižší. Dochází také k úspoře vlastní oceli, což má pozitivní vliv na redukci emisí vznikající při její výrobě. Deformace drátkobetonu při dosažení pevnosti betonu v tahu nevzroste skokově, ale díky rovnoměrně rozmístěným drátkům narůstá deformace pozvolna. To je způsobeno průběžným aktivováním drátků a jejich postupným vytrháváním z betonu (obrázek 5). Velikost trhlin zůstává nízká. Celková pevnost v tahu (ohybu) je však výrazně nižší než u železobetonu. Obrázek 5. Vytržení drátků z betonu při úplném porušení Chování železobetonu je odlišné. Při dosažení pevnosti betonu v tahu nastane nárůst deformace až do plné aktivace výztuže. Tak vzniknou větší trhliny než u drátkobetonu. Nicméně poté se deformace ustálí a rostou přibližně lineárně až do dosažení meze kluzu oceli. Ta je výrazně vyšší než pevnost drátkobetonu v tahu. Proto je drátkobetonové ostění vhodné především do podmínek s nízkým ohybovým namáháním, kam kruhové ostění z prefabrikovaných segmentů obecně patří. Pokud hrozí vznik většího ohybového namáhání segmentů, tak je nutné drátkobetonové segmenty opatřit i klasickou prutovou výztuží. Segmenty jsou namáhány velkými zatíženími způsobenými hydraulickými lisy tunelovacích strojů. Neopatrnou manipulací může docházet k nárazům do segmentů. Železobetonové segmenty jsou kvůli zajištění minimálního krytí výztuže při povrchu, hranách a rozích zcela nevyztuženy. Jejich namáhání je však v těchto místech nejkritičtější. Pokud dojde k nárazu nebo nadměrnému zatížení, pak se části železobetonových segmentů drolí a odlamují. Aby byla zaručena návrhová životnost konstrukce, musí se poškozené segmenty opravit nebo vyměnit, což je časově, finančně a technicky velmi nepříjemné. Použití ocelových drátků namísto klasické betonářské výztuže může být výhodnou alternativou. Drátky jsou po dílci rovnoměrně rozptýleny, minimální krytí výztuže pro zamezení koroze není relevantní. Orientace drátků je v prostoru chaotická, což umožňuje přenos tahových napětí všemi směry. Tím se výrazně zvyšuje odolnost segmentů proti odlamování, drolení a nárazu (obrázek 6). 3
4 Tím dochází k bezproblémovému přenosu tahových sil všemi směry. Pracnost s přípravou a umisťováním výztužného koše tudíž zcela odpadá. Výroba je jednodušší, dávkovací zařízení namíchá vlákna do betonu a směsí se poté vyplní forma. Spotřeba oceli dosahuje většinou kg/m 3, což je výrazně méně než u železobetonových segmentů. Obrázek 6. Odlamování hran železobetonových segmentů při zatížení lisy štítu (Herka & Schepers 2012) Nebezpečné pro drátkobetonové segmenty je, pokud je překročena pevnost v tahu drátkobetonu. Pak se drátkobetonové dílce také odlamují. Z tohoto hlediska je především nutné zabránit vzniku geometrických nepřesností, jak při výrobě, tak především při instalaci ostění, aby ohybové momenty působící na ostění byly co nejnižší. Základem dobré ochrany proti korozi je kvalita betonu (malá pórovitost a propustnost), která se dá dosáhnout malým vodním součinitelem, plastifikátory nebo použitím popílku. Čím je beton kvalitnější, tím lépe odolává karbonataci a agresi chloridových iontů a sulfátů. Výhodou drátkobetonu oproti železobetonu je nemožnost vzniku koroze. Drátky jsou ve směsi rozmístěny nerovnoměrně, zpravidla se nedotýkají navzájem, jsou zcela obklopeny a chráněny alkalickým prostředím betonu. Šíření koroze je tímto účinně zabráněno. Navíc se tím i minimalizuje nebezpečí poruch v důsledku nárůstu objemu korodující oceli. Drátky na povrchu konstrukce korodují a mohou způsobovat neestetické zbarvení povrchu betonu. Ze statického hlediska to však nehraje vůbec žádný význam. Pokud z estetických důvodů není žádoucí, aby ke korozi nedocházelo ani na povrchu konstrukce, tak je možné využít pozinkovaných vláken. Homogenně a všesměrně rozmístěné drátky dokáží přenášet tahová napětí ve všech směrech. Drátky účinně zabraňují rozevírání plastických trhlin např. od smršťování, což má pozitivní vliv na životnost konstrukce (přidáním drátků se šířka trhlin zmenší). Obrázek 7. Ocelové armokoše umísťované do forem při výrobě železobetonových segmentů Do železobetonových segmentů se zpravidla umísťuje výztuž ve formě tzv. ocelového armokoše (obrázek 7). Ten se skládá z výztužných sítí při vnějším a vnitřním povrchu segmentu oddělených přivařenými třmínky. Hlavní funkcí výztužných sítí je odolat napětím vzniklým při výrobě, skladování, přepravě a montáži. Tvar výztužného koše musí být kruhový, musí se bez problémů vejít do odlévací formy a respektovat minimální krytí výztuže. Vyztužení železobetonových segmentů dosahuje hodnot zpravidla mezi 65 a 120 kg/m 3. Drátkobetonový dílec je oproti tomu vyztužen pouze homogenně rozmístěnými drátky, všesměrně orientovanými. 4 PROJEKTY VYUŽÍVAJÍCÍ DRÁTKOBETONOVÉ SEGMENTY První pokusy o využití drátkobetonu jako konstrukčního materiálu při výstavbě tunelů začaly v první polovině 70. let 20. století, kdy proběhlo několik zkušebních použití segmentového ostění z drátkobetonu. V roce 1982 nastal výraznější nárůst využití drátkobetonu pro prefabrikované segmentové ostění tunelů. V jižní Itálii a na Sicílii bylo vybudováno několik vodovodních tunelů právě s tímto systémem ostění (celkem cca 20 km). Tato technologie se osvědčila a v roce 1992 byl poprvé použit drátkobeton pro výstavbu dopravního tunelu. Jednalo se prodloužení Neapolského metra v Itálii. 4
5 Obrázek 8. Drátkobetonové segmenty vyrobené a zkoušené v Československu v letech Za zmínku stojí i výzkum drátkobetonových segmentů v Československu (Krátký a kol. 1999). V letech byly provedeny série zkoušek na prefabrikovaném ostění sběrné kanalizační štoly kruhového průřezu o průměru 3,6 m. Prstenec byl složen ze šesti dílů o tloušťce 200 mm, navzájem spojených na pero a drážku (obrázek 8). Dávkovalo se poměrně hodně drátku (98 kg/m 3 ), drátky byly hladké a přímé. Byly provedeny zkoušky jednotlivých segmentů i celých prstenců. Zkouškami bylo ověřeno několikanásobné překročení požadované únosnosti a únosnost srovnatelná s železobetonovými segmenty. Zkouškami oblasti styku jednotlivých prvků byla doložena mnohonásobně vyšší spolehlivost proti mechanickému poškození. Stejné zvýšení bylo prokázáno i v oblasti hran prvků. Tyto skutečnosti jednoznačně potvrdily podstatné snížení potřebných oprav. Od té doby prvních zkoušek a aplikací byly drátkobetonové segmenty úspěšně nasazeny na několika desítkách projektů (Vandewalle 2005, Froněk 2011), především v rámci Evropské Unie, ale i jinde ve světě (Austrálie, USA, Brazílie, atd.). Převážně se stále jedná o tunely menších profilů (vodovodní, plynovodní či teplovodní tunely), v některých případech jde o úseky metra (Londýn, Barcelona obrázek 9, Neapol, Sao Paulo, Madrid, Janov) nebo o železniční tunely (Channel Tunnel Rail Link obrázek10, Oenzberg, atd.). Nicméně se již začínají objevovat první aplikace drátkobetonových segmentů pro silniční tunely - Brisbane Airport Link vnitřního profilu 11,34 m (Harding & Chappell 2012), Yokohama Circular Route Northern Section vnitřního profilu 11,5 m. Přehled některých projektů se základními údaji je uveden v Tab. 1 (Froněk 2011). Obrázek 9. Trasa 9 metra v Barceloně s drátkobetonovými segmenty Obrázek 10. Tunel CTRL s drátkobetonovými segmenty 5 ZÁVĚR Drátkobeton jako materiál má z pohledu prefabrikované výroby segmentů ostění pro tunely ražené plnoprofilovými tunelovacími štíty některé výhodné vlastnosti, z nichž pramení výhody drátkobetonových segmentů oproti segmentům železobetonovým. Proto byl drátkobeton pro segmentová ostění využit na řadě projektů. Převážně se jednalo o tunely menších profilů (vodovodní, plynovodní či teplovodní tunely), v některých případech šlo o úseky metra (Londýn, Barcelona, Neapol). Nejrozsáhlejší využití drátkobetonových segmentů bylo na tunelech pro vysokorychlostní železnici Paříž Londýn (projekt Channel Tunnel Rail Link - CTRL), kde bylo pomocí plnoprofilových tunelovacích strojů postaveno 2 x 24 km jednokolejných tunelů, jejichž prefabrikované ostění bylo složeno z drátkobetonových segmentů bez použití běžně užívané ocelové výztuže. V současné době provádí FSv ČVUT ve spolupráci firmou Metrostav a.s. výzkum drátkobetonových segmentů pro tunelová ostění. V rámci výzkumu byly realizovány zatěžovací zkoušky drátkobetonových segmentů v Kloknerově ús 5
6 tavu, výsledky některých zkoušek byly porovnávány se zkoušením železobetonových segmentů využívaných při výstavbě prodloužení trasy V.A. pražského metra. Tento příspěvek byl zpracován s podporou grantů GAČR P104/10/2023, TAČR TA a TA REFERENCE [1] King, M. R.: The Design and Use of Steel Fiber Reinforced Concrete Segments. Proceedings [2] Rapid Excavation and Tunnelling Conference [3] Maidl, B.: Steel Fibre Reinforced Concrete. Ernst & Sohn [4] Moyson, D.: Precast Tunnel Segments with Steel Fibre Reinforced Concrete A State of the Art. Bekaert Publication. [5] Rivaz, B.: Steel fiber reinforced concrete (SFRC): The use of SFRC in precast segment for tunnel lining. WTC 2008, Agra, India [6] Schnütgen, B: Design of Precast Steel Fibre Reinforced Tunnel Segments'. in Proc., RILEM TC 162- TDF Workshop. Bochum (Germany) [7] Vandewalle, M. Tunnelling is an Art [8] Woods, E., Shuttleworth, P., Fesq, C.: Steel Fiber Reinforced Tunnel Linings. Proceedings Ra-pid Excavation and Tunnelling Conference [9] Tsuno, K., Ochiai, E., Matsubara, K., Kondo, Y. Fireproof SFRC (Steel Fiber Reinforced Concre-te) Segments -The first application to road tunnels in the world. WTC 2011, Helsinky, Finland [10] Harding, A., Chappell, M.: Design of Steel Fibre Reinforced Segmental Linings Reflections on Design Challenges. WTC Bangkok, Thai-land [11] Krátký J., Trtík K., Vodička J.: Drátkobetonové konstrukce. Česká společnost pro beton a zdivo, ČKAIT, Praha [12] Froněk, M.: Ostění tunelů z vláknobetonových segmentů. Bakalářská práce. FSv ČVUT v Pra-ze [13] Rivaz, B.: Využití vláknobetonu v podzemním stavitelství. Seminář CzTA [14] Herka, P., Schepers, R.: Využití vláknobetonu v podzemním stavitelství. Seminář CzTA
7 Tab.1 Přehled některých projektů tunelů s drátkobetonovými segmenty Název projektu Země Účel Rok Celková délka [km] Vnitřní profil [m] Tloušťka ostění [mm] Množství drátků [kg/m 3 ] Prutová výztuž 1 Abatemarco Itálie Vodovodní 18,0 3,5 40 ne 2 Fanaco Itálie Vodovodní 4, Neapolské metro Itálie Metro ,2 5, ne 4 Metro Janov Itálie Metro 6,2 25 ano 5 Barcelona - linie 9 Španělsko Metro , a 25 ano 6 Madrid metro Španělsko Metro ano Heathrow - zavazadlový Jubilee Line Extension Channel Tunnel Rail Link Velká Británie Zavazadlový ,4 4, ne Velká Británie Metro ,4 4, ne Velká Británie Železniční ,0 7, ne 10 Heathrow - HexEx Velká Británie Železniční ,2 5, ne 11 Heathrow - PiccEx Velká Británie Metro ,2 4, ne 12 Heathrow - SWOT Velká Británie Vodovodní ,0 2, ne 13 Prodloužení DLR Velká Británie Železniční ,6 5, Portmouth Velká Británie Vodovodní 8,0 2,9 15 Sorenberg Švýcarsko Plynovodní ,2 3, ne 16 Oenzberg - TBM Švýcarsko Železniční ,1 11, ano 17 Oenzberg - štít Švýcarsko Železniční ,0 11, ne 18 Hachinger Stollen Německo Vodovodní ,0 2, Hofoldinger Stollen Německo Vodovodní ,5 2, ne 20 Wehrhahnlinie Düsseldorf Německo Metro ,3 30 ne 21 Teplovod v Kodani Dánsko Teplovodní ,9 4, ne 22 Kanalizace Big Walnut USA Kanalizační ,8 3,7 35 ano 23 San Vicente USA Vodovodní ,2 2, ne 25 Brightwater East USA Kanalizační , ne 26 Brightwater Central USA Kanalizační ,7 4, ne 27 Brightwater West USA Kanalizační ,4 3, ne 28 La Esperanza Ekvádor Vodovodní , ne 29 Sao Paulo metro Brazílie Metro 1,5 8, Gold Coast Austrálie Průmyslový / vodovodní ,2 2, ne 31 Hobson Bay Nový Zéland Kanalizační ,0 3, ne 32 Lesotho Highlands Jižní Afrika Vodovodní ,1 50 ne 33 STEP Abu Dhabi Spojené Arabské Emiráty Kanalizační ,6 5,5 30 ano 34 Štoly MRT Line Singapur Technologický 1,4 5,8 30 ne Železniční tunely 35 Singapur Železniční 5,8 35 ne Singapur Brisbane Airport 36 Link Austrálie Silniční 4 11,
ZKOUŠENÍ A MODELOVÁNÍ DRÁTKOBETONOVÝCH SEGMENTŮ V ČR
ZKOUŠENÍ A MODELOVÁNÍ DRÁTKOBETONOVÝCH SEGMENTŮ V ČR Matouš Hilar - FSv ČVUT a D2 Consult Prague s.r.o. Petr Vítek Metrostav a.s. Radomír Pukl - Červenka Consulting s.r.o. 2/ 13 1. Část doc. Ing. Matouš
PŘEHLED TUNELŮ S PREFABRIKOVANÝM SEGMENTOVÝM OSTĚNÍM Z DRÁTKOBETONU OVERVIEW OF TUNNELS WITH THE PRECAST SEGMENTAL LINING FROM SFRC
PŘEHLED TUNELŮ S PREFABRIKOVANÝM SEGMENTOVÝM OSTĚNÍM Z DRÁTKOBETONU OVERVIEW OF TUNNELS WITH THE PRECAST SEGMENTAL LINING FROM SFRC 1 2 Matouš Hilar Drátkobeton je konstrukční stavební materiál, který
DRÁTKOBETON PRO PODZEMNÍ STAVBY
DRÁTKOBETON PRO PODZEMNÍ STAVBY ABSTRAKT Václav Ráček 1 Jan Vodička 2 Jiří Krátký 3 Matouš Hilar 4 V příspěvku bude uveden příklad návrhu drátkobetonu pro prefabrikované segmentové ostění tunelu. Bude
Tlaková síla Hmotnost [g] hmotnost [kn] b [mm] h [mm] l [mm]
Laboratorní zkoušení vzorků drátkobetonu navrženého pro výrobu tunelových segmentů M.Hilar 3G Consulting Engineers s.r.o. a FSv ČVUT v Praze, Praha, ČR J. Vodička, J. Krátký & V. Ráček FSv ČVUT v Praze,
DRÁTKOBETON PRO SEGMENTOVÁ OSTĚNÍ TUNELŮ
Sborník 19. Betonářské dny (2012) ISBN 978-80-87158-32-6 Sekce XXX: YYY DRÁTKOBETON PRO SEGMENTOVÁ OSTĚNÍ TUNELŮ Václav Ráček 1 Hlavní autor Jan Vodička 1 Jiří Krátký 1 Matouš Hilar 2 1 ČVUT v Praze, Fakulta
POUŽITÍ STŘÍKANÉHO BETONU PRO DEFINITIVNÍ OSTĚNÍ TUNELŮ
POUŽITÍ STŘÍKANÉHO BETONU PRO DEFINITIVNÍ OSTĚNÍ TUNELŮ Jan Pruška FSv ČVUT v Praze Matouš Hilar D2 Consult Prague s.r.o. Tunelářské odpoledne 3/2011 Brno 14.9.2011 Požadavky na tunelová ostění 2 / 20
Aktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
SEGMENTOVÁ OSTĚNÍ TUNELŮ Z DRÁTKOBETONU STEEL FIBRE REINFORCED SEGMENTAL TUNNEL LININGS
SEGMENTOVÁ OSTĚNÍ TUNELŮ Z DRÁTKOBETONU STEEL FIBRE REINFORCED SEGMENTAL TUNNEL LININGS MATOUŠ HILAR, JAROSLAV BEŇO 1 ÚVOD Drátkobeton je nový konstrukční stavební materiál, který v současné době stále
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova
M.Hilar. P. Vítek. J. Vítek. R. Pukl. 3G Consulting Engineers s.r.o. a FSv ČVUT v Praze, Praha, ČR. Metrostav a.s., Praha, ČR
Zatěžovací zkoušky a numerické modelování drátkobetonových segmentů M.Hilar 3G Consulting Engineers s.r.o. a FSv ČVUT v Praze, Praha, ČR P. Vítek Metrostav a.s., Praha, ČR J. Vítek Metrostav a.s. a FSv
SEGMENTOVÉ OSTĚNÍ TUNELŮ METRA
Sborník 19. Betonářské dny (2012) ISBN 978-80-87158-32-6 Sekce XXX: YYY SEGMENTOVÉ OSTĚNÍ TUNELŮ METRA Dr.Ing. Petr Vítek 1 Hlavní autor Doc. Ing. Matouš Hilar, PhD 2 1 Metrostav a.s., Na Zatlance 13,
RYCHLOST BEZ PŘÍPOJKY VODY BEZ EL. PROUDU JEDNODUCHOST REALIZACE HOSPODÁRNOST. www.steelcrete.cz
BEZ PŘÍPOJKY VODY BEZ EL. PROUDU JEDNODUCHOST REALIZACE HOSPODÁRNOST RYCHLOST www.steelcrete.cz Definice a vlastnosti Beton a výztuž přímo z mixu / autodomíchávače STEELCRETE je beton podle ČSN EN 206-1/Z3
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019
VYUŽITÍ VLÁKNOBETONU PRO VÝSTAVBU TUNELŮ POD LETIŠTĚM HEATHROW
Geotechnické problémy líniových stavieb, Bratislava 30.- 31. máj 2011 VYUŽITÍ VLÁKNOBETONU PRO VÝSTAVBU TUNELŮ POD LETIŠTĚM HEATHROW USE OF STEEL FIBRE REINFORCED CONCRETE FOR CONSTRUCTION OF TUNNELS UNDER
Prvky betonových konstrukcí BL01 5. přednáška
Prvky betonových konstrukcí BL01 5. přednáška Dimenzování průřezů namáhaných posouvající silou. Chování a modelování prvků před a po vzniku trhlin, způsob porušení. Prvky bez smykové výztuže. Prvky se
Prvky betonových konstrukcí BL01 11 přednáška
Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav
Distribution Solutions WireSolutions. Ocelová vlákna. Průmyslové podlahy
Distribution Solutions WireSolutions Ocelová vlákna Průmyslové podlahy WireSolutions Řešení s ocelovými vlákny WireSolutions je součástí skupiny ArcelorMittal, největšího světového výrobce oceli. Pilíři
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,
14/7.2 RAŽENÉ PODZEMNÍ STAVBY
STAVEBNĚ KONSTRUKČNÍ DETAILY V OBRAZE Část 14, Díl 7, Kapitola 2.1, str. 1 14/7.2 RAŽENÉ PODZEMNÍ STAVBY 14/7.2.1 KONVENČNÍ METODA RAŽBY Konvenční metodou ražby rozumíme především tzv. Novou rakouskou
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů Stavební konstrukce Adresa.: Střední průmyslová
Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019
TA Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace
Jaroslav Lacina, Martin Zlámal SANACE TUNELŮ TECHNOLOGIE A MATERIÁLY, SPÁROVACÍ HMOTY PRO OSTĚNÍ TA03030851 Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace Petr ŠTĚPÁNEK,
Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Předpjatý beton 1. část - úvod Obsah: Podstata předpjatého
Vláknobetony. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz
Vláknobetony Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Úvod Beton křehký materiál s nízkou pevností v tahu a deformační kapacitou Od konce 60.
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A11. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A11 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Specifika návrhu prvků z vysokopevnostního
Sada 3 Inženýrské stavby
S třední škola stavební Jihlava Sada 3 Inženýrské stavby 18. Provádění podzemních staveb Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona:
Od roku 2016 je firma Střechy 92, s.r.o. dodavatelem vrstveného dřeva Ultralam pro Českou republiku.
Ultralam je obchodní značka výrobce pro konstrukční materiál vrstvené dřevo. (Anglicky se tento materiál nazývá LVL laminated veneer lumber, německy FSH Furnierschichtholz). Vrstvené dřevo Ultralam svými
PODZEMNÍ STAVITELSTVÍ
VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA Katedra geotechniky a podzemního stavitelství PODZEMNÍ STAVITELSTVÍ PŘEDNÁŠKY 5 ŠTOLY, KLASICKÉ METODY RAŽENÍ Definice štoly: liniové vodorovné nebo šikmé podzemní
Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání
Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením
Možnosti zvýšení trvanlivosti a sanace železobetonových konstrukcí. Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební
Možnosti zvýšení trvanlivosti a sanace železobetonových konstrukcí Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební Zlepšování trvanlivosti železobetonu Chemické přísady do betonu Příměsi do
Betonové konstrukce (S)
Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy
CEMVIN FORM Desky pro konstrukce ztraceného bednění
CEMVIN FORM Desky pro konstrukce ztraceného bednění CEMVIN CEMVIN FORM - Desky pro konstrukce ztraceného bednění Vysoká pevnost Třída reakce na oheň A1 Mrazuvzdornost Vysoká pevnost v ohybu Vhodné do vlhkého
Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,
Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá
Prvky vystrojování. Ocelová výstroj Svorníková výstroj Stříkaný beton
Prvky vystrojování Ocelová výstroj Svorníková výstroj Stříkaný beton Ocelová výstroj Ocel je dnes hlavním typem vystrojení nahradila výdřevu. Největší výhodou ocelové výstroje proti výdřevě je skutečnost,
SEGMENTOVÉ TUNELOVÉ OSTĚNÍ BETONOVÉ DÍLCE TUNELOVÉHO OSTĚNÍ. Segmenty s betonářskou výztuží. - nízká odolnost vůči poškození při přepravě a ukládání
SEGMENTOVÉ TUNELOVÉ OSTĚNÍ BETONOVÉ DÍLCE TUNELOVÉHO OSTĚNÍ Segmenty betonářkou výztuží - nízká odolnot vůči poškození při přepravě a ukládání + při použití PP vláken vyhovují BBG + při použití PP vláken
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Smykové trny Schöck typ ESD
Smykové trny Schöck typ kombinované pouzdro HK kombinované pouzdro HS pouzdro HSQ ED (pozinkovaný) ED (z nerezové oceli) -B Systémy jednoduchých trnů Schöck Obsah strana Typy a označení 36-37 Příklady
Navrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová
KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování
Definitivníkonstrukce ražených úsekůna stavbětunelového komplexu Blanka
Definitivníkonstrukce ražených úsekůna stavbětunelového komplexu Blanka Ing. Pavel Šourek SATRA, spol. s r. o. Ing. Miroslav Padevět, Ing. Jan Kvaš Metrostav, a.s. 4.12.2012 TUNELÁŘSKÉ ODPOLEDNE 3/2012
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
Stříkané betony maxit
Stříkané betony Stříkané betony Firma je výrobcem a dodavatelem suchých betonových směsí pro stříkané betony. Použití Stříkané betony nacházejí široké uplatnění při zpevňování stěn stavebních jam, zpevňování
Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )
Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem
2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se
14/03/2016. Obsah přednášek a cvičení: 2+1 Podmínky získání zápočtu vypracovaná včas odevzdaná úloha Návrh dodatečně předpjatého konstrukčního prvku
133 BK5C BETONOVÉ KONSTRUKCE 5C 133 BK5C BETONOVÉ KONSTRUKCE 5C Lukáš VRÁBLÍK B 725 konzultace: úterý 8 15 10 email: web: 10 00 lukas.vrablik@fsv.cvut.cz http://concrete.fsv.cvut.cz/~vrablik/ publikace:
při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní
při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a
Namáhání ostění kolektoru
Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných
Rychletuhnoucí opravný beton s vysokou brzkou pevností Třída R4
Popis obsahuje směs modifikovaného portlandského cementu a vápenokamenného plniva s přídavkem akrylátového polymeru. Jde o kvalitní, vysoce účinnou opravnou maltu, která vykazuje výborné fyzikální vlastnosti,
133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc.
133YPNB Požární návrh betonových a zděných konstrukcí 4. přednáška prof. Ing. Jaroslav Procházka, CSc. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Zjednodušené
1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
GlobalFloor. Cofrastra 40 Statické tabulky
GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro
Použitelnost. Žádné nesnáze s použitelností u historických staveb
Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,
7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger
7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené
ETAG 001. KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete)
Evropská organizace pro technická schválení ETAG 001 Vydání 1997 ŘÍDICÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete) Příloha B: ZKOUŠKY PRO URČENÁ POUŽITÍ
Požární odolnost ocelobetonové stropní konstrukce. Eva Dvořáková, František Wald
Požární odolnost ocelobetonové stropní konstrukce Eva Dvořáková, František Wald Obsah lekce Princip odolnosti Ověření jednoduché Princip požární odolnosti ocelobetonové stropní kce Ověření odolnosti -
PROVÁDĚNÍ PODZEMNÍCH STAVEB - II. část
Fakulta stavební ČVUT v Praze, katedra geotechniky PROVÁDĚNÍ PODZEMNÍCH STAVEB - II. část 1/2009 Prof. Ing. Jiří Barták, DrSc. PROVÁDĚNÍ RAŽENÝCH PODZEMNÍCH STAVEB Cyklický postup operace provedené v jednom
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
BERMUDSKÝ TROJÚHELNÍK BETONÁŘŮ
BERMUDSKÝ TROJÚHELNÍK BETONÁŘŮ doc. Ing. Vlastimil Bílek, Ph.D. v zastoupení: Ing. Markéta Bambuchová BERMUDSKÝ TROJÚHELNÍK BETONÁŘŮ Existuje Má charakter přírodního zákona Nepodléhá rozhodnutí šéfů pevnost
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 04. VYZTUŽOVÁNÍ - TRÁMY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284
Požární zkouška v Cardingtonu, ocelobetonová deska
Požární zkouška v Cardingtonu, ocelobetonová deska Modely chování konstrukcí za vysokých teplot při požáru se opírají o omezené množství experimentů na skutečných objektech. Evropské poznání je založeno
Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017
Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním
Planitop Rasa & Ripara R4
Planitop Rasa & Ripara R RYCHLETVRDNOUCÍ CEMENTOVÁ MALTA TŘÍDY R NA OPRAVY A VYHLAZOVÁNÍ BETONOVÝCH POVRCHŮ výrobek na vyhlazení a opravu betonových povrchů Pouze Nanášení Planitop Rasa & Ripara R zednickou
Posouzení piloty Vstupní data
Posouzení piloty Vstupní data Projekt Akce Část Popis Vypracoval Datum Nastavení Velkoprůměrová pilota 8..07 (zadané pro aktuální úlohu) Materiály a normy Betonové konstrukce Součinitele EN 99 Ocelové
Zdroj: 1. název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 2.
Speciální betony Zdroj: 1. název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 2. www.unium.cz/materialy/cvut/fsv/predna sky-
NOSNÍK UHPC PRO MOSTNÍ STAVBY
NOSNÍK UHPC PRO MOSTNÍ STAVBY Autor: Petr Jedlinský, Eurovia CS, a.s. Příspěvek byl zpracován za podpory programu Centra kompetence Technologické agentury České republiky (TAČR) v rámci projektu Centrum
GlobalFloor. Cofraplus 60 Statické tabulky
GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu
NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU
NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁU Navrhněte ohybovou výztuž do železobetonového nosníku uvedeného na obrázku. Kromě vlastní tíhy je nosník zatížen bodovou silou od obvodového pláště ostatním stálým rovnoměrným
Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží
EXPERIMENTÁLNÍ VÝZKUM KLENEB Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží 1 Úvod Při rekonstrukcích památkově chráněných a historických budov se často setkáváme
BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska
BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické
Číslo. Relaxace předpínací výztuže. úbytek napětí v oceli při časově neměnné deformaci (protažení) Soudržnost předpínací výztuže s betonem
133 BK5C BETONOVÉ KONSTRUKCE 5C Číslo Datum PROGRAM PŘEDNÁŠEK letní 2015/2016 Téma přednášky 1 23.2. Principy předpjatého betonu, historie, materiály Poznámky 2 1.3. Technologie předem předpjatého betonu
Vady a poruchy betonových konstrukcí
Vady a poruchy betonových konstrukcí JIŘÍ KOLÍSKO jiri.kolisko@cvut.cz Kloknerův ústav, ČVUT v Praze 1 Něco definic úvodem Vada - týká se úvodního stavu výrobku či dodávky před zahájením užívání. Vady
DEFINITIVNÍ OSTĚNÍ PODZEMNÍCH STAVEB Z HLEDISKA BETONÁŘE
DEFINITIVNÍ OSTĚNÍ PODZEMNÍCH STAVEB Z HLEDISKA BETONÁŘE Ing. Michal Sedláček, Ph.D. Tunelářské odpoledne 3/2011 14.9.2011 NAVRHOVÁNÍ DEFINITIVNÍHO OSTĚNÍ - základní předpisy - koncepce návrhu - analýza
tunel Ejpovice? Tunelářské odpoledne 3/2015 Tunel Ejpovice
tunel Ejpovice? Tunelářské odpoledne 3/2015 Tunel Ejpovice ČINNOST 2009 2015 (D2 Consult 3G Consulting Engineers) - Kontrola přípravy projektové dokumentace, připomínkování - Koncepční návrhy úprav - Kontakty
Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup
Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup P. Schaumann, T. Trautmann University o Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ V příkladu je navržen částečně obetonovaný
Téma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
Navrhování betonových konstrukcí na účinky požáru. Ing. Jaroslav Langer, PhD Prof. Ing. Jaroslav Procházka, CSc.
Navrhování betonových konstrukcí na účinky požáru Ing. Jaroslav Langer, PhD Prof. Ing. Jaroslav Procházka, CSc. Beton z požárního hlediska Ohnivzdorný materiál: - nehořlavý -tepelně izolační Skupenství:
Příprava mechanizovaných ražeb tunelů v ČR
Ing.Miroslav Kochánek Dokumentace pro územní rozhodnutí prodloužení trasy 12,7 km 8 nových stanic zlepšení kvality dopravní obsluhy S-Z sektoru města (redukce autobusových linek) posun stávajícího koncového
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.10
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.10 Karel VOJTASÍK 1, Eva HRUBEŠOVÁ 2, Lukáš ĎURIŠ 3 POROVNÁNÍ STAVU NAPJATOSTI
PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku.
PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku Skladba stropu: Podlaha, tl.60mm, ρ=400kg/m 3 Vlastní žb deska, tl.dle návrhu,
Betonové a zděné konstrukce 2 (133BK02)
Podklad k příkladu S ve cvičení předmětu Zpracoval: Ing. Petr Bílý, březen 2015 Návrh rozměrů Rozměry desky a trámu navrhneme podle empirických vztahů vhodných pro danou konstrukci, ověříme vhodnost návrhu
TECHNICKÉ ÚDAJE STAVEBNÍHO SYSTÉMU HEBEL
Platnost od 12. 2. 2018 TECHNICKÉ ÚDAJE STAVEBNÍHO SYSTÉMU HEBEL www.hebel.cz TECHNICKÉ ÚDAJE STAVEBNÍHO SYSTÉMU HEBEL Tvárnice Hebel expediční a technické údaje Tloušťka zdiva* Značka Rozměry d v š Obj.
Betony pro bytovou výstavbu
Betony pro bytovou výstavbu Robert Coufal, Vladimir Vesely Beton a produkty pro bytovou a občanskou výstavbu Obsah prezentace Parametry betonu Beton a stavební fyzika Specifikace stupně vlivu prostředí
Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku 1 Zadání úlohy Vypracujte návrh betonového konstrukčního prvku (průvlak,.). Vypracujte návrh prvku ve variantě železobetonová konstrukce
Vláknobetonové prvky s obsahem odpadních granálií z výroby minerální vlny
Vláknobetonové prvky s obsahem odpadních granálií z výroby minerální vlny Ing. Martin Vyvážil, Ing. Vladan Prachař Výzkumný ústav stavebních hmot, a.s. vyvazil@vustah.cz, prachar@vustah.cz Souhrn Příspěvek
Vyztužování zemin Prof. Ivan Vaníček International Geosynthetics Society, Česká republika
Vyztužování zemin Prof. Ivan Vaníček OBSAH 1. Základní principy vyztužování 2. Typické příklady vyztužených zemních konstrukcí 3. Základní nároky na výztužná geosyntetika 4. Navrhování vyztužených zemních
Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh
Ocelobetonové stropní konstrukce vystavené požáru požární návrh Cíl návrhové metody požární návrh 2 požární návrh 3 Obsah prezentace za požáru ocelobetonových desek za běžné Model stropní desky Druhy porušení
STUDENTSKÁ KOPIE. Základní princip. Základy stavebního inženýrství. Ing. Miroslav Rosmanit, Ph.D. Katedra konstrukcí
Základní princip Základy stavebního inženýrství Ing. Miroslav Rosmanit, Ph.D. Katedra konstrukcí Základní princip Základní charakteristiky konstrukce Zatížení působící na konstrukci Účinky zatížení vnitřní
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Úterý 12:00-13:40, C -219 Přednášky a cvičení:
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh
Část 3: Analýza konstrukce. DIF SEK Část 3: Analýza konstrukce 0/ 43
DIF SEK Část 3: Analýza konstrukce DIF SEK Část 3: Analýza konstrukce 0/ 43 Požární odolnost řetěz událostí Θ zatížení 1: Vznik požáru ocelové čas sloupy 2: Tepelné zatížení 3: Mechanické zatížení R 4:
15. ŽB TRÁMOVÉ STROPY
15. ŽB TRÁMOVÉ STROPY Samostatné Společně s deskou trámového stropu Zásady vyztužování h = l/10 až l/20 b = h/2 až h/3 V každém rohu průřezu musí být jedna vyztužená ploška Nosnou výztuž tvoří 3-5 vložek
RYCHLETVRDNOUCÍ CEMENTOVÁ MALTA TŘÍDY R2
Planitop Rasa & Ripara RYCHLETVRDNOUCÍ CEMENTOVÁ MALTA TŘÍDY R2 NA OPRAVY A VYHLAZOVÁNÍ BETONOVÝCH POVRCHŮ 1Pouze výrobek na vyhlazení a opravu betonových povrchů Planitop Rasa & Ripara Aplikace Planitop
PS01 POZEMNÍ STAVBY 1
PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)