8 b) POLARIMETRIE. nepolarizovaná vlna
|
|
- Erik Konečný
- před 9 lety
- Počet zobrazení:
Transkript
1 1. TEORETICKÝ ÚVO Rotační polarizace Světlo má zároveň povahu vlnového i korpuskulárního záření. V optických jevech se světlo chová jako příčné vlnění, přičemž světelné kmity probíhají všemi směry a směr kmitů se mění velmi rychle a zcela nepravidelně (statisticky). To je nepolarizované světlo. Usměrníme-li příčnou světelnou vlnu tak, že kmity leží v pevné rovině (obr. 4) proložené směrem šíření, dostaneme světlo lineárně polarizované. Rovinu, proloženou směrem postupu vlny a směrem kmitů, nazveme polarizační rovina. Světlo lze polarizovat několika způsoby: odrazem, lomem a průchodem dvojlomnými krystaly. 8 b) POLARIMETRIE nepolarizovaná vlna Některé krystaly a některé kapaliny mají schopnost stáčet polarizační rovinu lineárně polarizovaného světla. Tento jev se nazývá rotační polarizace a příslušné látky se nazývají opticky aktivní. Látky, které stáčejí polarizační rovinu ve směru otáčení hodinových ručiček, když se díváme proti postupu světla, nazýváme pravotočivé, látky stáčející polarizační rovinu opačně, nazýváme levotočivé. Pro rotační polarizaci platí Biotovy zákony: 1. Stočení je úměrné tloušťce prošlé vrstvy.. Stočení ve stejné pravotočivé a levotočivé látce se liší jen znaménkem. 3. Stočení způsobené několika vrstvami se algebraicky sčítá. 4. Stáčivost klesá s rostoucí vlnovou délkou světla. Každou opticky aktivní látku charakterizuje fyzikální konstanta - specifická otáčivost [α]. Pro roztoky aktivní látky definujeme specifickou otáčivost jako úhel, o který se otočí rovina polarizovaného světla při jednotkové tloušťce 1 dm a jednotkové koncentraci 1g/1ml. Udává se v kruhových stupních α [ α ] =. (8) dk Hodnoty specifické otáčivosti jednotlivých opticky aktivních látek jsou tabelovány. Specifická otáčivost sacharosy měřené pro sodíkový dublet při 0 C je [ α ] 0 =+ 66,5. Ze 4. Biotova zákona plyne, že se složené světlo rozkládá rotační polarizací na jednotlivé barvy. Tento jev se nazývá rotační disperze světla. P polarizační rovina polarizovaná vlna Obr. 4 Polarizace světla A 105
2 . PRINCIP METOY Specifickou otáčivost zjišťujeme na přístrojích zvaných polarimetry. Jednoduchý polarimetr tvoří polarizátor, měnící přirozené (nepolarizované) světlo na polarizované, a analyzátor, kterým zjišťujeme povahu světla polarizovaného polarizátorem po průchodu zkoumanou látkou. Obě tyto součásti byly dříve tvořeny hranoly vhodně upravenými z dvojlomných krystalů tak, aby dávaly jediný svazek dokonale polarizovaného světla (jednopaprskové polarizátory). Nejznámějším hranolem je tzv. nikol. Jeho úprava a chod paprsků jsou znázorněny na obr. 5. Přirozené světlo dopadá na stěnu AB krystalu islandského vápence, zbroušenou do úhlu 68. V krystalu se rozdělí na paprsek řádný (o), kmitající kolmo k rovině papíru, a A mimořádný (e), kmitající v rovině papíru. Nikol je rozdělen příčným řezem a slepen kanadským balzámem, jehož index lomu je tak malý, že řádný paprsek se na něm odráží a je pohlcen začerněnou boční stěnou. Mimořádný paprsek prochází řezem beze změny směru. Na obr. 6 je schéma jednoduchého polarimetru. Mezi polarizátor P a analyzátor A se vkládá kyveta K Y, naplněná roztokem opticky aktivní látky. Analyzátor má dělený kruh K a rameno se dvěma nonii. Je-li polarizační rovina analyzátoru stočena o 90 proti rovině polarizátoru (oba krystaly jsou zkříženy), světlo neprochází. Vložíme-li však mezi ně opticky aktivní látku, rozjasní se pole dalekohledu a k opětnému zatmění dojde po otočení analyzátoru o úhel α, který je roven právě úhlu stočení polarizační roviny světla vycházejícího z polarizátoru. B o Obr. 5 Nikol e Z P K Y A K Obr. 6 Polarimetr Polostínový polarimetr, jímž se dosahuje větší přesnosti měření úhlu stočení, má polarizátor tvořený dvojnikolem, který vzniká z obyčejného nikolu vyříznutím vyšrafované části (obr. 7) a slepením. Světlo kmitá ve směru šipek. Polarizační roviny dvojnikolu svírají úhel ϕ - tzv. polostínový úhel a analyzátor je nyní možno zkřížit pouze s polarizační rovinou jedné poloviny polarizátoru. V zorném poli dalekohledu uvidíme jednu polovinu světlou, druhou tmavou a nelze dosáhnout současně tmy v celém zorném ϕ poli. Zkřížíme-li však analyzátor s rovinou souměrnosti obou polarizačních rovin otočením o úhel α stočení polarizační roviny, budou obě Obr. 7 Polostínový úhel ϕ poloviny zorného pole stejně světlé (polostín). 106
3 Protože lidské oko citlivěji rozlišuje malé světelné rozdíly než světelné minimum (tmu), je nastavení analyzátoru na polostín přesnější. Na stejném principu pracuje také automatický fotoelektrický polarimetr Polamat A. Rtuťová výbojka je zdrojem záření o vlnové délce 546,1 nm. Pokud pak vložíme do cesty lineárně polarizovaného paprsku světla kyvetu s opticky aktivní látkou, dojde ke stočení paprsku o úhel α, závislý na optické aktivitě zkoumané látky. V projekčním okénku se zobrazí velikost úhlu stočení α nebo hodnota koncentrace ve stupních cukernatosti S, indikujících přímo procentuální obsah sacharosy ve vzorku, neboť 100 S odpovídá v mezinárodní stupnici cukernatosti koncentraci 6 g sacharosy/100 ml. Této koncentraci přísluší odpovídající hodnota α ve stupních a to 40,764. Polarimetr Krüss má díky upravené konstrukci zlepšené rozlišení světelných rozdílů. Zdrojem světla je sodíková lampa o vlnové délce λ = 589,3 nm při 0 C. Polarizované světlo ze zdroje vytváří trojnásobné stínové pole. V okuláru tak pozorujeme pole, rozdělené do tří částí (obr. 8) a optickou nulu nalezneme snadněji. Jestliže pozorované pole ukazuje tmavou centrální část a dvě světlé části nebo světlý centrální pruh a dvě tmavé části, je prostřední nad nebo pod optickou nulou. Obr. 8 Pole okuláru polarimetru Krüss 3. POSTUP MĚŘENÍ A VYHONOCENÍ 3.1 Polamat A Známe-li specifickou otáčivost (α), můžeme z naměřeného úhlu stočení a znalosti délky kyvety neznámou koncentraci vypočítat ze vztahu (8). Specifickou otáčivost můžeme stanovit změřením úhlu stočení roztokem známé koncentrace. Prakticky musíme provést měření tři, třetí je kontrola nulového bodu polarimetru měřením úhlu pro roztok s nulovou koncentrací - destilovanou vodu. Je-li α 0 - nulová poloha, α 1 - úhel stočení polarizační roviny roztokem známé koncentrace k 1 a α - úhel stočení roztokem neznámé koncentrace k, pak ze vztahu (8) pro tuto neznámou koncentraci odvodíme vztah: α α0 k = k0. (9) α1 α0 Koncentraci neznámého vzorku ze stupňů cukernatosti vypočteme ze vztahu: S k = 100 S prostředí nad optickou nulou optická nula prostředí pod optickou nulou (g/l). (10) 107
4 Postup měření: 1. Kyvetu polarimetru naplňte nejprve destilovanou vodou. bejte na to, aby uvnitř trubice nebyla vzduchová bublina. Kyvetu vložte do měrné komory polarimetru. Nastavte nulovou polohu na stupnici.. Kyvetu naplňte postupně základním roztokem a neznámým vzorkem. Odečtěte úhly stočení α a α Neznámou koncentraci počítejte ze vztahu (9). 4. Na polarimetru změňte stupnici a odečtěte obsah cukru ve vzorku ve S a určete jeho koncentraci ze vztahu (10). 3. Polarimetr Krüss Protože známe specifickou otáčivost sacharosy, můžeme koncentraci neznámého vzorku v g/l vypočítat ze vztahu 100 α k =, (11) l α [ ] 0 kde [ ] 0 α = 66,5 ; indexy a 0 znamenají specifickou otáčivost měřenou paři 0 C pro sodíkový dublet l - délka kyvety v dm, α - úhel stočení. Úhel stočení α můžeme odečíst při optické nule. Přesný výsledek získáme, odečteme-li úhel stočení obou mezních poloh (pod a nad optickou nulou). Výsledný úhel stočení pak bude α 1 + α α =. Poznámka: Jestliže měříme při jiné teplotě něž 0 C, je třeba provést korekci na teplotu. Na každý stupeň, o který teplota vzroste, je třeba úhel rotace redukovat o 0,3 %. Postup měření: 1. Kyvetu polarimetru naplňte destilovanou vodou.. Vložte kyvetu do měrné komory polarimetru. Nalezněte optickou nulu. 3. Naplňte kyvetu vzorkem o neznámé koncentraci a nalezněte odpovídající úhel stočení. 4. Neznámou koncentraci vypočtěte ze vztahu (11). 4. PŘESNOST VÝSLEKŮ 4.1 Polamat A a) Nejistota neznámé koncentrace z úhlu stočení Při měření Polamatem A je nejistota výsledné koncentrace určena nejistotou typu B. Ze vztahu (9) odvodíme pro koncentraci neznámého vzorku vztah: u k = k uα α uα 1 + α1 u + k k
5 Úhlové dělení Polamatu A umožňuje odečítání hodnoty úhlu a s přesností až 0,003 (intervaly dělení kruhu odpovídají 0,1 ). Nejistota koncentrace k 0 je dána vztahem (5). b) Nejistota neznámé koncentrace ze stupňů cukernatosti Nejistotu koncentrace neznámého vzorku ze S určuje přesnost čtení na stupnici polarimetru, která je ± 0,03 S. 4. Polarimetr Krüss Nejistota stanovení koncentrace je dána nejistotou typu B. Ta je způsobena především chybou čtení na stupnici, která je maximálně 0,05 (tomu odpovídá k = 0,4 g/l); pak je k u k =
LMF 2. Optická aktivita látek. Postup :
LMF 2 Optická aktivita látek Úkoly : 1. Určete specifickou otáčivost látky měřením pro známou koncentraci roztoku 2. Měření opakujte pro různé koncentrace a vyneste závislost úhlu stočení polarizační roviny
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav techniky a automobilové techniky
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav techniky a automobilové techniky Využití polarizace a refrakce světla v technických přístrojích Diplomová práce Vedoucí práce:
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 1 Název: Studium rotační disperze křemene a Kerrova jevu v kapalině Pracoval: Matyáš Řehák stud.sk.:
Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr
Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 3 Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Metody instrumentální analýzy, vy_32_inovace_ma_11_20
APO seminář 5: OPTICKÉ METODY v APO
APO seminář 5: OPTICKÉ METODY v APO Princip: fyzikální metody založené na interakci vzorku s elektromagnetickým zářením nebo na sledování vyzařování elektromagnetického záření vzorkem nespektrální metody
OPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
L a b o r a t o r n í c v i č e n í z f y z i k y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZI KY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 1.11.006 Stud. rok 006/007 Ročník. Datum odevzdání 15.11.006 Stud.
OPTICKÝ KUFŘÍK OA1 410.9973 Návody k pokusům
OPTICKÝ KUFŘÍK OA 40.9973 Návody k pokusům Učitelská verze NÁVODY K POKUSŮM OPTIKA 2 NÁVODY K POKUSŮM OPTIKA SEZNAM POKUSŮ ŠÍŘENÍ SVĚTLA Přímočaré šíření světla (..) Stín a polostín (.2.) ODRAZ SVĚTLA
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM F34 Fyzikální praktikum Zpracoval: Dvořák Martin Naměřeno: 1. 11. 9 Obor: B-FIN Ročník: II. Semestr: III. Testováno:
Hranolový spektrometr
Hranolový spektrometr a vodíkové spektrum Ú k o l y 1. Okalibrujte hranolový spektro.. Určente vlnové délky spektrálních čar vodíkové výbojky. 3. Určente kvantové elektronové přechody v atomu vodíku. 4.
ZJIŠŤOVÁNÍ CUKERNATOSTI VODNÝCH ROZTOKŮ OPTICKÝMI METODAMI
ZJIŠŤOVÁNÍ CUKERNATOSTI VODNÝCH ROZTOKŮ OPTICKÝMI METODAMI FILÍPEK Josef, ČR DETERMINATION OF SUGAR CONTENT IN WATER SOLUTIONS BY OPTICAL METHODS Abstract The content of saccharose in water solution influences
Měření indexu lomu kapaliny pomocí CD disku
Měření indexu lomu kapaliny pomocí CD disku Online: http://www.sclpx.eu/lab4r.php?exp=1 Tento experiment vychází svým principem z klasického experimentu měření vlnové délky světla pomocí CD disku, který
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA
OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA Stavbu lidského oka znáte z vyučování přírodopisu. Zopakujte si ji po dle obrázku. Komorová tekutina, oční čočka a sklivec tvoří
Světlo v multimódových optických vláknech
Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.XI. Název: Měření stočení polarizační roviny
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.XI Název: Měření stočení polarizační roviny Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 10.3.2006 Odevzdaldne:
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti
Název: Pozorování a měření emisních spekter různých zdrojů
Název: Pozorování a měření emisních spekter různých zdrojů Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, chemie Ročník:
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
5.3.3 Interference na tenké vrstvě
5.3.3 Interference na tenké vrstvě Předpoklady: 530 Bublina z bublifuku, slabounká vrstva oleje na vodě, někteří brouci jasné duhové barvy, u bublin se přelévají, barvy se mění s úhlem, pod kterým povrch
Polarimetrické stanovení glukózy, mutarotace glukózy
Polarimetrické stanovení glukózy, mutarotace glukózy TEORIE POLARIMETRIE Polarimetrie je metoda umožňující zjistit koncentraci opticky aktivní látky rozpuštěné v roztoku. Optická aktivita látky rozpuštěné
17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 3 Název: Mřížkový spektrometr Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10. 4. 2008 Odevzdal dne:...
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe
STANOVENÍ VODNÍHO POTENCIÁLU REFRAKTOMETRICKY
Úloha č. 1 Stanovení vodního potenciálu refraktometricky - 1 - STANOVENÍ VODNÍHO POTENCIÁLU REFRAKTOMETRICKY VODNÍ POTENCIÁL A JEHO SLOŽKY Termodynamický stav vody v buňce můžeme porovnávat se stavem čisté
Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Laboratorní práce č.9 Úloha č. 8. Závislost indexu lomu skla na vlnové délce světla Měření indexu lomu refraktometrem:
Truhlář Michal 3.. 005 Laboratorní práce č.9 Úloha č. 8 Závislost indexu lomu skla na vlnové délce světla Měření indexu lomu refraktometrem: T p 3, C 30% 97,9kPa Úkol: - Proveďte justaci hranolu a změřte
Učební text k přednášce UFY008
Lom hranolem lámavé stěny lámavá hrana lámavý úhel ϕ deviace δ úhel, o který je po výstupu z hranolu vychýlen světelný paprsek ležící v rovině kolmé k lámavé hraně (v tzv. hlavním řezu hranolu), který
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 3 Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Metody instrumentální analýzy, vy_32_inovace_ma_11_17
3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
Neživá příroda I. Optické vlastnosti minerálů
Neživá příroda I Optické vlastnosti minerálů 1 Charakter světla Světelný paprsek definuje: vlnová délka (λ): vzdálenost mezi následnými vrcholy vln, amplituda: výchylka na obě strany od rovnovážné polohy,
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
12. seminář. Nefelometrie a turbidimetrie Chiroptická aktivita (Polarimetrie) Interferometrie Fotoluminiscenční spektroskopie
Otázky: 12. seminář Nefelometrie a turbidimetrie Chiroptická aktivita (Polarimetrie) Molární refrakce Interferometrie Fotoluminiscenční spektroskopie Cirkulární dichroismus 1. Princip metody 2. Aplikace
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
Optická (světelná) Mikroskopie pro TM III
Optická (světelná) Mikroskopie pro TM III Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Mikroskopování ve zkřížených nikolech Zhášení anizotropních krystalů
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. obor (kruh) FMUZV (73) dne
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 11 Název: Stáčení polarizační roviny Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 7.4.2014 Odevzdal dne:
Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami
Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Lasery optické rezonátory
Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože
Fyzikální praktikum ( optika)
Fyzikální praktikum ( optika) OPT/FP4 a OPT/P2 Jan Ponec Určeno pro studenty všech kombinací s fyzikou Olomouc 2011 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník
4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
Základní pojmy. Je násobkem zvětšení objektivu a okuláru
Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).
Témata semestrálních prací:
Témata semestrálních prací: 1. Balistická raketa v gravitačním poli Země zadal Jiří Novák Popište pohyb balistické rakety vystřelené ze zemského povrchu v gravitačním poli Země. Sestavte model této situace
Fyzikální korespondenční seminář UK MFF http://fykos.mff.cuni.cz 20. V. E
20. ročník, úloha V. E... levotočivý svět (8 bodů; průměr 6,36; řešilo 14 studentů) Změřte optickou aktivitu roztoku glukózy v závislosti na jeho koncentraci. Optická aktivita je stáčení roviny lineárně
Infračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční
4.4. Vlnové vlastnosti elektromagnetického záření
4.4. Vlnové vlastnosti elektromagnetického záření 4.4.1. Interference 1. Charakterizovat význačné vlastnosti koherentních paprsků.. Umět definovat optickou dráhu v souvislosti s dráhovým rozdílem a s fázovým
ÚVOD DO PROBLEMATIKY PIV
ÚVOD DO PROBLEMATIKY PIV Jiří Nožička, Jan Novotný ČVUT v Praze, Fakulta strojní, Ú 207.1, Technická 4, 166 07, Praha 6, ČR 1. Základní princip PIV Particle image velocity PIV je měřící technologie, která
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Pracoval: Jakub Michálek stud. skup. 15 dne:. dubna 009 Odevzdal
Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007. Posuzoval:... dne... výsledek klasifikace...
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007 Odevzdal dne:... vráceno:... Odevzdal dne:...
Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky
Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha: 4 Název úlohy: Balmerova série Kroužek: po-do Datum měření: 10. března 014 Skupina: Vypracoval: Ondřej Grover Klasifikace: 1 Pracovní úkoly 1. (Nepovinné) V
OVMT Měření základních technických veličin
Měření základních technických veličin Měření síly Měření kroutícího momentu Měření práce Měření výkonu Měření ploch Měření síly Hlavní jednotkou síly je 1 Newton (N). Newton je síla, která uděluje volnému
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem
(1) (3) Dále platí [1]:
Pracovní úkol 1. Z přiložených ů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace ů a ů. Naměřené
Experimentální metody EVF II.: Mikrovlnná
Experimentální metody EVF II.: Mikrovlnná měření parametrů plazmatu Vypracovali: Štěpán Roučka, Jan Klusoň Zadání: Měření admitance kolíku impedančního transformátoru v závislosti na hloubce zapuštění.
GEODEZIE. Pomůcky k vytyčení pravého úhlu
GEODEZIE Pomůcky k vytyčení pravého úhlu Vytyčení kolmice Spouštění kolmice Pomůcky: 1. Záměrné kříže 2. Úhloměrná hlavice 3. Úhlové zrcátko 4. Křížové zrcátko 5. Trojboký hranol 6. Pětiboký hranol (pentagon)
Měření pevnosti slupky dužnatých plodin
35 Kapitola 5 Měření pevnosti slupky dužnatých plodin 5.1 Úvod Měření pevnosti slupky dužnatých plodin se provádí na penetrometrickém přístroji statickou metodou. Princip statického měření spočívá v postupném
Úloha č. 8 Vlastnosti optických vláken a optické senzory
Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 17 Název: Měření absorpce světla Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17. 4. 008 Odevzdal dne:...
6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
PÍSEMNÁ ZPRÁVA ZADAVATELE
PÍSEMNÁ ZPRÁVA ZADAVATELE Identifikační údaje zadávacího řízení Název zakázky Druh zakázky Název projektu Číslo projektu Dodávka pomůcek pro výuku fyziky a biologie Dodávky Inovace ve výuce fyziky a biologie
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Rozklad světla Když světlo prochází hranolem, v důsledku dvojnásobného lomu na rozhraních
PSK1-10. Komunikace pomocí optických vláken I. Úvodem... SiO 2. Název školy:
Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: PSK1-10 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Ukázka fyzikálních principů, na kterých
APLIKOVANÁ OPTIKA A ELEKTRONIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MILOSLAV ŠVEC A JIŘÍ VONDRÁK APLIKOVANÁ OPTIKA A ELEKTRONIKA MODUL 01 OPTICKÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
2 Mikroskopické studium struktury semikrystalických polymerů
2 Mikroskopické studium struktury semikrystalických polymerů Teorie Morfologie polymerů Morfologie polymerů jako součást polymerní vědy se zabývá studiem nadmolekulární struktury polymerů. Zkoumá uspořádání
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Úloha 5. Měření indexu lomu refraktometrem, mikroskopem a interferometrem
Úloha 5. Měření indexu lomu refraktometrem, mikroskopem a interferometrem Václav Štěpán (sk. 5) 10. března 2000 Pomůcky: Univerzální refraktometr s příslušenstvím, osvětlovací lampa, mikroskop, interferometr
vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).
4. cvičení Metody zvýšení kontrastu obrazu (1. část) 1. Přivření kondenzorové clony nebo snížení kondenzoru vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
ELEKTRICKÉ SVĚTLO 1 Řešené příklady
ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná
ELEKTRICKÉ SVĚTLO 1 Řešené příklady
ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná
Abstrakt. Obr. 1: Experimentální sestava pro měření rychlosti světla Foucaultovou metodou.
Měření rychlosti světla Abstrakt Rychlost světla je jednou z nejdůležitějších a zároveň nejzajímavějších přírodních konstant. Nezáleží na tom, jestli světlo přichází ze vzdálené hvězdy nebo z laseru v
12 Prostup tepla povrchem s žebry
2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu Jaminovým interferometrem
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 19 Název: Měření indexu lomu Jaminovým interferometrem Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 17.3.2014
Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy
Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy 2. Úkoly Seznámení se základními prvky a stavbou teleskopických dalekohledů. A) Změřte ohniskovou vzdálenost předložených objektivů
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V
Polarizace čtvrtvlnovou destičkou
Úkol : 1. Proměřte intenzitu lineárně polarizovaného světla jako funkci pozice analyzátoru. 2. Proměřte napětí na fotorezistoru ozářenou intenzitou světla za analyzátorem jako funkci úhlu mezi optickou
Měření závislosti indexu lomu kapalin na vlnové délce
Měření závislosti indexu lomu kapalin na vlnové délce TOMÁŠ KŘIVÁNEK Přírodovědecká fakulta Masarykovy univerzity, Brno Abstrakt V příspěvku je popsán jednoduchý experiment pro demonstraci a měření závislosti
11. Geometrická optika
Trivium z optiky 83 Geometrická optika V této a v následující kapitole se budeme zabývat studiem světla v situacích, kdy je možno zanedbat jeho vlnový charakter V tomto ohledu se obě kapitoly podstatně
Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů.
Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů Kartografie přednáška 10 Měření úhlů prostorovou polohu směru, vycházejícího
Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z.
Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z. Mechanické vlnění představte si závaží na pružině, které
ZÁKLADNÍ VLASTNOSTI OPTICKÉHO VLÁKNA
ZÁKLADNÍ VLASTNOSTI OPTICKÉHO VLÁKNA Optická vlákna patří k nejmodernějším přenosovým zařízením ve sdělovací technice pro níž byla původně určena. Tato technologie ale proniká i do dalších odvětví. Optická
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Elektrická vodivost elektrolytů. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. 26 Název: Elektrická vodivost elektrolytů Pracoval: Lukáš Vejmelka stud. skup. FMUZV 73) dne 12.12.2013 Odevzdal
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
215.1.10 SKUPINOVÁ ANALÝZA MOTOROVÝCH NAFT
215.1.10 SKUPINOVÁ ANALÝZA MOTOROVÝCH NAFT ÚVOD Snižování emisí výfukových plynů a jejich škodlivosti je hlavní hnací silou legislativního procesu v oblasti motorových paliv. Po úspěšném snížení obsahu
Laboratorní pomůcky, chemické nádobí
Laboratorní pomůcky, chemické nádobí Laboratorní sklo: měkké (tyčinky, spojovací trubice, kapiláry) tvrdé označení SIMAX (většina varného a odměrného skla) Zahřívání skla: Tenkostěnné nádoby (kádinky,
13/sv. 2 CS (73/362/EHS)
13/sv. 2 CS Úřední věstník Evropské unie 19 31973L0362 L 335/56 ÚŘEDNÍ VĚSTNÍK EVROPSKÝCH SPOLEČENSTVÍ 5.12.1973 SMĚRNICE RADY ze dne 19. listopadu 1973 o sbližování právních předpisůčlenských států týkajících
Sada Optika. Kat. číslo 100.7200
Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému
V i s k o z i t a N e w t o n s k ý c h k a p a l i n
V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam
Základy analýzy potravin Přednáška 7. Důvody pro stanovení vody v potravinách. Obsah vody v potravinách a potravinových surovinách
VODA Důvody pro stanovení vody v potravinách technologická a hygienická jakost (údržnost, konzistence) ekonomická hlediska vyjádření obsahu jiných složek v sušině vzorku Obsah vody v potravinách a potravinových
Přednáška č.14. Optika
Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)
E1 - Měření koncentrace kyslíku magnetickým analyzátorem
E1 - Měření koncentrace kyslíku magnetickým analyzátorem Funkční princip analyzátoru Podle chování plynů v magnetickém poli rozlišujeme plyny paramagnetické a diamagnetické. Charakteristickou konstantou
+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní