RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
|
|
- Martin Kolář
- před 6 lety
- Počet zobrazení:
Transkript
1 Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy
2 Blok 3 Jak a kdy použít parametrické a neparametrické testy I. 2
3 Osnova 1. Dvouvýběrové testy 2. F-test 3. Neparametrické testy 3
4 Parametrické a neparametrické testy pro kvantitativní data přehled Typ srovnání Parametrický test Neparametrický test 1 skupina dat s referenční hodnotou jednovýběrové testy: Jednovýběrový t-test, jednovýběrový z-test Wilcoxonův test 2 skupiny dat párově párové testy: Párový t-test Wilcoxonův test, znaménkový test 2 skupiny dat nepárově dvouvýběrové testy: Dvouvýběrový t-test Mannův-Whitneyův test, mediánový test Více skupin nepárově: ANOVA Kruskalův- Wallisův test 4
5 1. Dvouvýběrové testy 5
6 Dvouvýběrové ( Two-Sample ) testy Srovnávají navzájem dva nezávislé vzorky ( two samples ). V testu jsou srovnávány dvě rozložení hodnot. Otázka položená v testu může být opět vztažena k průměru, rozptylu, podílu hodnot i dalším statistickým parametrům popisujícím vzorek. Parametrické dvouvýběrové testy, kterým se budeme věnovat: dvouvýběrový t-test (test o rozdílu průměrů dvou nezávislých vzorků) F-test (test o shodnosti rozptylů dvou nezávislých vzorků) 6
7 Dvouvýběrový t-test Srovnáváme dvě skupiny dat, které jsou na sobě nezávislé mezi objekty neexistuje vazba. Příklady: srovnání objem hipokampu u mužů a u žen, srovnání kognitivního výkonu podle dvou kategorií věku x 1 x 2 Předpoklad: normalita dat v OBOU skupinách, shodnost (homogenita) rozptylů v obou skupinách x1 - x2 - c Testová statistika: T =, kde s je vážená směrodatná odchylka, 1 1 s + * n 1 n 2 0 Pacienti Kontroly c je konstanta, o kterou se rozdíl průměrů má lišit (většinou rovna 0) 7
8 Ověření normality dat Graficky: histogram krabicový graf (box-plot) Q-Q graf Testy normality: Shapirův-Wilkův test Kolmogorovův-Smirnovův test Testy nejsou vždy nejlepším nástrojem! Vždy je důležité se podívat i očima! Pokud o sledované veličině prokazatelně víme, že v cílové populaci nabývá normální rozdělení (např. výška lidské postavy), ale v daném souboru normální rozdělení nepotvrdíme, pak s naším náhodným výběrem není něco v pořádku např. není reprezentativní. 8
9 Ověření normality graficky krabicový graf a histogram Normální rozdělení Log-normální rozdělení 9
10 Ověření normality graficky krabicový graf a histogram Normální rozdělení s odlehlými hodnotami Rovnoměrně spojité rozdělení 10
11 Ověření normality graficky Q-Q graf Q-Q graf proti sobě zobrazuje kvantily pozorovaných hodnot a kvantily teoretického rozdělení pravděpodobnosti (zde normálního rozdělení). V případě shody leží všechny body na přímce. Normální rozdělení: 11
12 Ověření normality graficky Q-Q graf 1. Log-normální rozdělení 2. Normální rozdělení s odlehlými hodnotami 3. Rovnoměrně spojité rozdělení
13 Ověření normality pomocí testů Shapirův-Wilkův test v podstatě se jedná o proložení seřazených hodnot regresní přímkou vzhledem k očekávaným hodnotám normálního rozdělení. Má tedy přímý vztah k Q-Q plotu vyhodnocuje, jak moc se Q-Q plot liší od ideální přímky. Doporučován pro menší vzorky, může být moc přísný pro velké vzorky. Kolmogorovův-Smirnovovův test založen na srovnání výběrové distribuční funkce s teoretickou distribuční funkcí odpovídající normálnímu rozdělení. K-S test hodnotí maximální vzdálenost mezi těmito dvěma distribučními funkcemi. V praxi se používá korekce dle Lillieforse. 13
14 Ověření shody (homogenity) rozptylů Grafické ověření krabicový graf, histogram. F-test (testování shody rozptylů dvou vzorků) Leveneův test často používaný (testování shody rozptylů dvou a více vzorků) Bartlettův test 14
15 Dvouvýběrový t-test Příklad: Chceme srovnat, zda se liší objem putamenu podle pohlaví. Tzn. hypotézy budou mít tvar: H x - x 0 a H x - x 0 Postup: 0 : 1 2 = 1. Popisná sumarizace objemu putamenu podle pohlaví. 1 : Ověření normality hodnot v OBOU skupinách pomocí histogramu (tzn. vykreslíme histogram zvlášť pro muže a zvlášť pro ženy). 3. Ověření shodnosti rozptylů vizuálně pomocí krabicových grafů. 4. Aplikujeme statistický test (v softwaru STATISTICA: t-test, independent, by groups). 5. Nulovou hypotézu zamítneme nebo nezamítneme: p=0,097 > 0,05 nezamítáme nulovou hypotézu Neprokázali jsme rozdíl objemu putamenu podle pohlaví (na hladině významnosti α=0,05.) 15
16 Úkol 3. Zadání: Zjistěte, zda se liší objem thalamu podle pohlaví (nezapomeňte ověřit předpoklady). Řešení: 16
17 2. F-test 17
18 F-test Srovnáváme rozptyly (variabilitu) dvou skupin dat, které jsou na sobě nezávislé (mezi objekty neexistuje vazba). F-test patří mezi dvouvýběrové parametrické testy. Příklady: srovnání variability objemu hipokampu u pacientů s AD a kontrol. Použití: ověření předpokladu shodnosti (homogenity) rozptylů u dvouvýběrového t-testu Pacienti Kontroly Předpoklad: normalita dat v OBOU skupinách. 2 s1 Testová statistika: F =, kde s 2 1 je rozptyl prvního výběru a s 2 2 je rozptyl 2 druhého výběru s2 18
19 F-test Příklad: Chceme srovnat, zda se liší variabilita objemu thalamu podle pohlaví. 2 2 Tzn. hypotézy budou mít tvar: H s = s a Postup: 0 : M Z : M Z 1. Ověření normality hodnot v OBOU skupinách pomocí histogramu (tzn. vykreslíme histogram zvlášť pro muže a zvlášť pro ženy). 2. Vykreslení krabicových grafů, které nám napoví, zda máme očekávat shodu nebo neshodu rozptylů. 3. Aplikujeme statistický test (F-test je součástí dvouvýběrového t-testu v softwaru STATISTICA (tedy zvolíme t-test, independent, by groups)). 4. Nulovou hypotézu zamítneme nebo nezamítneme: p=0,487 > 0,05 nezamítáme nulovou hypotézu Neprokázali jsme rozdíl ve variabilitě objemu thalamu podle pohlaví (na hladině významnosti α=0,05.) H s s 19
20 3. Neparametrické testy 20
21 Parametrické a neparametrické testy pro kvantitativní data přehled Typ srovnání Parametrický test Neparametrický test 1 skupina dat s referenční hodnotou jednovýběrové testy: Jednovýběrový t-test, jednovýběrový z-test Wilcoxonův test 2 skupiny dat párově párové testy: Párový t-test Wilcoxonův test, znaménkový test 2 skupiny dat nepárově dvouvýběrové testy: Dvouvýběrový t-test Mannův-Whitneyův test, mediánový test Více skupin nepárově: ANOVA Kruskalův- Wallisův test 21
22 Neparametrické testy Nemají předpoklady o rozdělení vstupních dat, je tedy možné je použít při asymetrickém rozdělení nebo odlehlých hodnotách. Používání neparametrických testů je bezpečnější. Mají však menší sílu, protože dochází k redukci informační hodnoty původních dat z důvodu, že neparametrické testy nevyužívají původní hodnoty, ale nejčastěji pouze jejich pořadí ( rank ). Menší sílu testu je možné vykompenzovat větší velikostí vzorku. Neparametrické testy: Wilcoxonův test jednovýběrový i párový test Znaménkový test párový test Mannův-Whitneyův test dvouvýběrový test Mediánový test dvouvýběrový test 22
23 Wilcoxonův test Neparametrická alternativa jednovýběrového i párového t-testu a z-testu. Je testem o mediánu hypotézy mají tvar: H : ~ x = c a H : ~ x 0 1 c Princip Wilcoxonova testu: 1. Spočítáme diference všech hodnot x 1, x 2,, x n od c. 2. Podíváme se, jestli je zhruba ½ diferencí kladných a ½ záporných. (To je ekvivalentní s tím, že zhruba polovina hodnot x 1, x 2,, x n je menších než c a polovina hodnot x 1, x 2,, x n je větších než c). Je zřejmé, že odlehlé hodnoty nebudou v tomto testu problém, protože nehodnotíme velikost diferencí, ale pouze, zda je zhruba ½ z nich kladných a ½ záporných. 23
24 Wilcoxonův test jako párový test Příklad: Chceme srovnat, zda se liší MMSE skóre u pacientů s MCI při vstupu do studie a 2 roky po zahájení studie. ~ ~ Tzn. hypotézy budou mít tvar: H : d 0 a H : d 0 Postup: 1. Ověření existence vazby mezi oběma skupinami dat pomocí tečkového grafu. 2. Vykreslení histogramu nové proměnné s rozdíly MMSE skóre, abychom viděli, že u rozdílů není splněn předpoklad normálního rozdělení proto použijeme neparametrický test. 3. Aplikujeme statistický test. 0 = 1 4. Nulovou hypotézu zamítneme nebo nezamítneme: p<0,001 < 0,05 zamítáme nulovou hypotézu Rozdíl MMSE skóre u pacientů s MCI při vstupu do studie a 2 roky po zahájení studie je statisticky významný. 24
25 Wilcoxonův test jako jednovýběrový test Příklad: Chceme zjistit, zda se hodnoty MMSE skóre u 197 pacientů s Alzheimerovou chorobou v našem souboru liší od populačního mediánu 27,5. Tzn. hypotézy budou mít tvar: H : ~ x 27,5 a H : ~ x 27, 5 Postup: 0 = 1 1. Vykreslíme histogram a spočítáme popisnou statistiku, abychom viděli, že u MMSE skóre u pacientů s AD není splněn předpoklad normálního rozdělení proto použijeme neparametrický test. 2. Aplikujeme statistický test (Software STATISTICA neumožňuje počítat jednovýběrový Wilcoxonův test přímo. Lze to však obejít vytvořením nové proměnné, která ve všech řádcích bude mít hodnotu 27,5, a použitím párového Wilcoxonova testu). 3. Nulovou hypotézu zamítneme nebo nezamítneme: p<0,001 < 0,05 zamítáme nulovou hypotézu Medián MMSE skóre u pacientů s AD v našem souboru se statisticky významně liší od populačního mediánu. 25
26 Úkol 4. Zadání: Zjistěte, zda se liší váha u mužů v našem souboru od populačního mediánu 75 kg. Řešení: 26
27 Mannův-Whitneyův (U) test Někdy nazýván jako dvouvýběrový Wilcoxonův test. Neparametrická alternativa dvouvýběrového t-testu. Testuje se, zda jsou srovnatelné distribuční funkce (tzn. zda mediány obou výběrů jsou srovnatelné). Hypotézy mají tvar: H : F( x) = F( ) a H : F( x) F( ) 0 y 1 y Princip Mannova-Whitneyova testu: 1. Všechny hodnoty z obou výběrů dohromady (tedy n 1 +n 2 hodnot) uspořádáme vzestupně podle velikosti každé hodnotě přiřadíme pořadí. 2. Spočítáme součet pořadí hodnot prvního výběru a součet pořadí hodnot druhého výběru. 3. Na základě těchto dvou součtů vypočteme testové statistiky. Je zřejmé, že odlehlé hodnoty nebudou v tomto testu problém, protože pracujeme s pořadími namísto původních hodnot. 27
28 Mannův-Whitneyův (U) test Příklad: Chceme srovnat, zda se liší objem hipokampu podle pohlaví. Tzn. hypotézy budou mít tvar: H : F( x) = F( ) a H : F( x) F( ) Postup: 1. Popisná sumarizace objemu hipokampu podle pohlaví. 2. Vykreslení histogramů objemu hipokampu u mužů a u žen, abychom viděli, že není splněn předpoklad normálního rozdělení proto použijeme neparametrický test. 3. Aplikujeme statistický test. 0 y 1 y 4. Nulovou hypotézu zamítneme nebo nezamítneme: p<0,001 < 0,05 zamítáme nulovou hypotézu Objem hipokampu je u mužů a u žen statisticky významně odlišný. 28
29 Úkol 5. Zadání: Zjistěte, zda se liší MMSE skóre u kontrolních subjektů a pacientů s AD. Řešení: 29
30 Poznámka 1 Všechny dosud uvedené testy se zabývají hodnocením spojitých náhodných veličin (mohou nabývat jakýchkoliv hodnot v určitém rozmezí). Příklady: výška, váha, vzdálenost, čas, teplota. Uvedené testy lze ale použít i pro hodnocení diskrétních náhodných veličin ale musí to být odůvodnitelné (např. velký počet možných hodnot). Příklady: počet krevních buněk, počet hospitalizací, počet krvácivých epizod za rok. 30
31 Poznámka 2 Parametrické a neparametrické testy nemusí vycházet stejně. Důvody: 1. Nesplněné předpoklady parametrického testu. 2. Malá síla neparametrického testu. Jsou-li však splněny předpoklady parametrického testu a je-li dostatek dat, bude to vycházet stejně. Měli bychom preferovat parametrické testy, ALE pouze po důkladném ověření jejich předpokladů! 31
32 Úkol 6. Zadání: Chceme ověřit, zda se liší objem jednotlivých mozkových struktur podle pohlaví. Vykreslete histogramy a rozmyslete si, jaký test (jaké testy) byste použili. 32
33 Poděkování Příprava výukových materiálů předmětu DSAN01 Analýza dat pro Neurovědy byla finančně podporována prostředky projektu FRVŠ č. 942/2013 Inovace materiálů pro interaktivní výuku a samostudium předmětu Analýza dat pro Neurovědy
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 4 Jak a kdy použít parametrické a
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 2 Jak medicínská data správně testovat.
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Přednáška IX. Analýza rozptylu (ANOVA)
Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
NEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Neparametrický jednovýběrový Jeden výběr jehož medián srovnáváme s nějakou hodnotou Wilcoxonův jednovýběrový test 1) Máme data z družice Hipparcos pro deklinaci (obdoba zeměpisné šířky)
PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Neparametrické testy
Neparametrické testy Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální (Gaussovo) rozdělení. Například: Grubbsův test odlehlých
Cvičení 9: Neparametrické úlohy o mediánech
Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup
Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PRINCIPY STATISTICKÉ INFERENCE identifikace závisle proměnné
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Návod na vypracování semestrálního projektu
Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
VŠB Technická univerzita Ostrava BIOSTATISTIKA
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:
Vybrané partie z biostatistiky
1 Úvod Vybrané partie z biostatistiky 10.7.2017, Běstvina Marie Turčičová (turcic@karlin.mff.cuni.cz), MFF UK Pracovat budeme v programu R a jeho nástavbě RStudio, které si můžete bezplatně stáhnout zde:
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 6 Jak analyzovat kategoriální a binární
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Vysoká škola ekonomická v Praze
Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Studijní program: Kvantitativní metody v ekonomice Studijní obor: Statistické metody v ekonomii Autor bakalářské práce: Jakub Zajíček Vedoucí
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel
Dvouvýběrové a párové testy Komentované řešení pomocí MS Excel Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci glukózy v
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,
Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem
Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Pearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
Neparametrické metody v systému STATISTICA
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA Bakalářská práce Neparametrické metody v systému STATISTICA DAGMAR LAJDOVÁ VEDOUCÍ BAKALÁŘSKÉ PRÁCE RNDr. MARIE BUDÍKOVÁ, Dr. Brno 2009 Čestné prohlášení Čestně
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 5 Jak analyzovat kategoriální a binární
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Pohlédněte si základní charakteristiky polohy jednotlivých veličin pomocí funkce summary.
Dvouvýběrové testy 11.12.2017 Úvodní nastavení. Z internetové stránky www.karlin.mff.cuni.cz/~hudecova/education/ si stáhněte data Iq2.txt a zdrojové kódy cviceni11.r a figks.r. Otevřete si program R Studio,
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 8 Jak analyzovat přežití pacientů.
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní