|
|
- Pavel Pokorný
- před 9 lety
- Počet zobrazení:
Transkript
1 Úlha č.2 Elektrické řístrje - cvičeí Přechdé děje ři vyíáí Zadáí: Pr vyíač a jmevité aětí = kv a jmevitý vyíací rud I k = ka vyčtěte: a) hdtu aralelíh tlumícíh dru tak, aby tlumil kmity ztaveéh aětí číaje kmitčtem f m = 5000 Hz. Vyčteu hdtu zakruhlete a desítky Ohmů a zětě řečtěte hdtu mezíh kmitčtu f m. b) velikst rudu a jeh fázvý suv rtékajícíh aralelím tlumicím drem uhasutí luku v hlavím zhášecím systému. Srvejte žadavky a dimezváí hlavíh zhášela a zhášela r vyutí aralelíh dru. c) Průběh ztaveéh aětí ři vyíáí vdu s vlastím kmitčtem: - f = 5000 Hz bez tlumícíh dru (α = 000) - f = f mskut. (viz. zadáí bd a)) - f < f m - f > f m Pzámka : Vyíaý vd važujte za ryze iduktiví. Časvé růběhy ztaveéh aětí vyeste d slečéh grafu včetě růběhu aětí veéh. Rzbr: Při určváí růběhu ztaveéh aětí je ejdůležitější hdtu vdu její kaacita, resektive vlastí kmitčet vdu. Nejeřízivější říad astae ři vyíáí vysce iduktivích vdů, kdy aětí ředbíhá rud téměř 90 (π/2), tz. ři růchdu rudu ulu (kamžik vyutí) je aětí zdrje rávě maximálí. Přitm řechdá slžka aětí má kmitavý charakter. De: Skuia: Autr: - -
2 Vyracváí: a) Výčet aralelíh tlumicíh dru Na r. je zázrě áhradí vd jedé fáze vyíaéh vdu. Budeme ředkládat, že jedtlivé fáze reáléh vdu se evlivňují a reálé arametry vdu ahradíme arametry sustředěými. SB f C VYP R Obr.. Schéma áhradíh vdu r výčet ztaveéh aětí rčeí arametrů vdu: Pr imedaci vdu latí (viz. zadáí) Z = = X = ω = 3 I 3 I 2πf k k Při výčtu hdty áhradí kaacity vyjdeme ze zadaéh kmitčtu f m = 5000 Hz a vztahu r vlastí kmitčet elektrickéh vdu. ω = 2π f m = C = 2 2 C 4π f m () Záme-li yí arametry vyíaéh vdu můžeme stavit hdtu aralelíh tlumícíh dru, r který latí: R = 2 C Hdtu dru zakruhlíme a celé desítky Ohmů, řečteme hdtu áhradí kaacity a zětým dsazeím d vztahu () vyčteme skutečý vlastí kmitčet f mskut.. De: Skuia: Autr: - 2 -
3 b) Výčet rudu aralelím tlumicím drem latí: Pr imedaci vdu s aralelím tlumicím drem a rud jím rcházející 2 2 Z R += X, I =, 3 Z Nyí zbývá je určit fázvý suv tht rudu vůči aětí. Platí ϕ = arcta X R c) výčet ztaveéh aětí Při vyíáí mhu astat dva mžé stavy. Zarvé stav kdy vyíáme vd vysce iduktiví ( >>R ), tm ztaveé aětí kmitá klem aětí zdrje ( tzv. veé aětí ), eb kdy vyíáme vd mál iduktiví ( <<R ), tm je ztaveé aětí aeridicky řetlumeé. Obecě lze a říady sat těmit rvicemi: si ω t + ϕ siϕ siω t + csω t e ω α αt a) ( ) z = α αt b) si( ω ϕ ) siϕ sihδ cshδ z = t + δ t + t e (2) (3) Pr říad kdy jede děj řechází d druhéh, tz. děj kmitavý d aeridicky řetlumeéh (děj a mezi aeridicity) latí αt [ e ] c) = si( ω t + ϕ ) siϕ ( + αt) z (4) Vlastí řešeí: - vd bez tlumícíh dru (f = 5000 Hz, α = 000) r zadaé hdty stuě vyčteme: De: Skuia: Autr: - 3 -
4 2 ω = 2 π f, = = fm 3, Dsazeím d rvice (2) a řešeím r siϕ ϕ = (ϕ = π/2) vyčteme růběh ztaveéh aětí v rzsahu cca jedé ůleridy aětí zdrje. - vd s tlumicím drem r mezí kmitčet ( f = f mskut. ) Pr tet říad musíme vyčíslit hdtu tlumícíh čiitele α, r který latí α = 2 R C a dsazeím d vztahu (4) za stejých dmíek jak u vdu bez tlumícíh dru vyčteme růběh ztaveéh aětí a mezi eridicity. - vd s tlumicím drem r vlastí kmitčet ( f < f m ) Prtže vlastí kmitčet vyíaéh vdu je meší ež mezí, erjeví se vliv tlumícíh dru, tz. růběh ztaveéh aětí bude kmitavý. Obdě jak v ředešlých říadech vyčteme stuě jedtlivé veličiy třebé r dsazeí d vztahu (2), a t : Vlastí úhlvu frekveci ω, áhradí kaacitu vdu C a čiitel tlumeí α a vyčteme růběh ztaveéh aětí r stejý časvý iterval jak v ředešlých bdech. - vd s tlumicím drem r vlastí kmitčet ( f > f m ) Prtže vlastí kmitčet vyíaéh vdu je yí větší ež mezí, rjeví se vliv tlumícíh dru ještě více, tz. růběh ztaveéh aětí bude aeridicky řetlumeý. Vlastí výčet je idetický jak v ředchzím bdě, s tím rzdílem, že míst úhlvé frekvece ω vyčteme čiitel δ a dsadíme d vztahu (3). δ = kde C je áhradí kaacita vdu r zadaé f 2. 4 C C 2 R Všechy čtyři vyčteé růběhy vyeseme ve slečém grafu a vyhdtíme. De: Skuia: Autr: - 4 -
5 Pzámky: Vlastí zadaé hdty zvlte z tab. Zadáí [kv] I k [ka] f [Hz] f 2 [khz] De: Skuia: Autr: - 5 -
Elektrické přístroje. Přechodné děje při vypínání
VŠB - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky Katedra elektrických strojů a řístrojů Předmět: Elektrické řístroje Protokol č.5 Přechodé děje ři vyíáí Skuia: Datum: Vyracoval: - -
ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž
ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě
Odchylka přímek. ϕ 0;180. Předpoklady: 7208, 7306
74 Odchlka římek Předklad: 708, 706 Př : Zakj a rej defiici a mžé hdt: a) laimetrick zaedeé dchlk římek b) úhl ektrů zaedeéh aaltické gemetrii Na základě ráí arhi st r ýčet dchlk římek aaltické gemetrii
Řízení otáček změnou počtu pólů
Řízeí táček změu pčtu pólů Tet způsb řízeí táček mtrů umžňuje změu táček puze p stupích. čet stupňů však ebývá veliký, běžě se pužívá puze dvu stupňů. r zvláští účel lze pužít i větší pčet stupňů. T však
Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
ě ď Č ú ď Š Á É ř Č ú ř ě ř ě é ě ů é ř ě ř š ř é ž é ž š é š ý é ř é ě ř ů ý ž ž ě ý ř é ě ř ů é é ž é ž ř é é ř Ž é ř é ú ý é é ž ř ž ž ě é ě é š ě ň é ž ř š é š ý é Ť ď é ě ř ů ý ž ž ď ž ý ř é ě é é
ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.
Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé
Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř
ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň
É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř
ř ř ď ř ř ř ř é é ř ř é ř ř ř ú ů ů Ý ř ř ň é é ř ť ř ř ř ř ř é ř ř Í Ú é é ř ř ř ř ř ř ú ů ů ů Č é Ž ř ř ň Ž é ú ř ů ř ř é ú ů ř ř é ů ř ú ř é ř ú ř ů ú é ú é ř Ť ř ů ř ů ů ú ů ř ů ř ř ř ť ž Í é ž ú ř
Á Ý Á Ť ĚŽ Í Ý Ť ŘÍ Ť Š Í ť Č Ž Č Č Ý Á Í Ž Š Á Ž ň Á Í Í Í Á Č Ř Á ÁČ Á Ž ť ť Í ť Ť ť Ť Ť Ť Ť Í ŘÍ Š Ť Ť Ž ŠŽ ň Ť Ť ň Š ň Ť ú Í Ý Á ď Š Ř ď Ť Í ď ň Ť ň ň Ď Ž Ž ň ň ň Š Ť Š ň Í ň Í ň Ť ň ť Č ň Š Š ň Í
Ě Ý Í Č ě ř ŠÍ Á Ú Ř Ž ú Ž Ž Ú ž ě ů ž ý ř ď ř ů ů ž ý ě ř ř ě ě ý ú ď ž ý ě ě ř Í ž ý ý ě ý ú ď ž ý ý ů ě ý ž Ž Í ř ž ě ž ě ý ú ď ž é ř ý ž ď ž ř ů ý ř ý é ú ž ř é ž ů ř é é ů é ř ě é ž ě ý ř é é ř Ž
Ř Í Š Š Č Ť š é é ž é é é Ť š ť Ť ť ž ž Ť Ť š Í Ť Ž č é č č ž é č ž Ť š Ť Ď ž ž é ž Í č ň é Ť ž é é é Č č ž ž ř ž š š č č š ď Ž Č Ť é é Ť č é ž é ž é é é Ť ž ň š Ť Ž č š ž Č é č é š é é Ť Ž é č č š š é
Ě É ÝÚ Č š Ť Á ť Í ř ů ů ú ů Ú Ž ú ů ů ů ř ř ú ů ů ř ř ř ř ř ň ú Ě Ř Ú Í Í ň ř ň ř ř ř ř Ž ř Í Í ř Ž ů ř ř ú ů ř ř ř ř ř Í ř ř ň ř ř ň ř ň ř ň ř ř ř ř ř ř ř ř ú ř ú Í ř ř ů ř ú ú ř úč ů ř ů ř ř ů ř ř ř
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů
ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š
ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě
ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě
Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě
2.2. Termodynamika míšení
.. ermyamika míšeí Míšeí lyů Míšeí lyů rbíhá amvlě, a tey ři ktatí teltě a tlaku muí být tet ěj rváze ížeím Gibbvy eergie. Důkaz r ieálí lyy: čátečí tav kečý tav + + G + G mě + Změa Gibbvy eergie ři tmt
Lineární zobrazení. 90 ve směru od z k x a symbolem h otočení kolem osy z o. 2 n
ieárí zbrzeí V prstru je dá krtézský systém suřdic Oyz Ozčme symblem f tčeí klem sy 9 ve směru d y k z symblem g tčeí klem sy y 9 ve směru d z k symblem h tčeí klem sy z ) Určete suřdice bdů f ( M ) (
ť ť ť ó ť Ž ť ť ó Č ň ů ť ť ť ť ů ňť ť ů ť ť ť ť ť Č Č Č Í Ý Ý ť Č Č ť Š Č ď ť Ý Ú ť ó ť ó ď ů ň Ó ť ť ó ň Ř ó Ó É ď ó Ň ň ť Č ň ó Ý Ý ť Ý Ý ó Ž Ý Č Ř Ý ť Ý ť Ň ť ť Č Á Š Č Ž Č ť ť ů Č ů Č Č ť Č Ú ď ó
O Jensenově nerovnosti
O Jeseově erovosti Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikovaé matematiky, Fakulta elektrotechiky a iformatiky, Vysoká škola báňská Techická uiverzita Ostrava Ostrava, 28.1. 2019 (ŠKOMAM 2019)
Á Á Í ŘÍ Í Ž Í Ť č é Ť é ť Ž Ť é č Í Í Š Ť Ť é č Í é Ž Ť č Í č Ť é é é é Č č é é č č Ť Ť Ť é é Ť Ť Í Ž é Ď Ď Í Ť č é Í Ž Í é Ť Í Ť é Ť é é Ť Ť Ž é Ť Š Ť é ň č Ť ď é č é ň č Ť ď č é Ť Š č é č é ň Ý ň Ť
Vícekanálové čekací systémy
Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve
É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý
ú é ě ě ú ě š ě š š Š Í Č ě ú é ě ď ú Í ě é é ě ě ě ť ě ú ď ď ě ě Ý ě Ú š ě Ú š ď ď ěž é ú é ě ěž é ú é Č é é ě ě Ť ó š ď é é ěň ě é ě ú ě Č ě ě ě ě ě Ž ď ě š ď ž é ž ě Ž Ú é ě ď ě ě ž ě é ď š ú ě é ú
ĚŽ ÉČ Ý Č Í Ě Ě Ě Ž ň ž Ž Ž Ž Ž Ž ó Ž Ž Ž ú Í š Í É Č Č Á ŘÍ É Ě Ť Ý Ď Ž Ě Ž Č Ž Ž š š Č Ž Č Č Č Č ú ó Č É Ž Č Ž Č š Č š ú ú š š Á Ě Ó ú ú Ě Ž Ž ú ž ó Í Č Í É š Á ó Í Č Č ú Í ž š ž Č Ž Č ó Č ž Š Š Í Í
ř ě ě š ř ů ř ěž ú ěž ú ú Č ě Ú š ž ú ž ě ě ř ž ě ú ů ě ř š ž ú ě š ž ě ů š ě ř ě Ú ř ě ř ě ř ě ě ř š ž ž ř ě ť ř ě ů š ř š ě ě ř š ď ů ř ř ž Ž ř ě ž ř ě ř š ř ě ř ř ů ř ž ř ř ř ě ě š ž ř ě ě ž ž ř ž š
Ž é é ť Ů ž š é Ž Ú Ú ť ď Ň Ě ž Ž Ú Ú ó é Ž é ó Ž ó š š Á é é é ž ó Ž Á ó ó É š š Ž ť Ú Ě Á ó ž ž é é é ž é ž š ť Ú Ž ť Ťť Ů Ú ť ď ď š š š Ž Ú Ú Ť ó š ó ó ó ó ó Ú Ť ó Ť ó Ž Ú Ě Ó ó Ú é ó ť Ý ů é Ž Ž Ý
Metody získávání nízkých tlaků
Medy získáváí ízkých laků. Základí rici čeráí Čeraý rsr - vakvá kmra (lak, kcerace, vý če čásic N a vývěva (lak
ň ě ň Ú ě Ť Ť ě ě ě Ť ě ě Ť ž ž ě ě ť Ť ž Ť ě ž Í ě Ť č ž ě Ť ž ě ě ě ě Á ž Ť ě ě ě ě Ó ě ě ě ě ě ž ě ě ž ě ž Ó ž Ó ě Ť č č ť ě ě ě Ť ě Ř ě č ě č ě ě ě Ť ž č Ť ě Ť Ť ě Š ě Í ě ě ě Ť Ě Ť ě ž ž č ěž Ť ž
Č é ě é ě ě š ř ů ó ú ů ě ě š ř ů ř š ř ě š é ě ř ě ř é š ě š ú Ř Ť Č é ě Č ř é š ě š ú š ř é š ě é š ě ž š Č ú ř ě ě é é ů ž é ž ť ě š š š é é é ě é š ďě ň é ě éž ů ě ř ř ě ř é š ě ž ě š ž š é ř ž ě é
ů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť
7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
ě ř é í ří í é š ý š Š ě š ří í é í í í í Ú í í í í í í ě ů í é é ř é ú ě š ú ě é ž é ě é ří ěž í Ú é í ř é í š ř í í Š ří ý í í ž ří ů š í é í ž ří ý ěř ž í š í í ž í í ě Č ří é í í í í ř ě í š ř í í
Ž Ě Č ÝÚ Ú ž Č š Í Í ň Í Ú ř Ů ů Ž Í Ú ů ů Ů ů ř ř Í Ů Í ů ř ř ř ř ř ň Í Í É ň ů Ú ň Ě Í Č ŘÍ Ů Í Ř ň Ž ů ň ů ř ř ř ň ř ř ň ř ř ň ř ř ň ř É ř ň š Ž ř Ť ř ř ř ř ř ř ř ů ř ř ů Ů ř ň ů ř ř ř ř ř ř ř Ž Ž ó
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
MATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
Vývěvy pracující na základě přenosu impulsu
Vývěvy racující a základě řesu imulsu Na mlekuly čeraéh lyu se růzými zůsby řeáší imuls (hybst) v žadvaém směru čeráí - d vstuíh hrdla vývěvy k výstuímu. Mlekuly lyu mají samzřejmě stále své eusřádaé teelé
Á Č É ŘÍ ě š ž ě ě š ú ě ů ě ě ě ž Ž ž ě ž ů ě ě ň š ú ě ž ě ž ě Á Á ď ď Ý ž ů ě ě ě ž ě ž ě ů ů ě Ý ž ů ě ěž ž Ý Č ě Ý ůž ěž ě ž Ý ž ůž ě ě ž ě ž ú ě ůž ěž ůž ě ě ě ž ůž ě ž ž ě ů ě ě š ú ž ě Ý ě ž ůž
Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
ý Š Á ž Ě Ě Á Í Í ý ě ě ů ý Ž ž ý ž ý ě ý ŽÍ ě ě ě ů ý ž ý Í ě ě ě ž ý ě Ž ě ž ý ě ě ě ů ů ě ě ě ů ž ě ž ě ě ž ž ý ž ě ě ž ý ž ě ě ě ž ý ě ž ý ž ě ě ě ž ě ě ž ě ě ž ě ž ě ž ě ě ň ě ě ěž ě ě ů ý ý ý ě ý
ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž
Ř ň ř Í Č Č ř Č ě ů ť Í ř Ř Š Č ě ů Ž ú Č Č Š ě ř ě ě ř ě ř Č ř ů ř ě ří ř š ř ř Č Š ř š ů Ž ř ů ů ř š ň Í ř ř ě Č ě Č Č Ě ť ú Í Ť Í š Č Ž ě šř Ž Č Ú ř ú ř Č Í ě ě Ž š Ž ř Ž ě ě Ž ů ů ř Č ř Í Š ě Ž Š Č
í í ý ý ý é íš ů ý í á ě í ří áš ý í ě í í ý ý ý á íš á í Ží á á ů í á í á é á é Č ů é é é á í š ě Ž Č ů ř í á ášť á ě á ř í Č áš á ě á é ř ý í é á ý ě ý š í ý ší í í á ř á í í í ý ě ř š í í Ž í é ř š
8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Á É Á Í ř é á á á č ý á í é í í á í č íř í á í ř í Úř á í á ě ý í é č ř ý á á ě í ě ší ř ů á á č ě í é á á í ř ý á ť í á á ě á í é ř é á ě í ť č é ě á ě ú ž é ě í ť íč é í ř é á í í ě é í í ř Úř á í á
Á É é Č é ř é ě é é ě ěř ů Á Ě š ý ý ř ý ř ě ě ý ě ó š ě é Ú Č Í ý ý ěř ř ř Č Č é š š ó ě ř ě ěř é ů Á É é Ř Á Ě Í Č é ě ý ě ř ý ž ě é ě ěž š žšř ů Í ř ý ý ě š žšř ů é šš ř ř ž Č šš ž é Á É é Č é ř é ě
Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í
Á ě Ě Ň Ý ř ě ř Ř Ě Á Ž ú ř Ž ě Š Ž ě Ž ř ů Ž ř ú ř ř ř ě ě ř ů ř ř ě Ň Ý Ě Á ř ě Ž ř ů ú Ž ř ř Ž Ž ů ř Ž ě ř Ž Í Í Ě Á ě ř Ž ř ž ř ř ž ž Ž Á Í ř ž ř ř ř ř Í Í Ě Á Á ř ř ě ů ěř ě ěř Á Í Ň Ý ř Ý ž ě ě ř
ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š
3. Decibelové veličiny v akustice, kmitočtová pásma
3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho
Interference. 15. prosince 2014
Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude
Iterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....
ř ě é ř š ž ř ý é ů ý é š ž ř é ě ě ň ž ř é ř ř ý ř Ý é Ý Ý ú é ř ř ě é ž ů Á ž Č é ť Ú ýš é ž ž ú é ú š ý ž ž Ž é ě ě é ě ř ě ů ě é é ú ě Ť é ě é ě ý ř ž ý ž ř ě š Ť ž ě é ý ě é ž ž ť ě š é ě é š ě š
Střední průmyslová škola strojní a elektrotechnická. Resslova 5, Ústí nad Labem. Fázory a komplexní čísla v elektrotechnice. - Im
Střední průmyslvá škla strjní a elektrtechnická Resslva 5, Ústí nad Labem Fázry a kmplexní čísla v elektrtechnice A Re + m 2 2 j 1 + m - m A A ϕ ϕ A A* Re ng. Jarmír Tyrbach Leden 1999 (2/06) Fázry a kmplexní
Č Č ž é ň ě ť ě ě š é ň ě éš ň ě Í ž é š ř ď ě š ě ě š é é ě ň é ě š ť ě é ě ě š ť ě ť ě ěž Ž ěž ť é ěž é Ž ť ě ě ě ť š ě Á Í Ů ť ť ť š Ž Í ď Ě š ě ě Í ě é ě ě ě ť ě ě ť é ř é ť ě ž é Í ě é Ž é ě Ů Í š
HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.
HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická
Á Č Á Ú ú ž Ú ž ž ž ž ž Ť Á Ú ž ň ň Ž ž ň ň Ř ž ž ú ň ó Ň Ě É Á ť ň ó Ú ž Ú Ú ž ž ž ň ž Ú ž ň ž ž ž ž ž ž Ž Á žá ž Ů ž ž ž ž ž Č Š ú ž ú ú ú Ě Ú ť ž ž Í Š Š ž ž Ú ú ž Ů ž ž ú ž ž ú ú ú ž ž ž ú ž ž Ě Ž
ě ý šš ř ě ň Á ě ř Ů ř ě ěš ý é ě é ž ě é ě ěš ě ěš ý ž š ě é é ý ě šť ěř š é š ž ý ě ů ě é šť ě ž ý é š ěž é ž š ě š š ě ý ě ě é š ě ě ý ě ý ů ň ý ž é ř ž ž é ř ř Í Ř Ž ž Ř ň ÁŠ Á Ž Ý ř é ý Š Í Á ž Ě
n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
Í ý ý Í š é ú Í Á É ď ř ú ř ř é ň é é Ť ř š ř é ž é é ž ž ý ř é ř ů é é ž é ř ž ř é é ř ž é Í ú ý é é ž ž ž é é Š ň é ž ř Ž ř é é ó é ž ř é Š Ú ž ď ř é ž Ť é ů Š ý ú ř Ť ž ž ř ř ř é š ý ž ý é ř Ť š ř ř
É Á Í Í Á Á ÝŤ ÚŘÍ ř ý ř ř říú ř É Á Í ÍÍ Á Í ž ž ý ýš ý ř ý š ř ů é ř é é ÍÚ ž ř É é ř éř ř é é ř ý é ř ř é Ž é é ýš é ď é ú ř Č Ú ř ř ž ů ř š éž Ť ž ů ř ř š é ž ď ů Ž ď Ž ď ý Ž ů ý ž ů é ž ůí Ý ůž ř
š ú ú Č Č ř ž Ř Ě ř ř ů Ě Ý Ě É Ř ů ř ě ě š ř ů ř ů ř ž Ř ř ě ř ě ř ř ě ú ž š š ř ř ě ř ů ě ř ř ň š ú ě ř Ú ňě ř Č ě ř š ě ř ř ě ř Ř ž ů Ř Ú ž ů ě š ř ě ř Ú Ú Ú Ú ž ž Ú ů ž ř ě ů ř É Ú ě ř Ú ň ÚČ ě ě Č
Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
3 - Póly, nuly a odezvy
3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud
Geometrická optika. Fermatův princip
Fermatův pricip Gemetrická ptika světl se šíří mezi dvěma bdy A a A p takvé dráze, že dba k prběhutí tét dráhy je extrémí eb staciárí ve srváí s jakukliv susedí drahu A A δv ( A, A ) δ ( x, y, z) ds 0
1 Nekonečné řady s nezápornými členy
Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete
4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program)
4. Torba áhradího schématu Před proedeím ýpočtu sítě uto ji adefioat (i případě, že yužíáme počítačoý program) Pro optimálí olbu řešeí jsou důležité zjedodušující předpoklady chceme sestait áhradí schéma
10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
ž ó ř š ť é ž é ů ť ň ť ř ť ž č é ú ž ř ě ú ě ď ř ů ě ěž ů ě ř š Č ď č ř ě č řš č ř ř ě ě ě Ť ť ě ť ó ú ě óó ů Ř ň ň ó ě ď ě č é ů ř Ž ž č č é č ž ž ú ž ž ž ž ž ž ž ř ťž ž ž ť č ž ů š č š č š č š č š ě
1.6.3 Osová souměrnost
1.6.3 Osvá suměrnst Předklady: 162 Pedaggická známka: Je třeba stuvat tak, aby se v hdině stihnul vyracvat a zkntrlvat bd 5. Pedaggická známka: Hned u střídání vázy je třeba dát zr. Narstá většina dětí
č úč ř ú úč é š ř úč ř ář ž úč úč ř ň á č á á á ř á ř ř ř úč Č ář é úč é á á ř á č úč š ř áš á á á č úč š ř úč ř č á úč é úč á č á á š ř á č Í š ř č úč č ž á é á é š é úč ď ž č Ýé ř á é ř úč úč ř ž ď š
Prostorová akustika. Akce: Akustické úpravy nové učebny č.01 ZŠ Líbeznice, Měšická 322, 250 65 Líbeznice. akustická studie. Datum: prosinec 2013
Prostorová akustika Číslo dokum.: 13Zak09660 Akce: Akustické úpravy nové učebny č.01 ZŠ Líbeznice, Měšická 322, 250 65 Líbeznice Část: akustická studie Zpracoval: Ing.arch. Milan Nesměrák Datum: prosinec
ť Á ČÍ Á ť ť Í Á Í Í ú ť Ů Ů ú ť Ě Ů Ž ť ť Ů Ů Ů Á ť Í Ó Á Ý ň Č Ě Ó Ž ň ť ú ň ť Ě Í Í Í Á Ý ť Í Á Ž Ů ť Ů Ž Ě ť ť ú ť ť ť Ž Ě Ě ť Ů Ů Ě Ů Ě Ž ť Ě Ě Ě Ó Í Ď Ó ť Ě Ě Í Ý Ě Ů Ó Ů ť ť ť É Ž Š Š Š Ž Č Š Š
Ť Ž Ě Ý Ý ť Ú ě ě ž Ú Ž ě Ú ě ě Ú ě ě ě Ť Ž É Ó Ý ď Ú ť ž ú ž Ž ž ž É Ž ě ž ž ě ž ž ž ž ě ž ú ž ě ó ě ě ť ž ě ó ó ž ě ě ě ě ú ě ě ě ž ě ž ě ě Ž Ž ž ž ě ě ě ž Ě Ý ť Ž ě ž ě ě ň ě Ú Ž ě Ú ě ž ť ž ě ě ě ž
ó š Ž šť Č Č š ů š ž š š š ž Ž š š š š š š š š š Ú Í Š Ě Ú Í š É Ý Á Š Š ú ň Í š Ý š ň Š É É š š š ň Š š Ů š ž ž š Í Ž š ú Č Á š Č š š š ú ú š ží ž ň š Ť Á š Ř Ě Š Ě Á Á Á š ž š ž š ž š š š ú š Í š š š
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
VŠB Technická univerzita, Fakulta ekonomická. Katedra regionální a environmentální ekonomiky REGIONÁLNÍ ANALÝZA A PROGRAMOVÁNÍ.
VŠB Technická univerzita, Fakulta eknmická Katedra reginální a envirnmentální eknmiky REGIONÁLNÍ ANALÝZA A PROGRAMOVÁNÍ (Studijní texty) Reginální analýzy Dc. Ing. Alis Kutscherauer, CSc. Ostrava 2007
elektrické filtry Jiří Petržela základní pojmy
Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé
ř ě é é ě ř ž ě é Ž Ý Ú ž é ě ů é ř é Ý é ů ÁŠ ú é é é ž ž é ě ů ž ř ž ů ě ň ú ě š ě é ú ú š ť š ě é ř é ú š ú š ě é ř ť é ž š ě ě ů ě ě ž ř ě ž ř ž ú ú š š ě ř é é ř š ě ř é ě ř ě ů š Ů é ž ů š ě ě ě
č čí č í ě ě ř ů ě ř é í é ů Č é é ř í í ó é ř í í ó í č é ž é Č ý ěší Ý Ř č ž í í ý č é ž ú í ěš é Š ó ě í í í é ů Č é ž ň ěší ý ř ů í í é Č ř é í ý ý ť č í ř ě ě é ř úč é ý ů Č é š í é é č é ý ř š é
Opakování (skoro bez zlomků)
2.2.27 Oakvání (skr bez zlmků) Předklady: 010217 Pedaggická známka: v Tét hdině užívám systém takzvanéh výstuu. Žáci čítají samstatně s tím, že zájemcům máhám, nikd však nemůže čekávat, že budu stát řád
VY_32_INOVACE_G 21 17
Název a adresa škly: Střední škla růmyslvá a umělecká, Oava, řísěvkvá rganizace, Praskva 399/8, Oava, 7460 Název eračníh rgramu: OP Vzdělávání r knkurenceschnst, blast dry.5 Registrační čísl rjektu: CZ..07/.5.00/34.09
A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu:
RIEDL 4.EB 6 /8.ZDÁNÍ a) Na předložeém ízkofrekvečím zesilovači změřte vstupí impedaci b) Změřte zesíleí a zisk pro výko 50% c) Změřte útlumovou charakteristiku Měřeí proveďte při cc =0V a maximálě 50%
š ů Á Ě Ž Í Ř Í ě ř ě ř Ž š š ě ě úť š Č ě Ř ÁŠ ě ž ř ě ě ř š úř ě ě ě ů ě ě š ř ů ě ř š úř ř ě ďě š ř ů ů úř ú ř ě ř ž ď ě Č ě ě š Č ě ě ě ú ě ě ě ě ú ě ě ú ě ě ú ě ě ú ě ě ě ě ú ě ě ú ě ě ě ě ě ě Í ú
Kotlík na polévku Party
Ktlík na plévku Party 100.054 V3/0107-1 - CZ 1. Obecné infrmace 102 1.1 Infrmace týkající se návdu k bsluze 102 1.2 Vysvětlivky symblů 102 1.3 Zdpvědnst výrbce a záruka 102-103 1.4 Ochrana autrských práv
8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž