GEODETICKÉ VÝPOČTY I.

Rozměr: px
Začít zobrazení ze stránky:

Download "GEODETICKÉ VÝPOČTY I."

Transkript

1 SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TABELACE FUNKCE LINEÁRNÍ INTERPOLACE

2 TABELACE FUNKCE Tabelace funkce se v minulosti často využívala z důvodu usnadnění výpočtů složitějších funkcí, jejichž hodnoty byly pro funkci sestaveny do přehledné tabulky, kde se výsledky funkcí vyhledávali nebo dopočítávali (lineární interpolací) ze zapsaných hodnot. V současnosti lze již většinu funkcí vypočítat díky moderní technice bez větších obtíží a tak se tabelace funkcí nyní již tak příliš jako v minulosti nevyužívá. Nyní se s nimi můžeme potkat ještě pro speciální funkce a určité případy i např. nematematické povahy.

3 TABELACE FUNKCE ukázka tabelace fce Tabelace distribuční funkce normálního rozdělení Tabulka obsahuje hodnoty G(t) pro argument t. Tabelovaná hodnota G(t) je pravděpodobnost výskytu chyby mezi 0 a t-násobkem směrodatné odchylky.

4 TABELACE FUNKCE Funkce (fce) proměnné y je zapisována ve tvaru y = f(x), kde x je nezávislá proměnná - argument. Dvojice proměnných x a y sestaveny do tabulek tak, že v jednom sloupci jsou vzestupně nebo sestupně upořádány argumenty (x) a v druhém sloupci je k nim vypočtena funkce y = f(x) Rozdílu mezi dvěma sousedními argumenty (x)se nazývá tabulkový krok = k Rozdílu jim odpovídajících fcí se nazývá tabulková diference y, mohou být v tabulce uvedeny v dalším sloupci

5 čím je tabulkový krok argumentu menší tím je výpočet funkce podrobnější tabulkový krok je volen podle potřeby podrobnosti funkce a podle výsledné obsáhlosti tabulky tabulkový krok 10 gon 4. fce 3. fce 2. fce 1. fce Tabulka může být sestavena pro více funkcí pro jeden sloupec argumentů může být více sloupců fcí argument TABELACE FUNKCE

6 argument 1. fce 2. fce 3. fce 4. fce TABELACE FUNKCE Najděte v tabulce hodnoty fcí: sin 30 gon =... cos 60 gon =... tan 50 gon =... Najděte pro který úhel platí, že sin x = 0,89101 hledáme x =... cotg x = 0,32492 hledáme x =... tabulkový krok 10 gon

7 argument 1. fce 2. fce 3. fce 4. fce TABELACE FUNKCE Najděte v tabulce hodnoty: sin 30 gon = 0,45399 cos 60 gon = 0,58779 tan 50 gon = 1,00000 Najděte pro který úhel platí, že sin x = 0,89101 hledáme x = 70 gon cotg x = 0,32492 hledáme x = 80 gon tabulkový krok 10 gon

8 y = 1 / x2 konstantní y - není nelin.fce y=konst. lin. fce Funkce může být lineární nebo nelineární argument TABELACE FUNKCE

9 TABELACE FUNKCE Funkce může být tabelována i tak, že argument je rozdělen na dvě části dle desetinných míst a tabulka je pak sestavena následovně: druhé desetinné místo argumentu 0,0x je v horním řádku tabulky uvnitř tabulky jsou vyčísleny hodnoty fce pro jednotlivý argument x,xx hodnota fce pro argument 2,57 se hledá v řádku pro x,x = 2,5 a ve sloupci pro 0,0x = 7 (0,07) a je 16,97 argument x,x jednotky a první desetinné místo argumentu x,x je v levém sloupci tabulky argument 0,0x fce

10 TABELACE FUNKCE ukázka tabelace fce Tabelace funkce x3 Najděte v tabulce hodnoty y=x3 pro argument : 1,45 tzn. hledáte 1,453 =... 2,70 tzn. hledáte 2,703 =... 3,16 tzn. hledáte 3,163 =... Najděte pro hodnotu funkce y = x3 hodnotu argumentu 18,40 tzn. hledáte 3 18,40 =... 3,582 tzn. hledáte 3 3,582 =...

11 TABELACE FUNKCE ukázka tabelace fce Tabelace funkce x3 Najděte v tabulce hodnoty x3 pro argument : 1,45 tzn. hledáte 1,453 = 3,049 2,70 tzn. hledáte 2,703 = 19,68 3,16 tzn. hledáte 3,163 = 31,55 Najděte pro hodnotu fce y = x3 hodnotu argumentu 18,40 tzn. hledáte 3 18,40 = 2,64 3,582 tzn. hledáte 3 3,582 = 1,53

12 LINEÁRNÍ INTERPOLACE - PRINCIP Lineární interpolace je metoda prokládání křivek za použití lineárních funkcí (přímek). Používá se v řadě technických oborů pro zpřesnění hodnoty tabelovaných funkcí, pro interpolaci vrstevnic při konstrukci výškopisu apod. Jedná se o jednoduchou formu interpolace. Pokud jsou dány dva známé body souřadnicemi lineární interpolace je přímka mezi těmito dvěma body. Pro dané x můžeme na této přímce určit hodnotu y určovného bodu. Z podobnosti trojúhelníků resp. úměrou můžeme sestavit rovnici vzájemných vztahů Vyřešením této rovnice pro y, která je neznámou v rovnici pro x dostaneme:

13 LINEÁRNÍ INTERPOLACE LINEÁRNÍCH A NELINEÁRNÍCH FUNKCÍ interpolací lineární fce nedochází k chybám v určení hodnoty y z důvodu zjednodušení (linearizace) fce interpolací nelineární fce dochází k chybám v určení hodnoty y z důvodu zjednodušení (linearizace) fce velikost chyby závisí na průběhu fce, na kroku mezi body (x0 a x1) proložení lineární fce a na poloze určovaného bodu x v intervalu

14 LINEÁRNÍ INTERPOLACE FCE POSTUP y = sin x Tabelace fce y = sin x pro argument x s tabulkovým krokem 20 gon x (gon) sin x

15 LINEÁRNÍ INTERPOLACE FCE POSTUP Zadání: Určete hodnotu sin x pro x = 92,5 gon. 1 y=? 1. určí se tabulková diference k tabulkovému kroku v místě hledané fce => y se znaménkem y = y1 y0 = 0, určí se tabulkový krok argumentu x1 x0 = k = 20 92,5 x (gon) sin x y , určí se rozdíl daného argumentu x = 92,5 gon k nejbližšímu nižšímu argumentu x0 = 80,0 gon x x0 = 92,5 80,0 = 12,5 gon 4. určí se interpolační oprava (y y0) k fci y0, která odpovídá nejbližšímu nižšímu argumentu Tabelace fce y = sin x pro argument x s tabulkovým krokem 20 gon 5. vypočte se hledaná fce y, tak, že se k fci y0, která odpovídá nejbližšímu nižšímu argumentu přičte oprava

16 LINEÁRNÍ INTERPOLACE FCE POZNÁMKA 1 Výpočtem z interpolace tabelované fce sin x byla určena výsledná hodnota y=? 92,5 x (gon) sin x y , Pokud, ale vypočteme hodnotu sin 92,5 gon na kalkulačce, získáme hodnotu 0, Tabelace fce y = sin x pro argument x s tabulkovým krokem 20 gon Odchylka 0, , = 0, vzniká z důvodu zjednodušení fce sin x na přímku v intervalu x (80, 100). Tento příklad byl sestaven takto úmyslně pro ukázku nutnosti volby správného intervalu tabulkového kroku. Princip výpočtu zůstává stejný.

17 Postup: tabulková diference y = y1 y0 tabulkový krok argumentu x1 x0 = k rozdíly argumentů x x0 interpolační oprava výsledek tabulkový krok 10 gon 4. fce 3. fce 2. fce 1. fce Zadání: Pro argument 37 gon vypočtěte metodou lineární interpolace hodnoty jednotlivých fcí uvedených v tabulce. argument LINEÁRNÍ INTERPOLACE FCE

18 y = y1 y y tabulkový krok argumentu k = 10 x x0 = = 7 gon interp.oprava tabulkový krok 10 gon 4. fce 3. fce 2. fce 1. fce Zadání: Pro argument 37 gon vypočtěte metodou lineární interpolace hodnoty jednotlivých fcí uvedených v tabulce. argument LINEÁRNÍ INTERPOLACE FCE

19 LINEÁRNÍ INTERPOL.ARGUMENTU POSTUP Zadání: Určete hodnotu x pro sin x = 0, v int určí se tabulková diference k tabulkovému kroku v místě hledané fce => y se znaménkem y= 0, y = y1 y0 = 0, určí se tabulkový krok argumentu x1 x0 = k = 20 X=? x (gon) sin x y x=? určí se rozdíl dané fce y = sin x = 0, k nejbližší nižší hodnotě fce y0 = sin x0 = 0, y y0 = 0, , = 0, určí se interpolační oprava argumentu (x x0) k x0, která odpovídá nejbližšímu nižšímu argumentu Tabelace fce y = sin x pro argument x s tabulkovým krokem 20 gon 5. vypočte se hledaný argument x, tak, že se x0 přičte oprava

20 1. fce Zadání: Pro fci y = sin a = 0,16523 vypočtěte metodou lineární interpolace hodnotu argumentu x argument LINEÁRNÍ INTERPOLACE ARGUMENTU Postup: tabulková diference y = y1 y0 tabulkový krok argumentu x1 x0 = k rozdíl fcí y y0 interpolační oprava výsledek tabulkový krok 10 gon

21 1. fce Zadání: Pro fci y = sin a = 0,16523 vypočtěte metodou lineární interpolace hodnotu argumentu x argument LINEÁRNÍ INTERPOLACE ARGUMENTU Postup: tabulková diference y = y1 y0 = 0,15259 tabulkový krok argumentu x1 x0 = k = 10 rozdíl fcí y y0 = 0,00880 interpolační oprava výsledek = ,5767 = 10,5767 gon tabulkový krok 10 gon

22 LINEÁRNÍ INTERPOLACE VRSTEVNIC Interpolace vrstevnic je úloha, při které se interpolují (vyhotovují) vrstevnice v daném území na základě znalosti polohy a výšky podrobných bodů terénu.

23 LINEÁRNÍ INTERPOLACE VRSTEVNIC Pro správnou interpolaci vrstevnic je nutné zobrazit čáry terénní kostry jako spádnice, údolnice, hřebenové linie, sedla apod. Interpoluje se právě po těchto hranách nebo při čtvercové síti podrobných bodů ve směru největšího spádu.

24 LINEÁRNÍ INTERPOLACE VRSTEVNIC Provede se číselná nebo grafická interpolace na spádnicích. Hledají se místa, kde daná vrstevnice protíná interpolovanou spádnici. Tzn. pokud máme na spádnici dva změřené body hodnotě např a tak mezi nimi budou probíhat vrstevnice 513 a 514 a právě pozici těchto vrstevnic na dané spádnici interpolací hledáme.

25 LINEÁRNÍ INTERPOLACE VRSTEVNIC Po provedené interpolaci vzniká výsledný vrstevnicový plán. V současnosti jsou vrstevnice často generovány digitálně z DMT (Digitálního modelu terénu). Při zpracování vrstevnic se též využívá upravený postup interpolace. Některé software pro tvorbu vrstevnic Atlas DMT, ArcGIS, nadstavby na KOKEŠ, Microstation apod.

26 LINEÁRNÍ INTERPOLACE VRSTEVNIC Interpolace vrstevnic je úloha, při které se interpolují (vyhotovují) vrstevnice v daném území na základě znalosti polohy a výšky podrobných bodů terénu. Používá se číselná a grafická interpolace.

27 LINEÁRNÍ INTERPOLACE VRSTEVNIC Číselná interpolace -na polohopisném plánu mám vyneseny i výškopisné body pro zobrazení výškopisu: - bod s výškou 65.1 m - bod s výškou 63.2 m - na pravítku zjistíme hodnotu délky mezi těmito body = 59 mm - vypočteme rozdíl výšek daných bodů = 19 dm - vypočteme hodnotu délky odpovídající 1 dm = 3.1 mm - vypočteme hodnoty na pravítku pro jednotlivé vrstevnice 64 m 63.2 m = 0,8 m = 8 dm a z toho vyplývá, že poloha vrstevnice 64 bude ležet na hodnotě 8 x 3.1 mm = 24.8 mm

28 LINEÁRNÍ INTERPOLACE VRSTEVNIC Grafické interpolace -na polohopisném plánu mám vyneseny i výškopisné body pro zobrazení výškopisu: - bod s výškou 66.8 m - bod s výškou 64.2 m - jedna z možností grafické interpolace je přiložit libovolně měřítko na hodnotu 4.2 na bod s výškou 64.2 a pak dalším trojúhelníkem propojíme hodnotu 6.8 na měřítku s bodem o výšce pak pomocí dalšího pravítka využít podobnost trojúhelníků a pomocí rovnoběžek této spojnice, které procházejí hodnotami 5 a 6 na měřítku, vynést polohu vrstevnic 65 a 66 na spojnici bodů 66.8 a 64.2

29 LINEÁRNÍ INTERPOLACE VRSTEVNIC Grafické interpolace -na polohopisném plánu mám vyneseny i výškopisné body pro zobrazení výškopisu: - bod s výškou 66.8 m - bod s výškou 64.2 m - jedna z možností grafické interpolace je přiložit libovolně měřítko na hodnotu 4.2 na bod s výškou 64.2 a pak dalším trojúhelníkem propojíme hodnotu 6.8 na měřítku s bodem o výšce pak pomocí dalšího pravítka využít podobnost trojúhelníků a pomocí rovnoběžek této spojnice, které procházejí hodnotami 5 a 6 na měřítku, vynést polohu vrstevnic 65 a 66 na spojnici bodů 66.8 a 64.2

30 REKAPITULACE TABELACE FUNKCE A LINEÁRNÍ INTERPOLACE TABELACE FUNKCÍ LINEÁRNÍ INTERPOLACE FUNKCÍ LINEÁRNÍ INTERPOLACE ARGUMENTU LINEÁRNÍ INTERPOLACE VRSTEVNIC Domácí úkol č.7 LINEÁRNÍ INTERPOLACE Následuje: SOUŘADNICOVÉ SOUSTAVY

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ POZEMKŮ Ing. Jana Marešová, Ph.D. rok 2018-2019 V praxi se geodet často setká s úkolem rozdělit pozemek (dědictví,

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. Ing. Jana Marešová, Ph.D. rok 2018-2019 V případě pokud chceme upravit (narovnat přímkou) lomenou hranici při nezměněných

Více

Topografické mapování KMA/TOMA

Topografické mapování KMA/TOMA Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 4/003 Průběh geoidu z altimetrických měření

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. SRÁŽKA PAPÍRU mapy, které byly zobrazeny na nezajištěném papíře podléhají během času deformaci způsobuje ji změna vlhkosti

Více

T a c h y m e t r i e

T a c h y m e t r i e T a c h y m e t r i e (Podrobné měření výškopisu, okolí NTK) Poslední úprava: 2.10.2018 9:59 Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_7, vztažné měřítko

Více

Topografické plochy KG - L MENDELU. KG - L (MENDELU) Topografické plochy 1 / 56

Topografické plochy KG - L MENDELU. KG - L (MENDELU) Topografické plochy 1 / 56 Topografické plochy KG - L MENDELU KG - L (MENDELU) Topografické plochy 1 / 56 Obsah 1 Úvod 2 Křivky a body na topografické ploše 3 Řez topografické plochy rovinou 4 Příčný a podélný profil KG - L (MENDELU)

Více

Popis metod CLIDATA-GIS. Martin Stříž

Popis metod CLIDATA-GIS. Martin Stříž Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet

Více

Tachymetrie (Podrobné měření výškopisu)

Tachymetrie (Podrobné měření výškopisu) Tachymetrie (Podrobné měření výškopisu) Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_8). Pro jeho vytvoření je potřeba znát polohu a výšku vhodně zvolených

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. VÝPOČET VÝMĚR Z PRAVOÚHLÝCH SOUŘADNIC Ing. Jana Marešová, Ph.D. rok 2018-2019 Výpočet ze souřadnic se používá pro určení

Více

4. Digitální model terénu.

4. Digitální model terénu. 4. Digitální model terénu. 154GEY2 Geodézie 2 4.1 Úvod - Digitální model terénu. 4.2 Tvorba digitálního modelu terénu. 4.3 Druhy DMT podle typu ploch. 4.4 Polyedrický model terénu (TIN model). 4.5 Rastrový

Více

Zkušenosti s výukou ATLAS DMT na Stavební fakultě ČVUT

Zkušenosti s výukou ATLAS DMT na Stavební fakultě ČVUT Karel Benda Petr Soukup ČVUT v Praze, Fakulta stavební Katedra mapování a kartografie Zkušenosti s výukou ATLAS DMT na Stavební fakultě ČVUT Hotel Flora, Olomouc, 16. a 17 října 2012 Kdo jsme Kat. mapování

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚHLOVÉ JEDNOTKY PŘEVODY MEZI ÚHLOVÝMI MÍRAMI OBLOUKOVÁ MÍRA MÍRA ŠEDESÁTINNÁ úhlové jednotky ÚHLOVÉ MÍRY - STUPNĚ stupeň

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚHLOVÉ JEDNOTKY PŘEVODY MEZI ÚHLOVÝMI MÍRAMI OBLOUKOVÁ MÍRA MÍRA ŠEDESÁTINNÁ úhlové jednotky ÚHLOVÉ MÍRY - STUPNĚ stupeň

Více

4.3.1 Goniometrické rovnice I

4.3.1 Goniometrické rovnice I 4.. Goniometrické rovnice I Předpoklady: 4, 4, 46, 47 Pedagogická poznámka: Úspěšnost této hodiny zcela závisí na tom, jak rychle jsou studenti schopni hledat ke známým hodnotám goniometrických funkcí

Více

Rastrové digitální modely terénu

Rastrové digitální modely terénu Rastrové digitální modely terénu Rastr je tvořen maticí buněk (pixelů), které obsahují určitou informaci. Stejně, jako mohou touto informací být typ vegetace, poloha sídel nebo kvalita ovzduší, může každá

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Metody měření výškopisu, Tachymetrie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

mapa Moravy podle J.A.Komenske ho, roku 1627

mapa Moravy podle J.A.Komenske ho, roku 1627 mapa Moravy podle J.A.Komenske ho, roku 1627 TOPOGRAFICKÉ PLOCHY zemský povrch je členitý, proto se v technické praxi nahrazuje tzv. topografickou plochou, která má přibližně stejný průběh (přesné znázornění

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných

Více

Pokyny k hodnocení MATEMATIKA

Pokyny k hodnocení MATEMATIKA Pokyny k hodnocení MTEMTIK Pokyny k hodnocení úlohy Je dán číselný výraz: 6 4 8 Výraz zapište jako mocninu čísla. SPRÁVNÉ ŘEŠENÍ, resp. SPRÁVNÉ ŘEŠENÍ S TOLERNCÍ NEDOSTTEČNÉ ŘEŠENÍ, resp. 4 99 3 0, resp.3

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Návod na zpracování vzorové úlohy

Návod na zpracování vzorové úlohy Přenos dat s využitím moderních registračních zařízení včetně zpracování naměřených dat a následné propojení s grafickým programem Návod na zpracování vzorové úlohy Ukázka zpracování měřených dat GNSS

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Lineární a polynomická regrese, interpolace, hledání v tabulce

Lineární a polynomická regrese, interpolace, hledání v tabulce co byste měli umět po dnešní lekci: proložit body přímku, parabolu,... a určit chyby parametrů (u přímky) interpolovat mezi hodnotami v tabulce hledat v tabulce (1D) prokládání (fitování) křivek metoda

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚVOD ZÁKLADNÍ POČETNÍ ÚKONY A ZKOUŠKY ZÁKLADNÍ POČETNÍ ÚKONY A ZKOUŠKY ZÁPIS, DIKTOVÁNÍ A KONTROLA ZAOKROUHLOVÁNÍ ČÍSEL

Více

8. přednáška ze stavební geodézie SG01. Ing. Tomáš Křemen, Ph.D.

8. přednáška ze stavební geodézie SG01. Ing. Tomáš Křemen, Ph.D. 8. přednáška ze stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. Měření při účelovém mapování a dokumentaci skutečného provedení budov Účelové mapy Prostorová polární metoda Princip prostorové polární metody

Více

PrÏõÂloha k vyhlaâsïce cï. 26/2007 Sb.

PrÏõÂloha k vyhlaâsïce cï. 26/2007 Sb. PrÏõÂloha k vyhlaâsïce cï. 26/2007 Sb. Page 1/1 Strana 2028 Sbírka zákonů č. 164 / 2009 Částka 49 12.11 Posouzení dosažené přesnosti určení souřadnic nově

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie

Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie 1 Výškopis: Vytváření obrazu světa měřením a zobrazováním do mapy (v jakékoli formě) předpokládá měření polohy a výšky (polohopis

Více

GEODÉZIE II. Obraz terénn. nní tvary. rodními silami nebo. ená z rovných, vypuklých a vhloubených dílčích d. je to souhrn terénn

GEODÉZIE II. Obraz terénn. nní tvary. rodními silami nebo. ená z rovných, vypuklých a vhloubených dílčích d. je to souhrn terénn 1 Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. 5. Podrobné m Ing. Miroslav Novosad Výškopis Obraz

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

154GEY2 Geodézie 2 5. Měření při účelovém mapování a dokumentaci skutečného provedení budov.

154GEY2 Geodézie 2 5. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 154GEY2 Geodézie 2 5. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 5.1 Úvod. 5.2 Prostorová polární metoda. 5.3 Tvorba (výškopisných) map. 1 5.1 Úvod. Účelové mapy jsou mapy se

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE PŘÍPRAVA STEREODVOJICE PRO VYHODNOCENÍ Příprava stereodvojice pro vyhodnocení

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Měření při účelovém mapování a dokumentaci skutečného provedení budov

Měření při účelovém mapování a dokumentaci skutečného provedení budov Měření při účelovém mapování a dokumentaci skutečného provedení budov Účelové mapy Prostorová polární metoda Princip prostorové polární metody Záznam měřených dat Zásady měření Měření s teodolitem a pásmem

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Hledání mocnin a odmocnin v tabulkách

Hledání mocnin a odmocnin v tabulkách .8.14 Hledání mocnin a odmocnin v tabulkách Předpoklady: 00801 Pedagogická poznámka: Hodinu je samozřejmě možné vynechat, pravděpodobnost, že žáci budou v budoucnu hledat hodnoty mocnin a odmocnin v tabulkách

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Interpolace, aproximace

Interpolace, aproximace 11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y

Více

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26

Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 63 ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1 Dokažte, že pro každé celé číslo n 3 je n-místné číslo s dekadickým zápisem druhou mocninou některého celého čísla 1 1 8

Více

4.3.1 Goniometrické rovnice

4.3.1 Goniometrické rovnice .. Goniometrické rovnice Předpoklady: 6, 7 Názvosloví: Goniometrické rovnice: rovnice, ve kterých se neznámá objevuje uvnitř goniometrických funkcí. g x = a, kde Základní goniometrická rovnice: každá rovnice

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Cvičení software Groma základní seznámení

Cvičení software Groma základní seznámení Cvičení software Groma základní seznámení 4 2 3 1 Obr. 1: Hlavní okno programu Groma v.11. Hlavní okno 1. Ikony základních geodetických úloh, lze je vyvolat i z menu Výpočty. 2. Ikona základního nastavení

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

9. Měření při účelovém mapování a dokumentaci skutečného provedení budov.

9. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 9. Měření při účelovém mapování a dokumentaci skutečného provedení budov. 9.0 Účelové mapy, mapování 9.1 Prostorová polární metoda. 9.1.1 Princip prostorové polární metody. 9.1.2 Záznam měřených dat. 9.1.3

Více

Numerická matematika Banka řešených příkladů

Numerická matematika Banka řešených příkladů Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6

Více

4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE

4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE 4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak jsou definovány goniometrické rovnice a nerovnice; jak se řeší základní typy goniometrických rovnic a nerovnic. Klíčová slova této

Více

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ V POMĚRU MĚŘÍTKO MAPY měřítkem mapy rozumíme poměr 1 : M, kde M udává, kolikrát je délka na plánu menší než délka

Více

Numerické metody zpracování výsledků

Numerické metody zpracování výsledků Numerické metody zpracování výsledků Měření fyzikální veličiny provádíme obvykle tak, že měříme hodnoty y jedné fyzikální veličiny při určitých hodnotách x druhé veličiny, na které měřená veličina závisí.

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Interpolace Lagrangeovy polynomy. 29. října 2012

Interpolace Lagrangeovy polynomy. 29. října 2012 Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

1 0 0 u 22 u 23 l 31. l u11

1 0 0 u 22 u 23 l 31. l u11 LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

Aplikovaná matematika I

Aplikovaná matematika I Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více