Cvičné texty ke státní maturitě z matematiky
|
|
- Nikola Šimková
- před 9 lety
- Počet zobrazení:
Transkript
1 Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc.
2 Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen Číselná osa Úpravy algebraických výrazů nerovnice Úpravy algebraických výrazů Průběh funkce Logaritmická a exponenciální rovnice Obsah čtverce Měřítko na mapě Pravoúhlý trojúhelník (Pythagorova věta) Kombinatorika Algebraické rovnice Pravděpodobnost (neslučitelných jevů) Trojčlenka a procenta Obvod kružnice Goniometrické funkce pravoúhlého trojúhelníku, sinová věta Objem hranolu Objem koule Graf lineární a kvadratické funkce Rovnice přímky v rovině Aritmetická posloupnost
3 Obsah Státní maturita z matematiky VYŠŠÍ úroveň obtížnosti 24 MAGVD10C0T01 říjen Algebraické výrazy Algebraické výrazy Posloupnost, limita posloupnosti Logaritmická rovnice Pravoúhlý trojúhelník Válec a krychle Úprava algebraického výrazu Graf racionální lomené funkce Kružnice v rovině (početně = analytická geometrie) Úloha o (společné) práci Goniometrické funkce Shodná zobrazení v rovině (středová a osová souměrnost, otočení) Stereometrie Úhel přímek = analytická geometrie Geometrická řada Rovnost mnohočlenů Kombinatorika Průměr a procenta Úroky (půjčka) Mocnina komplexního čísla Dělitelnost přirozených čísel
4 Státní maturita z matematiky Úloha = 8 12 ; 1 2 = 6 12 ; 5 6 = Úloha a 2 4 a 7 ( 8 a = a ) 8 = a = 5 8 a 2. 6b 1 2 b = (3 2 ) b 1 2 b = 3b2 3. (c 3 c) : (c 1) = c3 c c 1 = c.(c2 1) c 1 = c.(c + 1). (c 1) c 1 = c.(c + 1) = c 2 + c 4
5 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 3 x 5 2 2x x 5 4x + 10 x x : 3 5 x x 5; ) 5
6 Státní maturita z matematiky Úloha 4 1. s = 0,5(t + u).2 2s = 1.(t + u) 2s = t + u u 2s u = t t = 2s u 2. t = 1 2 z t 1 + z = 2 z t 1 = 2 z.t t.t } {{ 1 } = t.(2 z) 1 = t.(2 z) : (2 z) pro z z = t 6
7 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 5 1. y(1) = 2 1 = 2 ; y(2) = 2 2 = = 2 x = 2 4 = pro x = 4 je y =
8 Státní maturita z matematiky Úloha 6 1. log log x = log x = 4 3 log x = 1 log x = log 10 x = 10 protože rovnají-li se logaritmy o stejném základu, musejí se rovnat jejich argumenty = (5 x ) = 5 x = 5 3x 12 = 3x : 3 4 = x x = 4 protože rovnají-li se mocniny o stejném základu, musejí se rovnat jejich exponenty. 8
9 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 7 P čtverce = a 2 ; a = AB ; P čtverce = a 2 2 = AB = AB = AB. AB ( AB. AB ) 2 = AB. AB AB= B A = (B x A x ; B y A y ) = ({0 ( 5)}; 5 2) = (5; 7) P čtverce = AB. AB= (5; 7).(5; 7) = ( 7).( 7) = = 74 Obsah čtverce je 74 jednotek čtverečních. Úloha cm na mapě 0,5 km ve skutečnosti = 500 m = cm Měřítko mapy je 1 :
10 Státní maturita z matematiky Úloha 9 y = 300 x = = = = = = 90 Ušetříme přibližně 90 kroků. Úloha 10 A, B, C, D } {{ } 11, 12, 13,..., 44, 45 } {{ } 4 35 Lze vytvořit 140 (tj. 4 35) kódů. 10
11 nižší úroveň obtížnosti MAGZD10C0K01 Úloha x = 0.3 2x + 3 = 0 3 2x = 3 : 2 x =
12 Státní maturita z matematiky 3 2 ( ; 1) 1. A 2. x 3 x = 3.x x 3 = 3x + 3x + 3 4x = 3 : 4 x = (0; 1 2. D 3. x 2 2x = 1 2.2x x 2 = x x F x 6 = x = 3 3 2x = 0 : ( 2) x = 0 0 ( 0,5; 0,5) 4. C 12
13 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 12 dívka = P(D) = 0,6 malá dívka = P(mD) = 0,4 malý chlapec = P(mCh) = 0,3 Označíme-li skupinu (množinu) velkých dívek V D, dětí co nejsou malými dívkami md, malých dětí md (chlapců nebo dívek), velkých chlapců V Ch a chlapců Ch, pak protože jde o jevy vzájemně neslučitelné (žádné dítě například není zároveň chlapcem a zároveň dívkou), platí: P(D) + P(Ch) = 1 (1) P(mD) + P(V D) = P(D) (2) P(mCh) + P(V Ch) = P(CH) (3) P(mD) + P(V D) + P(mCh) + P(V Ch) = 1 (4) 1. P(Ch) (1) = 1 P(D) = 1 0,6 = 0,4 = C 2. P(V D) (2) = P(D) P(mD) = 0,6 0,4 = 0,2 = A 3. P(md)=P(mCh) + P(mD) = 0,3 + 0,4 = 0,7 = F 4. P(mD) = P(Ch) + P(V D) (3,4) = 1 P(mD) = 1 0,4 = 0,6 = E 13
14 Státní maturita z matematiky Úloha 13 Označme instalace x Kč žaluzie x Kč celkem Kč, pak: celkem = žaluzie + instalace = (x + 954) + x = 2x = 2x : = x Kč % 848 Kč y % y = = 32 % = D 14
15 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 14 O půlkružnice = 1 2 π d =. 1 3,14 28 = 43,96 = A 2 15
16 Státní maturita z matematiky Úloha Goniometrické funkce pravoúhlého trojúhelníku cos 75 = 1 c cos 75 = 1 2 c.2 20 cos 75 = c 5,18. = c = B 2. Sinová věta c sin( ) = 10 sin 75. sin 30 sin 30 c = 10 sin 75. c = 5,18 = B 16
17 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 16 V hranolu [dm 3 ] = P podstavy [dm 2 ] výška [dm] = [litr = dm3 ] 0,5 výška = výška = 3 2 [dm] výška = 15 cm = C 17
18 Státní maturita z matematiky Úloha 17 V koule (r) = 4 3 π r3 Při dvojnásobném poloměru: V koule (2r) = 4 3 π (2r)3 = 4 3 π 8r3 = 8 ( 4 3 π r3) Tedy: V koule (2r) = 8 V koule (r) = B 18
19 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 18 19
20 Státní maturita z matematiky f : y = 0,5x 2 f : y = 2 0,5x = E 20
21 nižší úroveň obtížnosti MAGZD10C0K01 Úloha 19 Obecná rovnice přímky je u y x+u x y +c = 0, kde směrový vektor u má souřadnice u = (u x ; u y ). Rovnice zadané přímky má tvar x + y + c = 0 = D Pokud by bylo požadováno i určení členu c, dosadili bychom do rovnice dané přímky souřadnice bodu A. V tomto případě to ale není nezbytně nutné. (0) + (2) + c = c = 0 2 c = 2 21
22 Státní maturita z matematiky Úloha 20 výpočtem Jedná se o rostoucí aritmetickou posloupnost, jejíž diference (rozdíl dvou sousedních členů, tj. rozdíl dvou následujících lichých čísel) je d = 2, kde a 9 = 23. Pro aritmetickou posloupnost platí: a n+1 = a n + d (1) a s = a r + (s r)d (2) součet prvních n členů s n = n 2 (a 1 + a n ) (3) 1. NE, protože ze zadání a tedy také ze vztahu (1) plyne, že rozdíl dvou následujících lichých čísel je ANO, protože ze vztahu (2) plyne: a 12 = a 9 + (12 9)d a 12 = a 12 = a 12 = ANO, protože ze vztahu (2) plyne pro nejmenší člen a 1 posloupnosti: a 1 = a 9 + (1 9)d a 1 = a 1 = a 1 = 7 22
23 nižší úroveň obtížnosti MAGZD10C0K01 4. ANO, protože ze vztahů (3; 2) a předchozího výsledku pro součet čtyř nejmenších členů (prvních čtyř členů) plyne: s 4 = 4 2 (a 1 + a 4 ) s 4 = 2 {7 + [a 9 + (4 9) d]} s 4 = 2 [7 + (23 5 2)] s 4 = 2 ( ) s 4 = 2 20 s 4 = 40 vypsáním členů posloupnosti a a a a a a a a a a a a a
24 Státní maturita z matematiky Úloha 1 1. a = s : 45 = = = = 9.(2.5) = 2.(5.9) = = = b = s 2 : t = ( ) = = = = = = = Úloha 2 (a 2 2) 2 4 = a4 4a a 4 + 2a 3 a 3 (a + 2) = a2 (a 2 4) a 3 (a + 2) = (a + 2) (a 2) a (a + 2) = a 2 a 24
25 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha n n > n n > 0 : 3 500n (n 2 + 1) 5(n 2 + 1) > 0 = n n 1 > 0 n 1,2 = 500 ± ( 1).( 1) 2.( 1) = Tedy 499 členů posloupnosti je větších jak = / \ 499,998 0,002 = n (0,002; 499,998) [ ] 300n 2. lim n n = l Hospital 300 = lim n 2n = +0 25
26 Státní maturita z matematiky Úloha 4 x log 4 x+1 = (x + 1) log 8 log (4 x+1 ) x = log 8 x+1 4 x(x+1) = 8 x+1 2 2x(x+1) = 2 3(x+1) 2x(x + 1) = 3(x + 1) 3(x + 1) 2x(x + 1) 3(x + 1) = 0 (x + 1)(2x 3) = 0 Součin se rovná nule, když alespoň jeden z činitelů se rovná nule. x + 1 = 0 = x 1 = 1 2x 3 = 0 = x 2 = 3 2 Dále jsme při řešení využili následujících vlastností logaritmů a mocnin. Mají-li se rovnat logaritmy o stejném základu, musejí se rovnat jejich argumenty. Mají-li se rovnat mocniny o stejném základu, musejí se rovnat jejich exponenty. 26
27 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha 5 Označme y úhlopříčku BD. Potom: sin ϕ = d y sin ε = x y y = d sin ϕ y = x sin ε = d sin ϕ = x sin ε x = d sin ε sin ϕ 27
28 Státní maturita z matematiky Úloha 6 V krychle = a 3 V válce = π.r 2.v V krychle = V válce a 3 = π cm 3 a = 3 100π =. 6, 8 cm Úloha 7 y = x + 2 x + 3.(x + 3) y(x + 3) = x + 2 xy + 3y = x + 2 3y x xy x = 2 3y x(y 1) = 2 3y : (y 1) pro y 1 x = 2 3y y 1 28
29 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha 8 1. f(x) = y = 1 1 x + 3 = x = 0 y = 2 3 y = 0 1 = 1 x + 3 x + 3 = 1 x = 2 Průsečíky s osami souřadnic jsou body [0; 2 ] a [-2; 0] graf funkce f(x) 29
30 Státní maturita z matematiky Úloha 9 Náčrtek Střed S = A + C 2 [ = ; ] = [0; 2] = S = [0; 2] 2 2 Poloměr jedna varianta Označíme r vzdálenost středu čtverce S od úsečky AB. Pro další výpočet nejprve určíme vektor AS = S A = (0 (-4); 2 0) = (4; 2) a vektor AB = B A = (2 (-4); -2 0) = (6; -2), přičemž symbolem AS označíme velikost vektoru AS. 30
31 vyšší úroveň obtížnosti MAGVD10C0T01 Z Pythagorovy věty plyne: r 2 2 ( ) = AS 1 2 ( ) 2 ( 2 AB = ) ( 2) 2 = (16 + 4) [ 1(36 + 4)] = 4 = = 10 = r = 10 Poloměr druhá varianta Označíme T = A + B [ = ; 0 + ( 2) ] = [ 1; 1] střed úsečky AB. Potom ST = ( 1 0; 1 2) = ( 1; 3) a poloměr je roven velikosti vektoru ST. r = ST = ( 1) 2 + ( 3) 2 = = 10 = r = 10 Rovnice kružnice (x S x ) 2 + (y S y ) 2 = r 2 = x 2 + (y 2) 2 = 10 Parametrické rovnice kružnice } x = S x + r. cos ϕ pro ϕ [0; 2π] y = S y + r. sin ϕ { x = 10. cos ϕ y = sin ϕ 31
32 Státní maturita z matematiky Úloha 10 Označme x počet výrobků vyrobených šestého dne. Pak příslušný den bylo vyrobeno: 1. den... 3x 4 2. den... 3x 4 3. den... 3x 4 4. den... 3x 4 5. den... 3x 4 6. den... x 7. den... x 8. den... x 9. den... x 10. den... x 11. den... x 12. den... x 13. den... x 14. den... x 15. den... x Celkem za 15 dnů bylo vyrobeno 5 3 x + 10x výrobků x + 10x = x + 40x = x = : 55 x = 160 Za prvních 5 dnů bylo vyrobeno výrobků. 4 Na prvních 5 dnů připadá 600 výrobků. 32
33 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha (cos x sin x) 2 = cos 2 x 2 cos x sin x + sin 2 x = 1 sin 2x = 1. C) 2. cos 2 ( x) + sin 2 ( x) = [cos( x)] 2 + [sin( x)] 2 = [cos x] 2 + [ sin x] 2 = = cos 2 x + sin 2 x = 1 = 2. A) 3. 1 cos 2x = sin 2 x + cos 2 x (cos 2 x sin 2 x) = 2 sin 2 x = 3. D) 33
34 Státní maturita z matematiky Úloha A R B ; E R I = 1. C) 2. D AB I ; G AB F = 2. A) 3. P α E ; O α C = 3. E) 34
35 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha 13 = A) 35
36 Státní maturita z matematiky Úloha využití směrových vektorů p : x 3 + y = 0 = p = (1; 3) q : x = 3 = q = (0; 1) jsou směrové vektory zadaných přímek. cos α = p. q p. q = ( 3) ( 3) 2. = 0 3 = Úhel směrových vektorů přímek je: α = arccos( 3 2 ) = 150 Úhel přímek (musí být menší jak 90 ) je: ϕ = = 30 = D) 2. využití normálových vektorů p : x 3 + y = 0 = n p = ( 3; 1) q : x = 3 = n q = (1; 0) jsou normálové vektory daných přímek. cos α = n p. n q n p. n q = ( 3) = = Úhel směrových vektorů přímek je: α = arccos( 3 2 ) = Úhel přímek (musí být menší jak 90 ) je tedy také: ϕ = 30 = D) 36
37 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha 15 a n = 4n 1 = a 2 3n 1 = = 40 2 = ; a 2 = = = 4 64 = 1 16 ; a 3 =... q = a n+1 a n = a 2 a 1 = = = 1 2 s = a q = = = = 1 4 = D) 37
38 Státní maturita z matematiky Úloha 16 Jestliže má uvedená rovnice platit pro všechny reálné hodnoty proměnné x, musíme nejprve určit neznámé parametry b a m, které dané rovnici vyhovují. Přitom využijeme některý z následujících postupů, případně jejich kombinaci. Mají-li se rovnat dva mnohočleny, musejí se rovnat jejich koeficienty u jednotlivých mocnin proměnné x. Má-li rovnice platit pro všechny reálné hodnoty proměnné x, tím spíše musí platit pro zvolené konkrétní hodnoty. Tedy rovnost mnohočlenů v obou případech převedeme na soustavu rovnic. Rovnost koeficientů (x + m)(x 2) = x 2 + bx + 8 x 2 2x + mx 2m = x 2 + bx + 8 x 2 mx 2x 2m = bx + 8 u jednotlivých mocnin proměnné x (lineární a absolutní člen) (lineární člen) x 1 : m 2 = b (absolutní člen) x 0 : 2m = 8 m = 4 a po dosazení za m do předchozího vztahu určíme b = 6. Konkrétní hodnoty proměnné x pro dva parametry b a m stačí dvě vhodné x = 2 : 0 = 2 2 } + 2b + 8 b = 6 = B) x = 0 : 2m = 8 m = 4 38
39 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha 17 A B C D E F } {{ } 6, 0 až 9 } {{ } 10 = } {{ } } {{ } = = E) písmena číslice 39
40 Státní maturita z matematiky Úloha 18 x zaměstanců je zařazeno do první skupiny s průměrným platem korun y zaměstanců je zařazeno do druhé skupiny s průměrným platem korun φ = = plat 1. sk. plat 2. sk. { }} { { }} { x y x + y } {{ } celkem zaměstnanců (x + y) = x y y = x : 600 4y = 21x.(x + y) Daná rovnice má nekonečně mnoho řešení, proto například volíme x = 4p. Pak y = 21p. Do druhé skupiny je (vyjádřeno v procentech) zařazeno = 21 p 25 p 100 = 84 % = C) y x + y 100 = 21p 4p + 21p 100 = 40
41 vyšší úroveň obtížnosti MAGVD10C0T01 Úloha 19 Půjčka = Kč ; 5 splátek po (à) Kč = Kč. Z toho Kč představuje platbu úroků a Kč bylo použito na umoření jistiny (splátku dluhu), protože: = Na platbu úroků [%] šlo úroky = splátky =. 26,6 % = B) 41
42 Státní maturita z matematiky Úloha 20 42
43 vyšší úroveň obtížnosti MAGVD10C0T01 [ z.(cos α + i. sin α)] 2 = i z = (cos 2α + i. sin 2α ) = i. 1 Při výpočtu druhé mocniny komplexního čísla v goniometrickém (trigonometrickém) tvaru jsme využili Moivrovy věty (vzorce). Rovnají-li se dvě komplexní čísla, musejí se zároveň rovnat jak jejich reálné tak také jejich imaginární složky. Rovnice v komplexním oboru lze tedy nahradit soustavou dvou rovnic v reálném oboru. V našem případě: cos 2α = 0 sin 2α = 1 2α = 90 + k.360 α = 45 + k.180 = E) 43
44 Státní maturita z matematiky Úloha 21 n = } 22.{{.. 22} Číslo je dělitelné čtyřmi, jestliže je jeho poslední dvojčíslí dělitelné je dělitelné 4 bezezbytku = Ano 2. Číslo je dělitelné osmi, jestliže je jeho poslední trojčíslí dělitelné není bezezbytku dělitelné 8 = Ne 3. Číslo je dělitelné devíti, jestliže je jeho ciferný součet dělitelný 9. Ciferný součet je: = 63 a 63 je dělitelné 9 bezezbytku = Ano 1. Číslo je dělitelné šesti, jestliže je sudé a současně je jeho ciferný součet dělitelný 3. Číslo n končí číslicí 2, tedy je sudé. Zároveň ciferný součet čísla n je 63 a tento je dělitelný 3 bezezbytku = Ano 44
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceMATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
VíceMgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
VícePožadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
VíceMatematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
VíceProjekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace
Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového
VíceMaturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
VíceTematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
VíceMaturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
VíceGymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
VíceMATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené
VíceMATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
VíceMaturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
VíceSBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.
Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy
VícePožadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceMATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a
VíceTémata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
VíceUčební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
VícePožadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VícePRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
VíceTEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
VíceMaturitní okruhy z matematiky ve školním roce 2010/2011
Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich
VíceNezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
VíceMaturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky
Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
VíceMatematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
VíceMaturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
VíceSystematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
VíceMATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
VícePlanimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,
VíceII. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
VícePOŽADAVKY pro přijímací zkoušky z MATEMATIKY
TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceMaturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
VíceVZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
VíceMATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
VíceCvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo
VíceMatematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
VíceB) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceStřední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11
Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví
VíceOpakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
VíceCVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
VíceCVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
VíceCVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceCZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
VícePodmínky pro hodnocení žáka v předmětu matematika
Podmínky pro hodnocení žáka v předmětu matematika Společné ustanovení pro všechny třídy čtyřletého studia a 5. až 8. ročníku osmiletého studia: Žákům bude vyučujícími umožněno doplnit chybějící klasifikaci
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
VíceZákladní škola Blansko, Erbenova 13 IČO
Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:
VíceČíslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta
1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení
Více9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceCVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
VíceZáklady matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
VíceCVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
Více- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr
Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceVzdělávací obor matematika
"Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost
VíceŽák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
VíceMinisterstvo školství, mládeže a tělovýchovy. Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1
Ministerstvo školství, mládeže a tělovýchovy Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1 Opatření č. 7 ministra školství, mládeže a tělovýchovy, kterým se mění rámcové vzdělávací programy oborů středního
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
VíceCVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
VíceINTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE
INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
VíceZměna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně
Dodatek č.. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor -1-M/0 Obchodní akademie, platného od 1. 9. 01 - platnost dodatku je od 1. 9. 015 Změna týdenní hodinové dotace v 1. ročníku
VíceMATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
VíceModernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292
Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav
VíceMATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
VíceCVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;
VíceVzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)
VíceMatematika Název Ročník Autor
Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná
VíceCVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
VíceMatematika - 6. ročník
Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru
VíceDodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
VíceModelový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní)
Modelový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní) Na základě Opatření č. 3 ministra školství z 22. června 2017 a Opatření ministra školství č. 6 z 21. prosince
VíceVyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.
Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací
VíceZákladní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102
VícePředmět: MATEMATIKA Ročník: 6.
Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,
VíceUkázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní)
Ukázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní) Na základě Opatření č. 3 ministra školství z 22. června 2017, a opatření ministra školství č. 6 z 21. prosince
VíceOpakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceCHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém
VíceUkázkový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních)
Ukázkový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních) Na základě Opatření č.4 ministra školství z 22. června 2017, a opatření ministra školství č.7 z 21. prosince 2017
Více