PRAVDĚPODOBNOST A STATISTIKA
|
|
- Iva Marešová
- před 6 lety
- Počet zobrazení:
Transkript
1 PRAVDĚPODOBNOST A STATISTIKA
2 Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice je plné hodnosti Vektor Xβ je nenáhodný, tedy E Y Xβ vary I Y T T Y 1,,Y n Matice X X n,k E( i ) 0 E(ε) 0 D( ) C(, ) 0 i i je náhodný vektor a y y 1,, se nazývá matice plánu j y n var( ε) I je jeho realizace. Předpokládáme navíc, že ~ Nn ( 0, I) tedy Y ~ N n ( Xβ, I )
3 Lineární normální regresní model Z těchto předpokladů plyne: βˆ Yˆ T 1 T X X X Y Xβˆ H X Yˆ HY Eˆ Y Yˆ X T 1 T X X X Y T 1 T X X X h(h) k MY M I H h(m) n k βˆ Yˆ ~ Eˆ ~ ~ Nk N n N n β, ( 0, ( Xβ, X M ) T H 1 X )
4 Lineární normální regresní model - diagnostika Předpoklady: ~ Nn ( 0, I) Při ověřování předpokladů se vychází z reziduí ~ (, E N 0 M) D( E i ) (1 h ii ) n Získané hodnoty: e y yˆ Složky e nemusí mít stejný rozptyl
5 Lineární normální regresní model - diagnostika Modifikace: - normalizované rezidua: - predikovaná rezidua: e e Ni Pi e i s ei 1 h ii - standardizované rezidua: - studentizované rezidua: kde s s ( i) e e Si Ti s je odhad rozptylu, pokud vynecháme i tý bod ei n ks T y Xb( i) y Xb 1 ( i) h s ( i) n k 1 n k 1 ( i) s e i 1 h e i ( i) 1 ii h ii ii
6 Váha Výška 1 Příklad Výška Váha - Regresní přímka
7 Lineární normální regresní model diagnostika grafická analýza reziduí Sestavíme graf, kde x složka bude: x i y složka bude: e si v grafu hledáme - velké hodnoty (outlier) - trend (potřeba přidat třeba x ) - oblasti s různým rozptylem (porušen předpokladu) Bartlettův test Příklad:
8 Lineární normální regresní model diagnostika grafická analýza reziduí Sestavíme graf, kde x složka bude: y složka bude: e si i 1 h ii y
9 Lineární normální regresní model - diagnostika Diagnostika: - ověření základních předpokladů MNČ (kritika metody). - ověření stejného rozptylu - ověření autokorelace - ověření normality - ověření vhodnosti modelu pro daná data (kritika modelu) - ověření zda v datech je nějaká závislost - ověření kvality modelu - vhodnosti dat pro navržený regresní model (kritika dat) - zjištění vlivných bodů - vlivné body v nezávisle proměnných - vlivné body v závisle proměnných
10 Heteroskedasticita nekonstantnost rozptylu : - v grafické analýze reziduí x složka: h ii y, y složka : klínový tvar bodů v grafu -Cook-Weisbergův test: Pokud CW (1) Lineární normální regresní model diagnostika ověření předpokladů CW n s i1 je prokázána heteroskedasticita. 4 1 V přítomnosti heteroskedasticity je třeba uvažovat o použití metodě vážených nejmenších čtverců s váhou: 1 wi 1 1 var( ε) W y 1 diag,, βˆ T 1 T 1 X W X X W i y1 y n ( y n i i1 ( y y) e i i i y) D( ) i W Y e si
11 Lineární normální regresní model diagnostika ověření předpokladů
12 Příklad Výška Váha - Regresní přímka Váha Výška 1 Cook- Weisbergův test: CW= 5, v grafické analýze reziduí - heteroskedasticita x složka: y složka : i 1 h ii y e si klínový tvar bodů v grafu alfa= 0,05 Chi^(1)= 3,841459
13 Lineární normální regresní model diagnostika ověření předpokladů Ověření nezávislosti: C( i, j ) 0 Složky e i mohou být závislé zjišťuje se autokorelace Durbin-Watsonův test nezávislosti (u posloupnosti) d n1 i1 e n ei i1 i1 e i d 0, 4 Pokud d nezamítáme nezávislost, jinak jsou hodnoty zavislé na X Příklad Výška - Váha: d= 0,497331
14 Lineární normální regresní model diagnostika ověření předpokladů Ověření normality : ~ Nn ( 0, I) uspořádání reziduí: e( 1) e( n) - Q-Q plot j 3 1 e 8 tj. empiricky vs. teoreticky kvantil ( j ), n P-P plot: j 0.5, e( j) n normální body by měly být na přímce: y = x - testy normality: Pearson χ, Kolmogoriv-Smirnov, Anderson-Darling
15 Příklad Výška Váha - Regresní přímka Ověření normality j ej 1-10, , , , , , , , , , , , , ,818873
16 Lineární normální regresní model diagnostika ověření modelu Předpokládejme, že je to první sloupec jsou jedničky: Dále označme: T 1 T yˆ X X X X y T 1 T b X X X yˆ Xb y X X n, k ~ 1 X H X T 1 T X X X yˆ Hy T MSS ( yˆ 1y) ( yˆ 1y) TSS ( y 1y) ( y 1y) T RSS ( y yˆ) ( y yˆ) T Platí: TSS=MSS+RSS
17 Lineární normální regresní model diagnostika ověření modelu Testem celého modelu se rozumí test hypotézy: T : ( 0, 1,, k ) ( y,0, H,0) vzhledem k alternativní Pak testovací kritérium: doplněk kritického oboru: W T na hladině významnosti α, 1,, k: 0 H A : 0 y, j j MSS F k 1 RSS n k 1 0, F 1 ( k 1, n k 1) Testem celého modelu se zkoumá, zda použitý model je lepší, než žádný model (model se nahradí průměrem z hodnot y)
18 Lineární normální regresní model diagnostika ověření modelu Test vhodnosti modelu: pomocí koeficientu determinace MSS RSS R 1 TSS TSS Často se uvádí v procentech a udává, kolik procent bodů je vysvětleno pomocí zvoleného modelu. Aby se odstranil vliv počtu parametrů, používá se upravený koeficient determinace: R 1 (1 R n 1 ) n k
19 Příklad Výška Váha - Regresní přímka Příklad výška, váha Regresní přímka: Váha 1 Výška Excel Analýza dat Regrese: ANOVA Rozdíl SS MS F ýznamnost F Regrese 1 370, ,7693 6, ,047 Rezidua 1 670,445 55,8704 Celkem ,14 Regresní statistika Násobné R 0,596735
20 Lineární normální regresní model diagnostika ověření modelu Další charakteristiky pro ověření modelu: Střední kvadratická chyba predikce - MEP: MEP 1 n n i1 e i 1 h ii, kde h ii jdou diagonální prvky matice H Akaikovo informační kritérium - AIC: RSS k T AIC ln, kde RSS ( y yˆ) ( y yˆ ) n n čím jsou tyto kritéria menší tím je lepší model Predikovaný koeficient determinace R P : R P n MEP 1 je citlivější na vybočující body než R TSS
21 Příklad Výška Váha - Regresní přímka Příklad výška, váha Regresní přímka: Váha 1 Výška Střední kvadratická chyba predikce - MEP: MEP= 64,09681 Akaikovo informační kritérium - AIC: AIC= 6,0194 Predikovaný koeficient determinace R P : RP = 0,138165
22 Lineární normální regresní model diagnostika detekce vlivných bodů Kvalita dat úzce souvisí s použitým regresním modelem. Při posuzování se sleduje především výskyt vlivných bodů (VB), které jsou hlavním zdrojem řady problémů, jako je zkreslení odhadů a růst rozptylů až k naprosté nepoužitelnosti regresních odhadů parametrů. Ve zvláštních případech však vlivné body zlepšují predikční schopnosti modelů.
23 Lineární normální regresní model diagnostika detekce vlivných bodů Vlivné body silně ovlivňují většinu výsledků regrese. Lze je rozdělit do tří základních skupin: a) Hrubé chyby, které jsou způsobeny měřenou veličinou (vybočující pozorování) nebo nevhodným nastavením vysvětlujících proměnných (extrémy). Jsou obyčejně důsledkem chyb při manipulaci s daty. b) Body s vysokým vlivem (tzv. golden points) jsou speciálně vybrané body, které byly přesně změřeny, a které obvykle rozšiřují predikční schopnosti modelu. c) Zdánlivě vlivné body vznikají jako důsledek nesprávně navrženého regresního modelu.
24 Lineární normální regresní model diagnostika detekce vlivných bodů Podle složky dat, ve které se vlivné body vyskytují, lze provést dělení na: 1. vybočující pozorování (outliers O), které se na ose y výrazně liší od ostatních (OB),. extrémy (high leverage points E), které se liší v hodnotách na ose x, nebo v jejich kombinaci (v případě multikolinearity) od ostatních bodů (EB). Vyskytují se však i body, které jsou jak vybočující tak i extrémní (OE). O jejich výsledném vlivu však především rozhoduje to, že jsou extrémy.
25 Lineární normální regresní model - diagnostika
26 Lineární normální regresní model diagnostika detekce vlivných bodů Detekce vlivných bodů Pro detekci vlivných bodů ve směru nezávisle proměnných se využívají hodnoty h ii (diagonální hodnoty matice H). Body považujeme za vlivné, pokud k platí: h ii, ( pro n > 300 : ). n 3k h ii n Pro detekci vlivných bodů ve směru závisle proměnných se využívají hodnoty Studentizovaných reziduí. Body považujeme za vlivné, pokud platí: e Ti t1 k ( n )
27 Lineární normální regresní model diagnostika detekce vlivných bodů Cookova vzdálenost Cookova vzdálenost je často využívanou metodou pro identifikaci vlivných v regresi. Tato metoda měří vliv i-tého pozorování na hodnotu odhadu vektoru β regresního modelu T Cookova vzdálenost je definována: yˆ yˆ ˆ ˆ i y yi Di kse kde ŷ i je odhad při vynechání i-tého pozorování. Cookovu vzdálenost lze definovat také s pomocí Studentizovaných reziduí: D i Orientačně platí, že je-li Cookova vzdálenost D i >1, lze detekovat i-té pozorování jako vlivný bod. Hodnotu D i je však možné porovnávat také s kvantilem Fisherova rozdělení, a to konkrétně s kvantilem F α (k,n k). Body jsou vlivné, jestliže platí D i >F α (k,n k). e Ti k h ii 1 h ii ˆ y j, i
28 Lineární normální regresní model diagnostika detekce vlivných bodů Williamsův graf V tomto grafu jsou na ose x znázorněny diagonální prvky projekční matice h ii a na ose y pak Studentizovaná jackknife rezidua v absolutní hodnotě. V grafu jsou pak uvedeny také mezní linie pro detekci jak leverage points, tak outliers. A to mezní linie pro leverage points, tedy ve směru osy x: k n, 3k n a mezní linie pro outliers, tedy ve směru osy y:. t n ) Body vpravo od svislé přímky jsou silně vlivné, body nad vodorovnou přímkou jsou silně vybočující. 1 ( k
29 Váha Výška 1 Příklad Výška Váha - Regresní přímka hii tudent_resi Cook 0,13685, , , ,3184 0, ,07004, , , ,4843 0, , ,619 0, ,1089 0, , , , , , ,796 0, ,1089-0,651 0, ,4803-0, , , , , ,1089-0,5477 0, , , , , ,09 0,00516 mez= mez= mez= 0,85714,00985 >1
30 Příklad Výška Váha - Regresní přímka Minitab: Test koeficientů na hodnotu 0:
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba lineárních regresních modelů. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba lineárních regresních modelů 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha 1 Porovnání regresních přímek u jednoduchého lineárního regresního modelu Porovnání
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
AVDAT Geometrie metody nejmenších čtverců
AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr Tvorba lineárních regresních modelů při analýze dat Příklad 1 Porovnání dvou regresních přímek u jednoduchého lineárního regresního modelu. Počet
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015
http: //meloun.upce.cz,
Porovnání rozlišovací schopnosti regresní analýzy spekter a spolehlivosti Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565,
Tvorba lineárních regresních modelů při analýze dat
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Tvorba lineárních regresních modelů při analýze dat Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO a limity její přesnosti Seminární práce Monika Vejpustková leden 2016 OBSAH Úloha 1. Lineární kalibrace...
TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Závěrečná práce 12. licenčního studia Pythagoras Fakulta chemicko-technologická, katedra
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS 1. VÝPOČET OBSAHU
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE
Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271
1 Příklad 1. Porovnání dvou regresních přímek Při výrobě automatových ocelí dané jakosti byla porovnávána závislost obsahu uhlíku v posledním zkušebním vzorku (odebraném z mezipánve na ZPO a analyzovaném
Kalibrace a limity její přesnosti
SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti 005/006 Ing. Petr Eliáš 1. LINEÁRNÍ KALIBRACE 1.1 Zadání Povrchově upravená suspenze TiO je protiproudně promývána v kaskádě Dorrových usazováků. Nejvíce
KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie KALIBRACE A LIMITY JEJÍ PŘESNOSTI Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2016
Úloha 1: Lineární kalibrace
Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
12. licenční studium Statistické zpracování dat při managementu jakosti. Lenka Hromádková
12. licenční studium Statistické zpracování dat při managementu jakosti Lenka Hromádková Desinfekční přípravky slouží k zneškodňování mikroorganismů (MO) vyvolávající onemocnění člověka nebo zvířat Druhy
Tvorba nelineárních regresních
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba nelineárních regresních modelů v analýze dat Zdravotní ústav
Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat
Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor
Tvorba lineárních regresních modelů při analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba lineárních regresních modelů při analýze dat Seminární práce Monika Vejpustková leden 2016
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Tvorba lineárních regresních modelů
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Zdravotní ústav
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr PŘEDMĚT 2.1 TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Příklad 4 Vícerozměrný lineární regresní model 2/24 V Ústí nad Orlicí dne: 20.8.2000
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Semestrální práce Licenční studium Galileo Předmět Nelineární regrese Jiří Danihlík Olomouc, 2016 Obsah... 1 Hledání vhodného
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Fakulta chemicko technologická Katedra analytické chemie
Fakulta chemicko technologická Katedra analytické chemie Licenční studium statistické zpracování dat Tvorba lineárních a kalibračních modelů při analýze dat Pavel Valášek Školní rok 2001 02 OBSAH 1 POROVNÁNÍ
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
2.2 Kalibrace a limity její p esnosti
UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
Licenční studium Galileo: Statistické zpracování dat. Tvorba lineárních regresních modelů při analýze dat. Semestrální práce
Licenční studium Galileo: Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Porovnání dvou regresních přímek u jednoduchého
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Univerzita Pardubice
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Lineární regrese Ing. Jan Balcárek, Ph.D. vedoucí Centrálních laboratoří Precheza
18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1
18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr PŘEDMĚT 2.2 KALIBRACE A LIMITY JEJÍ PŘESNOSTI Příklad 1 Lineární kalibrace Příklad 2 Nelineární kalibrace Příklad 3 Rozlišení mezi lineární a nelineární
POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.
POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt 1. Zadání Úloha 1. Lineární kalibrace: u přímkové
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR
KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Testování předpokladů pro metodu chain-ladder. Seminář z aktuárských věd Petra Španihelová
Testování předpokladů pro metodu chain-ladder Seminář z aktuárských věd 4. 11. 2016 Petra Španihelová Obsah Datová struktura Posouzení dat Předpoklady metody chain-ladder dle T. Macka Běžná lineární regrese
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
odpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba nelineárních regresních modelů v analýze dat. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba nelineárních regresních modelů v analýze dat 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha Nalezení vhodného modelu pro popis reakce TaqMan real-time PCR
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Aplikovaná statistika v R - cvičení 3
Aplikovaná statistika v R - cvičení 3 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.8.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.8.2014 1 / 10 Lineární
Menu: QCExpert Nelineární regrese Modul nelineární regrese slouží pro tvorbu a analýzu explicitních nelineárních regresních modelů v obecném tvaru
Nelineární regrese Menu: QCExpert Nelineární regrese Modul nelineární regrese slouží pro tvorbu a analýzu explicitních nelineárních regresních modelů v obecném tvaru y = F(x,p) (1-1) kde y je nezávisle
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více
9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
Úlohy. Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3)
Úlohy Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3) Úloha B8.01 Závislost hmotnosti očních čoček na stáří králíků Dudzinksi a Mykytowycz (1961) ukázali, že hmotnost vysušených
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou