4EK211 Základy ekonometrie
|
|
- Vlastimil Kříž
- před 9 lety
- Počet zobrazení:
Transkript
1 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE
2 1. Jednoduchá regrese opakování Zdroj: ECON2300, University of Queensland, Australia, Data: domy.wf1 Zadání: Zkoumáme závislost ceny domu (v dolarech, proměnná cena) na jeho obytném prostoru (v m 2, proměnná rozloha). CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 2
3 1. Jednoduchá regrese opakování Vykreslete bodový graf závislosti ceny domů na obytném prostoru. 600, , ,000 PRICE 300, , , M2 CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 3
4 1. Jednoduchá regrese opakování 1. Odhadněte regresi: cena = β 0 + β 1 rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? 5. Na 5% hladině významnosti otestujte nulovou hypotézu o nevýznamnosti β 1. CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 4
5 1. Jednoduchá regrese opakování 1. Odhadněte regresi: cena = 18385, rozloha 2. Interpretujte odhadnutý parametry β 1. S každým metrem čtverečním vzroste cena domu o 876 dolarů. 3. Jaký je koeficient determinace? 0,67 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? dolarů 5. Na 5% hladině významnosti otestujte nulovou hypotézu o nevýznamnosti β 1. t = ,65 = 42,4. Kritická hodnota: 1,96. Zamítáme nulovou hypotézu. CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 5
6 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) = β 0 + β 1 rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 6
7 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) =10,59+ 0,0064 rozloha Quick Estimate equation log(cena) c rozloha 2. Interpretujte odhadnutý parametr β 1. S každým metrem čtverečním vzroste cena domu o 0,64 %. 3. Jaký je koeficient determinace? 0,71 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? exp(11,87) = dolarů CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 7
8 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) = β 0 + β 1 ln rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 8
9 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln( cena) = 6,56+ 1 ln(rozloha) Quick Estimate equation log(cena) c log(rozloha) 2. Interpretujte odhadnutý parametr β 1. S každým růstem rozlohy o 1 % vzroste cena domu o 1 %. 3. Jaký je koeficient determinace? 0,69 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? exp(11,86) = dolarů CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 9
10 1. Jednoduchá regrese opakování Vysvětlovaná proměnná Vysvětlující proměnná Interpretace β 1 y x y = β 1 x y ln(x) y = (β 1 /100)% x ln(y) x % y = (100β 1 ) x ln(y) ln(x) % y = β 1 % x CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 10
11 2. Vícenásobná regrese příklad 1 Data: sleep.wf1 Zdroj: Zouhar, Původní zdroj: model vychází z článku Biddleho a Hamermeshe (1990) Co budeme zkoumat: Kompenzují lidé delší pracovní dobu zkrácením délky spánku? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 11
12 2. Vícenásobná regrese příklad 1 Proměnné: - totwrk: celková doba spánku za týden (v minutách) - sleep: celková doba práce za týden (v minutách) - educ: počet let vzdělání (v letech) - age: věk (v letech) Regresní přímka: sleep = β 0 + β 1 totwrk + β 2 educ + β 3 age + u CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 12
13 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = β 0 + β 1 totwrk + β 2 educ + β 3 age + u 1. Jaká znaménka byste očekávali u koeficientů β 1, β 2, β 3? 2. Může u b 1 vyjít jiné znaménko, než jste očekávali, i v případě, že je model správně specifikován a jsou splněny G-M předpoklady? 3. Odhadněte regresní přímku. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 13
14 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age Interpretujte odhadnuté koeficienty. Jak se změní doba spánku, začneme-li pracovat o 10 hodin týdně více? Kolik hodin spánku denně byste dle modelu předpověděli sobě? Jaký je koeficient vícenásobné determinace? Připomeňte, co vyjadřuje. Jaký je korigovaný koeficient vícenásobné determinace? Co to je? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 14
15 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age 1. Otestujte nulovou hypotézu, že β 2 = 0. Spočítejte 95 % interval spolehlivosti pro β 2 a učiňte na základě něj nějaký závěr ohledně testované hypotézy. 2. Otestujte nulovou hypotézu, že β 2 < Otestujte významnost modelu jako celku. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 15
16 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age 1. Otestujte nulovou hypotézu, že β 2 = 0. H 0 : β 2 = 0 H 1 : β 2 0 Testová statistika: 1,89 Kritická hodnota: 1,96 1,89 < 1,96 Nezamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 16
17 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age % interval spolehlivosti pro β 2 < 11,1 5,88 1,96; 11,1 + 5,88 1,96 > < 22,6; 0,4 > Obsahuje nulu nezamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 17
18 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age 2. Otestujte nulovou hypotézu, že β 2 < 0. H 0 : β 2 = 0 H 1 : β 2 < 0 Testová statistika: 1,89 Kritická hodnota: 1,64 1,89 > 1,64 Zamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 18
19 2. Vícenásobná regrese příklad 1-1,89-1,89 CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 19
20 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age 3. Otestujte významnost modelu jako celku. H 0 : β 1 = β 2 = β 3 = 0 H 1 : non H 0 F = R2 n k 1 0, = = 29,9 1 R 2 k 1 0, Porovnáváme s kritickou hodnotou z Fisherova rozdělení: F*(k, n - k - 1) EViews uvádí p-hodnotu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 20
21 2. Vícenásobná regrese příklad 1 CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 21
22 3. Vícenásobná regrese příklad 2 Data: pizza.wf1 Zdroj: ECON2300, University of Queensland, 2012, upraveno Co budeme zkoumat: kolik utrácí lidi za pizzu v závislosti na různých faktorech CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 22
23 3. Vícenásobná regrese příklad 2 Proměnné: - pizza: roční útrata za pizzu v dolarech - zena: = 1 pro ženy, jinak 0 (umělá proměnná, dummy variable) - muz: = 1 pro muže, jinak 0 (umělá proměnná, dummy variable) - prijem roční příjem v dolarech - vek věk (v letech) - hranolky roční útrata za hranolky v dolarech - hamburgery roční útrata za hamburgery v dolarech - salaty roční útrata za saláty v dolarech CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 23
24 3. Vícenásobná regrese příklad 2 Upravte proměnnou prijem tak, že ji vydělíte Odhadněte tři modely: (a) pizza = β 0 + β 1 prijem + u (b) pizza = β 0 + β 1 prijem+ β 2 vek + u (c) pizza = β 0 + β 1 prijem+ β 2 vek + β 3 vek prijem + u CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 24
25 3. Vícenásobná regrese příklad 2 Odhadněte tři modely a vždy řekněte, které proměnné jsou v modelu významné. Interpretujte parametry. (a) (b) (c) pizza = ,46 prijem pizza = ,38 prijem 7,58 vek pizza = ,07 prijem 2,98 vek 0,16 vek prijem Jak se ve třetím případě změní útrata za pizzu s 1 rokem věku navíc? Jak se změní s růstem ročního příjmu o 1 tisíc dolarů? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 25
26 3. Vícenásobná regrese příklad 2 (c) pizza = ,07 prijem 2,98 vek 0,16 vek prijem pizza prijem = β 1 + β 3 vek pizza vek = β 2 + β 3 prijem S rostoucím věkem útrata za pizzu klesá, a to tím více, čím vyšší má daná osoba příjem. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 26
27 4. Multikolinearita Budeme zkoumat vliv pohlaví na útratu za pizzu. Odhadněte model: pizza = β 0 + β 1 prijem+ β 2 vek + β 3 zena + β 4 muz + u V čem je problém? Který G-M předpoklad je porušen? Jakou úpravu modelu byste navrhli? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 27
28 4. Multikolinearita Odhadněte následující modely a posuďte, zda jsou proměnné v modelu významné. pizza = β 0 + β 1 hranolky + u pizza = β 0 + β 1 hranolky + β 2 hamburgery + u pizza = β 0 + β 1 hranolky + β 2 hamburgery + β 3 salaty + u Může zde hrát roli multikolinearita? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 28
29 4. Multikolinearita jde o lineární závislost vysvětlujících proměnných je pak obtížné poznat, jak každá z vysvětlujících proměnných ovlivňuje vysvětlující proměnnou (poznáme, jak ji ovlivňují dohromady) příčiny: Tendence časových řad vyvíjet se stejným směrem Průřezová data Zpožděné hodnoty proměnných Nesprávný počet dummy proměnných - kdy jsme se s tím dnes setkali? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 29
30 4. Multikolinearita netestujeme ji, nýbrž ji měříme v jednom konkrétním souboru důsledky: Odhady jsou nestranné i vydatné, ale Odhady nejsou stabilní, jsou citlivé i na malé změny v matici X Směrodatné chyby koeficientů jsou velké - proměnná se může jevit jako nevýznamná, i když to nemusí být pravda CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 30
31 4. Multikolinearita Měření - 2 proměnné: multikolinearita je v modelu únosná, pokud platí současně: r x1,x 2 0,9 r2 x1,x 2 R 2 Kde r x1,x 2 je párový korelační koeficient mezi dvěma vysvětlujícími proměnnými R 2 je koeficient determinace z modelu CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 31
32 2. Multikolinearita Měření - více než 2 proměnné: Tabulka párových korelačních koeficientů (Quick Group Statistics Correlations) Odhalí lineární závislost mezi dvojicemi proměnných. Nedokáže ale zachytit například závislost hamburgery = 2 hranolky - 0,5 hamburgery, pokud by tam taková třeba byla. V případě více proměnných používáme pomocné regrese. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 32
33 4. Multikolinearita Měření - více než 2 proměnné: Původní regrese: y = f(x 1,x 2,x 3 ) R 2 Pomocné regrese: x 1 = f(x 2,x 3 ) R 1 2 x 2 = f(x 1,x 3 ) R 2 2 x 3 = f(x 1,x 2 ) R 3 2 Jsou-li všechny dílčí koeficienty determinace z pomocných regresí menší než koeficient determinace z původní regrese, je multikolinearita v modelu únosná. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 33
34 4. Multikolinearita pizza = β 0 + β 1 hranolky + β 2 hamburgery + β 3 salaty + u R 2 = 0,16 hranolky = β 0 + β 1 hamburgery + β 2 salaty + u R 2 = 0,72 hamburgery = β 0 + β 1 hranolky + β 2 salaty + u R 2 = 0,73 salaty = β 0 + β 1 hranolky + β 2 hamburgery + u R 2 = 0,60 Multikolinearita není v modelu únosná. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 34
35 4. Multikolinearita řešení: Získat další pozorování Použít jiný model (jiná formulace, vypuštění proměnné), pozor na specifikační chybu Transformace pozorování (první diference, podíly) CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 35
36 Na doma: Co byste měli umět 1. Jak se interpretují odhadnuté koeficienty, jsou-li proměnné zlogaritmované? 2. Co je to koeficient determinace a korigovaný koeficient determinace? 3. Jak otestujeme významnost modelu jako celku? 4. Co je to multikolinearita, co je její příčinou? 5. Jak se měří multikolinearita v daném výběru? 6. Co je důsledkem multikolinearity? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 36
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2016/17 Cvičení 5: Vícenásobná regrese LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá regrese opakování
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Pokračování z minula:
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2016/17 Cvičení 3: Lineární regresní model LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Seznámení s EViews Upřesnění
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
4ST201 STATISTIKA CVIČENÍ Č. 10
4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD
TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 11: Speciální případy použití MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 2. Nelineární funkce
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Logistická křivka Umělé proměnné Cvičení 11 Zuzana Dlouhá Logistická křivka log-lineární model patří mezi poptávkové funkce, ty dělíme na: a) klasické D = f (příjem, cenový index,
odpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.
Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ
ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady
{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1
18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je
Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Matematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
Aplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 2: Metoda nejmenších čtverců LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Doplnění a opakování z
Korelační a regresní analýza. 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza
Korelační a regresní analýza 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza Pearsonův korelační koeficient u intervalových a poměrových dat můžeme jako
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese
cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Technická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
Základy ekonometrie. II. Netechnický úvod do regrese. Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim / 67
Základy ekonometrie II. Netechnický úvod do regrese Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim 2015 1 / 67 Obsah tématu 1 Regrese Úvod do regrese Příklady 2 Jednoduchý regresní model
Téma 9: Vícenásobná regrese
Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Pearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.
POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Regresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Jméno: Lucie Krechlerová, Karel Kozma, René Dubský, David Drobík Ročník: 2015/2016
4EK201 Matematické modelování. 11. Ekonometrie
4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické
Základy lineární regrese
Základy lineární regrese David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5. 7. 8. 2015 Tato akce
STATISTIKA I Metodický list č. 1 Název tématického celku:
STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.
SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné
Univerzita Pardubice
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Lineární regrese Ing. Jan Balcárek, Ph.D. vedoucí Centrálních laboratoří Precheza
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich
PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
4EK211 Základy ekonometrie
4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Vypracovaly: Renata Němcová, Andrea Zuzánková, Lenka Vítová, Michaela Ťukalová, Kristýna
2.2 Kalibrace a limity její p esnosti
UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p