Lekce 1: internetworking
|
|
- David Bartoš
- před 9 lety
- Počet zobrazení:
Transkript
1 Počítačové sítě, v. 3.6 Katedra softwarového inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova, Praha Lekce 1: internetworking Slide č. 1
2 o čem bude druhá část přednášky? Slide č. 2 internetworking aneb: vzájemné propojování segmentů, sítí atd., na různých úrovních Ethernet od 10 Mbit/s po 10 Gbit/s sítě WLAN (IEEE ) technologie ATM, X.25, MPLS telefonní sítě POTS, ISDN, xdsl mobilní komunikace sítě GSM a datové komunikace broadband fixní a mobilní broadband (metropolitní Ethernet, kabelové sítě, FTTx, BWA, WiMAX, 3G/UMTS )
3 co je internetworking? vzájemné propojování celých sítí i jednotlivých kabelových segmentů terminologie: propojením sítí vzniká tzv. internetwork, zkráceně internet s malým i je to obecně jakékoli propojení dvou či více částí s velkým I je to jméno jedné konkrétní sítě ( toho celosvětového Internetu) internet, -u m. (propojené počítačové sítě); Internet vl. jm. (celosvětová informační a komunikační síť) internet Internet Slide č. 3
4 zpřístupnění vzdálených zdrojů např. přístup ke vzdáleným FTP archivům, WWW serverům, využití výpočetní kapacity vzdálených uzlů (vzdálené přihlašování) zvětšení dosahu poskytovaných služeb užitná hodnota některých služeb je tím větší, čím větší je její potenciální dosah (např. elektronická pošta, internetové telefonování, služby pro skupinovou diskusi, ) regulace "přístupnosti" kdo se smí kam dostat, kdy a za jakých podmínek ochrana před neoprávněným přístupem před viry, útoky,. Slide č. 4 důvody pro internetworking tzv. síťový efekt Metcalfův zákon formuloval Robert Metcalfe, otec Ethernetu, podnikatel, novinář. týká se síťového efektu říká: užitek sítě roste se čtvercem počtu jeho uživatelů
5 důvody pro internetworking překonání technických omezení/překážek např. dosah kabelových segmentů je omezený (10Base2: 185 metrů), omezený je i počet uzlů které lze připojit ke kabelu větší důraz optimalizace fungování sítě snaha regulovat tok dat, zamezení zbytečného šíření provozu,. dříve nyní implementace nejrůznějších strategií a opatření (správné směrování, peering,..) fyzikální podstata některých druhů kabeláže hlavně kroucené dvoulinky a optických vláken lze je použít jen jako dvoubodové spoje, někdy dokonce pouze jednocestné nelze na nich dělat odbočky, rozbočení musí být realizováno elektronickou cestou, prostřednictvím propojovacích prvků může propojovat na různých vrstvách!! rozbočovač Slide č. 5
6 obecná podstata internetworkingu dvě či více částí (sítě, segmenty) se propojí pomocí vhodného propojovacího zařízení??? rozdíl je v tom, jakým způsobem propojovací zařízení pracuje Slide č. 6 na jaké vrstvě možnosti: od fyzické až po aplikační podle toho, na jaké vrstvě pracuje, se zařízení i pojmenovává opakovač, přepínač/most, směrovač, brána. jakým způsobem jaká vytváří omezení, co povoluje, jak kontroluje, pojmenování je i podle funkce rozbočovač, firewall, proxy brána. aplikační síťová linková fyzická brána (gateway) směrovač (router) přepínač, most (switch, bridge) opakovač (repeater)
7 představa - segment to, co je propojeno na úrovni fyzické vrstvy, tj. pomocí opakovačů (repeater-ů) tvoří: v Ethernetu: tzv. kolizní doménu obecně: segment propojovací funkce opakovače může být realizována i "drátem" zapojením "do sběrnice", logicky se chová jako opakovač jeden uzel vysílá, slyší všechny ostatní uzly segment aplikační síťová linková fyzická opakovač brána (gateway) směrovač (router) přepínač, most (switch, bridge) opakovač (repeater) opakovač opakovač Slide č. 7
8 představa: síť co je propojeno na úrovni linkové vrstvy, tj. pomocí mostů nebo přepínačů, tvoří síť síť jednotlivé mosty/přepínače mohou být propojeny mezi sebou síť aplikační síťová linková fyzická brána (gateway) směrovač (router) přepínač, most (switch, bridge) opakovač (repeater) síť most, přepínač síť most, přepínač segment opakovač segment segment opakovač segment Slide č. 8
9 představa: internetwork, internet (soustava vzájemně propojených sítí) co je propojeno na úrovni síťové vrstvy, tj. pomocí směrovačů (routerů), tvoří soustavu vzájemně propojených sítí (internetwork, internet) jednotlivé směrovače mohou být propojeny mezi sebou aplikační síťová linková fyzická brána (gateway) směrovač (router) přepínač, most (switch, bridge) opakovač (repeater) síť směrovač internet internet síť síť síť síť Slide č. 9
10 L4 switch, L7 switch / brána propojení na úrovni transportní vrstvy realizuje zařízení, označované jako Layer 4 switch rozhoduje se jak podle síťových adres (IP adres) tak i podle transportních adres (čísel portů) aplikační síťová linková fyzická brána (gateway) směrovač (router) přepínač, most (switch, bridge) opakovač (repeater) Slide č. 10 brána propojení na úrovni aplikační vrstvy realizuje zařízení, označované jako brána (gateway) někdy též: Layer 7 switch rozhoduje se podle obsahu přenášených dat!!!
11 rozbočovač (angl.: hub) rozbočovač jde obecně o aktivně fungující propojovací zařízení, bez apriorního určení úrovně (vrstvy), na které pracuje může fungovat jako opakovač, jako most i jako směrovač představa: jde o prázdné "šasi" jeho funkce záleží na tom, jaké moduly se pořídí a instalují do šasi rozbočovač (hub) terminologická praxe: když se řekne "hub" (rozbočovač), míní se tím (ethernetový) opakovač!!! Slide č. 11
12 opakovač (repeater) zajišťuje propojení na fyzické vrstvě propojuje úseky kabelů (kabelové segmenty) např. z kroucené dvoulinky, koaxiálního kabelu, optických vláken, aplikační.. transport. síťová linková fyzická aplikační.. transport. síťová linková fyzická Slide č. 12
13 propojení na úrovni fyzické vrstvy znamená, že propojovací zařízení (tzv. opakovač) si všímá pouze jednotlivých bitů toho, co je přenášeno na úrovni fyzické vrstvy opakovač je pouze digitální zesilovač, který zesiluje a znovu tvaruje přenášený signál kompenzuje zkreslení, útlum a další vlivy reálných obvodových vlastností přenosových cest nezesiluje šum!!! původní signál zesílení, nové vytvarování regenerovaný signál kabelový segment kabelový segment Slide č. 13
14 propojení na úrovni fyzické vrstvy opakovač nevnímá, že určité skupiny bitů patří k sobě a tvoří přenosový rámec nedokáže rozpoznat ani adresu odesilatele a příjemce dat (rámce) nemá k dispozici informace, které by mu umožnily měnit chování podle toho, jaká data skrz něj prochází všechna data rozesílá ( opakuje ) do všech stran (segmentů), ke kterým je připojen neví, co by mohl zastavit a nemusel šířit dál odsud také jeho označení "opakovač" (anglicky: repeater) ke všem datům (bitům) se musí chovat stejně! Slide č. 14 problém: nepozná, že by nemusel šířit provoz i do dalších stran
15 vlastnosti opakovače počet segmentů, které opakovač propojuje, není apriorně omezen velký bývá u rozbočovačů (tzv. hub-ů), které fungují jako opakovače funguje v reálném čase až na malé epsilon, dané zpožděním na svých vnitřních obvodech nemá žádnou vnitřní paměť pro bufferování dat může propojovat jen segmenty se stejnou přenosovou rychlostí Slide č. 15
16 opakovač v Ethernetu opakovač je obecně nezávislý na protokolech linkové vrstvy když funguje na fyzické vrstvě ale je závislý na specifikacích fyzické vrstvy, které typicky úzce souvisí s protokoly linkové vrstvě existují např. "opakovače pro Ethernet" opakovač v Ethernetu nesmí být opakovačů příliš mnoho!!!! důvodem je fungování Ethernetu (metoda CSMA/CD, která u 10 Mbit/s vyžaduje aby se kolize rozšířila z jednoho konce na druhý konec nejdéle do pevně dané doby t = 51,2 μs) z toho plyne omezení na max. počet opakovačů v sérii za sebou opakovač omezení dané vlastnostmi kabelu (útlum, zkreslení) Slide č. 16 omezení dané přístupovou metodou CSMA/CD (nutnost rozšíření signálu do doby t)
17 kolizní doména v Ethernetu v Ethernetu je možné aby více uzlů vysílalo současně není to žádoucí vysílají do společně sdíleného média, které k tomu není určené tím dochází k tzv. kolizi kolize je nežádoucí stav přístupová metoda CSMA/CD Ethernetu nevylučuje kolize, ale reaguje na ně alespoň ex-post opakovač v Ethernetu musí šířit i kolize!!!! aby i uzly v jiných segmentech poznaly, že k ní došlo všechny segmenty, propojené opakovačem (opakovači), tvoří tzv. kolizní doménu ta končí až na nejbližším mostu, přepínači nebo směrovači obecně na propojovacím zařízení, které funguje výše než na fyzické vrstvě a již bufferuje data opakovač opakovač Slide č. 17 most, přepínač směrovač brána kolizní doména most, přepínač směrovač brána
18 počet opakovačů v Ethernetu kvůli korektnímu fungování přístupové metody CSMA/CD musí být velikost kolizní domény omezena hlavně musí být omezen počet opakovačů fungujících v sérii jak zní konkrétní pravidlo? jednodušší formulace: mezi žádnými dvěma uzly nesmí být více jak dva opakovače umožňuje to budovat páteřní sítě dle obrázku exaktní formulace pravidla: (pravidlo 5-4-3) max. 5 segmentů max. 4 opakovače max. 3 obydlené segmenty ostatní jsou pouze propojovací, např. optické, a není k nim nic připojováno někdy se označují také jako tzv. poloopakovače "obydlený" segment "obydlený" segment "obydlený" segment Slide č. 18 "neobydlený" segment "neobydlený" segment
19 nevýhody opakovačů jsou to hloupá zařízení, šíří do ostatních segmentů i to, co by mohlo zůstat někde lokální plýtvají dostupnou přenosovou kapacitou musí tak činit proto, že nerozpoznají, co by již nemusely šířit!! řešení: dodat propojovacím zařízením dostatečnou inteligenci nestačí neměly by se podle čeho rozhodovat přejít na vyšší vrstvu, alespoň linkovou zde již jsou k dispozici potřebné údaje (v hlavičkách linkových rámců) A B provoz mezi A a B je zbytečně šířen i k C a D, kde brání jejich vzájemné komunikaci C D Slide č. 19
20 čeho se chce dosáhnout? Filtering (filtrování) aby propojovací uzel dokázal poznat, co nemusí být šířeno dále a také to dále nešířil díky schopnosti filtrování lze významnou měrou lokalizovat provoz Forwarding (cílené předávání) aby propojovací uzel dokázal rozpoznat, co musí poslat někam dál. a dělal to cíleně!!! tj. posílal to jen tam, kam to má být šířeno,. a neposílal to jinam Slide č. 20
21 možné řešení aby se propojovací uzel mohl chovat inteligentně, musí alespoň trochu rozumět přenášeným datům potřebuje znát adresu příjemce a adresu odesilatele tu může poznat z hlavičky rámce (nebo paketu, datagramu, buňky) propojovací uzel pak musí sám fungovat alespoň na úrovni linkové vrstvy musí znát přenosové protokoly příslušné vrstvy, musí rozumět formátu datových bloků na příslušné úrovni musí chápat význam informací, které jsou s přenosem spojeny (hlavně význam adres) musí to být alespoň most (bridge) na linkové vrstvě přepínač (switch) na linkové vrstvě propojovací uzel musí také "znát své okolí" musí vědět, kde (ve kterém segmentu) se nachází konkrétní uzly má-li jim předávat data cíleně mostu a přepínači (na linkové vrstvě) stačí znát jen své přímé sousedy do nejbližšího směrovače otázka: jak tyto informace získá? možnosti: statická konfigurace dynamické získávání informací jinak Slide č. 21
22 most (bridge) propojení na linkové vrstvě aplikační.. transport. síťová linková fyzická most, přepínač nebo aplikační.. transport. síťová linková fyzická Slide č. 22
23 důsledek aby propojovací uzel dokázal reagovat na adresy příjemce a odesilatele, nemůže už fungovat v reálném čase!!! musí nějakým způsobem bufferovat data celé datové bloky nebo alespoň jejich části takové, ze kterých lze vyčíst adresu příjemce (a odesilatele) díky bufferování může propojovat segmenty s různými přenosovými rychlostmi může to být např. Ethernetový přepínač 10Mbps/100Mbps 100 Mbps 10 Mbps Slide č. 23
24 viditelnost propojovacích uzlů na úrovni linkové vrstvy: propojovací uzel není pro ostatní uzly viditelný odesilatel neví o propojovacím uzlu, odesílaný rámec adresuje koncovému příjemci (v dané síti) rámec nese linkovou (např. Ethernetovou) adresu svého příjemce uzel A linkový rámec od: A pro: B uzel B Slide č. 24
25 viditelnost propojovacích uzlů na úrovni linkové vrstvy: propojovací uzel funguje v tzv. promiskuitním režimu, kdy zachytává všechny datové rámce i takové, které mu nejsou adresovány za normálních okolností by mu neměly být přímo adresovány žádné rámce propojovací uzel nemá vlastní adresu na úrovni síťové vrstvy (např. IP adresu) zachycení rámce Slide č. 25 uzel A linkový rámec od: A pro: B uzel B
26 důsledek skutečnost (skutečné zapojení) představa (chování při přenosu na úrovni linkové vrstvy) most/přepínač opakovač opakovač Slide č. 26 uzly, které jsou propojeny na úrovni linkové vrstvy (nachází se v jedné síti) si mohou myslet, že jsou propojeny mezi sebou přímo, stylem "každý s každým"
27 viditelnost propojovacích uzlů na úrovni síťové vrstvy: propojovací uzel je viditelný pro ostatní uzly, tyto si uvědomují jeho existenci a počítají s ní přenášené pakety nesou v sobě síťovou adresu koncového příjemce, ale jsou odesílány na linkovou adresu propojovacího uzlu síťový paket od A pro B od A pro B linkový rámec od A pro C směrovač od D pro B C D Slide č. 27 uzel A když chce A něco poslat uzlu B, ve skutečnosti to pošle uzlu C uzel B
28 skutečnost (skutečné zapojení) důsledek představa (chování při přenosu na úrovni síťové vrstvy) směrovač směrovač síť síť Slide č. 28 na úrovni síťové vrstvy si uzly uvědomují, že patří do různých sítí pokud chtějí komunikovat s uzlem v jiné síti, musí: najít vhodný směrovač, přes který vede cesta do cílové sítě svá data posílat tomuto směrovači, který zajistí jejich "přeposlání dál" ;
29 STOP Počítačové sítě vůči kolizím (v Ethernetu): chování propojovacího uzlu na úrovni linkové vrstvy díky bufferování není nutné kolize propagovat pravidlo o max. počtu opakovačů se zastavuje na nejbližším mostu, přepínači či směrovači kolizní doména most přepínač kolizní doména kolizní doména kolizní doména probíhá kolize probíhající přenos Slide č. 29
30 vůči "souběžným" přenosům: chování propojovacího uzlu na úrovni linkové vrstvy pokud (vnitřní přepojovací) kapacita uzlu stačí, a pokud jde o přenosy, které se nijak "nekříží". pak mohou probíhat souběžně (a neovlivňovat se navzájem) kolizní doména most přepínač kolizní doména kolizní doména kolizní doména probíhající přenos probíhající přenos Slide č. 30
31 chování propojovacího uzlu na úrovni linkové vrstvy vůči všesměrovému vysílání (broadcasting-u): na úrovni linkové vrstvy: musí se propouštět a šířit do všech segmentů na úrovni síťové vrstvy: nemusí se propouštět dokonce nesmí, jinak by se jednalo o "lavinu" (záplavu) kolizní doména most přepínač kolizní doména kolizní doména kolizní doména Slide č. 31 všesměrové vysílání
32 chování propojovacího uzlu na úrovni síťové vrstvy vůči všesměrovému vysílání (broadcasting-u): na úrovni síťové vrstvy: nemusí se propouštět a šířit do ostatních segmentů dokonce nesmí byla by to lavina (záplava) síť síť kolizní doména kolizní doména koliz. dom. Slide č. 32
33 co musí znát propojovací uzly? propojovací uzel musí mít dostatečné informace o skutečné topologii sítě: na úrovni linkové vrstvy (most, přepínač) o svém nejbližším okolí v dosahu přímého spojení, k nejbližším směrovačům na úrovni síťové vrstvy (směrovač) o skutečné topologii sítě na úrovni aplikační vrstvy (brána) musí rozumět přenášeným datům pozorování (most, přepínač): Slide č. 33 rozsah informací, které potřebuje, je relativně malý týká se jen nejbližšího okolí most i přepínač je schopen (nějak) fungovat i tehdy, když tyto informace nebude mít k dispozici!!!! bude fungovat jako opakovač, a rozešle všechno na všechny strany nebude to efektivní, ale na krátkou dobu to lze připustit důsledek: lze připustit, aby si most sám získával potřebné informace ze svého okolí (učil se) a do doby, než se naučí, fungoval neefektivně tato neefektivnost nepředstavuje příliš velkou zátěž ethernetové mosty a přepínače to tak dělají výhoda: používají metodu tzv. zpětného učení propojovací uzly, fungující na linkové vrstvě (mosty, přepínače) mohou být zařízení typu plug & play není nutné je konfigurovat pro propojovací uzly na síťové vrstvě to už neplatí zde by "postupné učení" trvalo neúnosně dlouho neefektivní chování během učení by způsobovalo významnou zátěž
34 princip zpětného učení (používaný v Ethernetu) most (přepínač) začíná fungovat jako tabula rasa nemá žádné informace o topologii svého okolí v tomto stavu se chová jako opakovač (na úrovni linkové vrstvy) je to neefektivní ale lze to připustit netrvá to dlouho, čím větší je provoz tím dříve to skončí uzel D uzel C uzel A uzel B Slide č. 34
35 princip zpětného učení most (přepínač) průběžně sleduje z jakých adres mu přichází jednotlivé rámce když dostane rámec od uzlu A pro uzel B ze směru X, odvodí si že A leží ve směru X rámec rozešle do všech směrů (kromě X) z případné odpovědi se dozví umístění uzlu B "B leží ve směru Y" příští rámec od A pro B již pošle cíleně jen do směru Y, ve kterém se B skutečně nachází směr X obdobně pro rámec od B pro A směr Y směr Z uzel A most (switch) už ví, ve kterém směru leží uzel A uzel B uzel C Slide č. 35
36 překážka pro samoučení - cykly proces samoučení nebude fungovat, když v síti budou cykly (smyčky) pak most (přepínač) přijme jeden rámec z více různých směrů a nebude si s tím vědět rady inteligentní mosty a přepínače se dokáží vzájemně domluvit a cyklus přerušit aplikují algoritmus STA (Spanning Tree Alg.) a vytvoří kostru grafu rozpojí ty spoje, které způsobily zacyklení B kde leží uzel A? A Slide č. 36
37 Source Routing v sítích Ethernet: A používají se výhradně samoučící se mosty (přepínače) 1 A B v sítích Token Ring: používají se mosty fungující na principu source routing doslova: zdrojové směrování., směrování prováděné zdrojem podstata source routingu : 2 každý jednotlivý rámec si v sobě nese úplný "itinerář" úplný seznam uzlů, přes které má projít tento itinerář sestavuje odesílající uzel proto source routing má to blíže k síťové vrstvě než k vrstvě linkové v názvu to má směrování (routing) Slide č B
38 Source Routing A Slide č. 38 kde vezme odesílající uzel znalost o topologii sítě, na základě které sestaví úplný itinerář? před odesláním paketu (paketů) vyšle do sítě průzkumný paket průzkumný paket (spíše rámec) se šíří záplavově (jako lavina), až dorazí ke svému cíli po dosažení cíle se průzkumný paket vrací a nese v sobě údaj o cestě, kterou se k cíli dostal záplavové rozesílání není moc šetrné k přenosové kapacitě ale najde skutečně nejkratší cestu není to ale příliš adaptivní po počátečním nalezení cesty source routing je technika používaná na úrovni linkové vrstvy!!! ačkoli "směrování" naznačuje síťovou vrstvu 9 B
Katedra softwarového inženýrství MFF UK Malostranské náměstí 25, 118 00 Praha 1 - Malá Strana
, v. 3.5 o čem bude druhá část přednášky? Katedra softwarového inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova, Praha Lekce 1: internetworking J. Peterka, 2011 internetworking aneb: vzájemné
Systémy pro sběr a přenos dat
Systémy pro sběr a přenos dat propojování distribuovaných systémů modely Klient/Server, Producent/Konzument koncept VFD (Virtual Field Device) Propojování distribuovaných systémů Používá se pojem internetworking
Distribuované systémy a počítačové sítě
Distribuované systémy a počítačové sítě propojování distribuovaných systémů modely Klient/Server, Producent/Konzument koncept VFD (Virtual Field Device) Propojování distribuovaných systémů Používá se pojem
Poítaové sít, v. 3.0
Poítaové sít, v. 3.0 Katedra softwarového inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova, Praha Lekce 2: internetworking J. Peterka, 200 " Co je internetworking? vzájemn jemné propojování
Počítačové sítě I. 9. Internetworking Miroslav Spousta, 2005 <qiq@ucw.cz>, http://www.ucw.cz/~qiq/vsfs/
Počítačové sítě I 9. Internetworking Miroslav Spousta, 2005 , http://www.ucw.cz/~qiq/vsfs/ 1 Internetworking propojování sítí a jejich částí (segmentů) spojováním sítí vzniká inter network
TOPOLOGIE DATOVÝCH SÍTÍ
TOPOLOGIE DATOVÝCH SÍTÍ Topologie sítě charakterizuje strukturu datové sítě. Popisuje způsob, jakým jsou mezi sebou propojeny jednotlivá koncová zařízení (stanice) a toky dat mezi nimi. Topologii datových
Lekce 1: Internetworking
verze 4.0, lekce 1, slide 1 NSWI021: (verze 4.0) Lekce 1: Internetworking Jiří Peterka verze 4.0, lekce 1, slide 2 co je internetworking obecně: vzájemné propojování celých sítí (nebo jejich dílčích částí:
Propojování sítí,, aktivní prvky a jejich principy
Propojování sítí,, aktivní prvky a jejich principy Petr Grygárek 1 Důvody propojování/rozdělování sítí zvětšení rozsahu: překonání fyzikálních omezení dosahu technologie lokální sítě propojení původně
Počítačová síť. je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat.
Počítačové sítě Počítačová síť je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat. Základní prvky sítě Počítače se síťovým adaptérem pracovní
Přednáška 3. Opakovače,směrovače, mosty a síťové brány
Přednáška 3 Opakovače,směrovače, mosty a síťové brány Server a Client Server je obecné označení pro proces nebo systém, který poskytuje nějakou službu. Služba je obvykle realizována některým aplikačním
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy práce s počítačovými sítěmi a jejich správou Hardware
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy práce s počítačovými sítěmi a jejich správou Hardware
Aktivní prvky: opakovače a rozbočovače
Aktivní prvky: opakovače a rozbočovače 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy Aktivní prvky opakovače a rozbočovače 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART
Identifikátor materiálu: ICT-3-02
Identifikátor materiálu: ICT-3-02 Předmět Téma sady Informační a komunikační technologie Téma materiálu Pasivní a aktivní síťové prvky Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí pasivní
Počítačové sítě. IKT pro PD1
Počítačové sítě IKT pro PD1 Počítačová síť Je to soubor technických prostředků umožňujících komunikaci a výměnu dat mezi počítači. První počítačové sítě armádou testovány v 60. letech 20.století. Umožňuje
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy práce s počítačovými sítěmi a jejich správou Hardware
Počítačové sítě. Další informace naleznete na : http://cs.wikipedia.org http://dmp.wosa.iglu.cz/
Počítačové sítě Další informace naleznete na : http://cs.wikipedia.org http://dmp.wosa.iglu.cz/ Počítačová síť - vznikne spojením 2 a více počítačů. Proč spojovat počítače? Přináší to nějaké výhody? A
Aktivní prvky: brány a směrovače. směrovače
Aktivní prvky: brány a směrovače směrovače 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy Aktivní prvky brány a směrovače 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART
Počítačové sítě. Další informace naleznete na :
Počítačové sítě Další informace naleznete na : http://cs.wikipedia.org http://dmp.wosa.iglu.cz/ Počítačová síť - vznikne spojením 2 a více počítačů. Proč spojovat počítače? Přináší to nějaké výhody? A
Lokální počítačové sítě
Lokální počítačové sítě Základy počítačových sítí Lekce 11 Ing. Jiří ledvina, CSc Úvod Lokální počítačové sítě se používají pro propojení počítačů v geograficky omezené oblasti. Většinou se jedná o propojení
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEIII - 2.1.5 Síťové aktivní prvky Obor: Mechanik Elektronik Ročník: 3. Zpracoval(a): Bc. Martin Fojtík Střední průmyslová škola Uherský Brod, 2010 Obsah
Název školy: Základní škola a Mateřská škola Žalany. Číslo projektu: CZ. 1.07/1.4.00/ Téma sady: Informatika pro devátý ročník
Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Informatika pro devátý ročník Název DUM: VY_32_INOVACE_5A_20_Topologie_sítí Vyučovací předmět: Informatika
Počítačové sítě. Miloš Hrdý. 21. října 2007
Počítačové sítě Miloš Hrdý 21. října 2007 Obsah 1 Pojmy 2 2 Rozdělení sítí 2 2.1 Podle rozlehlosti........................... 2 2.2 Podle topologie............................ 2 2.3 Podle přístupové metody.......................
SPŠ a VOŠ Písek, Písek, K. Čapka 402. Učební texty. Datové sítě I. Vypracovala: Mgr. Radka Pecková
Učební texty Datové sítě I Vypracovala: Mgr. Radka Pecková CZ.1.07/2.1.00/32.0045 ICT moderně a prakticky 1 Obsah Výukové cíle... 3 Předpokládané vstupní znalosti a dovednosti... 3 1 Úvod... 4 2 Základní
X.25 Frame Relay. Frame Relay
X.25 Frame Relay Frame Relay 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy X.25, Frame relay _ 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0 Obr.
POČÍTAČOVÉ SÍTĚ 1. V prvním semestru se budeme zabývat těmito tématy:
POČÍTAČOVÉ SÍTĚ 1 Metodický list č. 1 Cílem tohoto předmětu je posluchačům zevrubně představit dnešní počítačové sítě, jejich technické a programové řešení. Po absolvování kurzu by posluchač měl zvládnout
3.16 Aktivní prvky sítí
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Střední průmyslová škola strojnická Vsetín CZ.1.07/1.5.00/34.0483 Ing.
Identifikátor materiálu: ICT-3-01
Identifikátor materiálu: ICT-3-01 Předmět Téma sady Informační a komunikační technologie Téma materiálu Topologie sítí Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí topologii počítačových
Internet a zdroje. (ARP, routing) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu
Internet a zdroje (ARP, routing) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. 11. 2010 (KFC-INTZ) ARP, routing 26. 11. 2010 1 / 10 1 ARP Address Resolution
Rozdělení (typy) sítí
10. Počítačové sítě - rozdělení (typologie, topologie, síťové prvky) Společně s nárůstem počtu osobních počítačů ve firmách narůstala potřeba sdílení dat. Bylo třeba zabránit duplikaci dat, zajistit efektivní
Počítačové sítě. Lekce 4: Síťová architektura TCP/IP
Počítačové sítě Lekce 4: Síťová architektura TCP/IP Co je TCP/IP? V úzkém slova smyslu je to sada protokolů používaných v počítačích sítích s počítači na bázi Unixu: TCP = Transmission Control Protocol
INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE. Ing. Jaroslav Adamus. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Ing. Jaroslav Adamus Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou POČÍTAČOVÉ SÍTĚ TOPOLOGIE SÍTÍ VY_32_INOVACE_09_2_03_IT Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou TOPOLOGIE
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT PRÁCE S POČÍTAČEM
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT PRÁCE S POČÍTAČEM Obor: Studijní obor Ročník: Druhý Zpracoval: Mgr. Fjodor Kolesnikov PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST
Aktivní prvky: přepínače
Aktivní prvky: přepínače 1 Přepínače část II. Předmět: Počítačové sítě a systémy Téma hodiny: Aktivní prvky přepínače část II. Třída: 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART
Směrovací protokoly, propojování sítí
Směrovací protokoly, propojování sítí RNDr. Ing. Vladimir Smotlacha, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Vladimír Smotlacha, 2011 Počítačové
Přepínaný Ethernet. Virtuální sítě.
Přepínaný Ethernet. Virtuální sítě. Petr Grygárek rek 1 Přepínaný Ethernet 2 Přepínače Chování jako mosty v topologii strom Přepínání řešeno hardwarovými prostředky (CAM) Malé zpoždění Přepínání mezi více
SAS (Single-Attachment Station) - s jednou dvojicí konektorů, tj. pro použití pouze na jednoduchém kruhu.
4.1.1 FDDI FDDI je normalizováno normou ISO 9314. FDDI je lokální síť tvořící kruh. Jednotlivé stanice jsou propojeny do kruhu. K propojení stanic se používá optické vlákno. Lidovější variantou FDDI je
X36PKO. 2006 Jiří Smítka
X36PKO Propojování sítí 2006 Jiří Smítka Jiří Smítka - X36PKO 1 2/2006 Propojování sítí propojujeme sítě s různými topologiemi a operačními systémy tím vytváříme internety největším internetem je Internet
Počítačové sítě internet
1 Počítačové sítě internet Historie počítačových sítí 1969 ARPANET 1973 Vinton Cerf protokoly TCP, základ LAN 1977 ověření TCP a jeho využití 1983 rozdělení ARPANETU na vojenskou a civilní část - akademie,
12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování
12. Virtuální sítě (VLAN) Studijní cíl Základní seznámení se sítěmi VLAN. Doba nutná k nastudování 1 hodina VLAN Virtuální síť bývá definována jako logický segment LAN, který spojuje koncové uzly, které
POČÍTAČOVÉ SÍTĚ Metodický list č. 1
Metodický list č. 1 Cílem tohoto předmětu je posluchačům zevrubně představit dnešní počítačové sítě, jejich technické a programové řešení. Po absolvování kurzu by posluchač měl zvládnout návrh a správu
Routování směrovač. směrovač
Routování směrovač směrovač 1 Předmět: Téma hodiny: Třída: _ Počítačové sítě a systémy Routování směrovač 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0 Obr.
IT_420 Komunikační technologie a služby
KIT VŠE v Praze IT_420 Komunikační technologie a služby Téma 8: Aktivní prvky a propojování sítí Verze 1.3 Jandoš, Matuška Obsah Aktivní prvky Prvky využívané pro vytvoření struktury sítě a pro spojování
Skupina IEEE 802. Institute of Electrical and Electronics Engineers skupina 802 standardy pro lokální sítě. podvrstvy
Ethernet Vznik Ethernetu 1980 DIX konsorcium (Digital, Intel, Xerox) určen pro kancelářské aplikace sběrnicová topologie na koaxiálním kabelu, přístup k médiu řízen metodou CSMA/CD přenosová rychlost 10
Informatika Počítačové sítě Mgr. Jan Jílek
1. Počítačové sítě - propojení počítačů prostřednictvím kabelu popř. bezdrátové (př. WiFi) pro lepší využití výpočetního výkonu Využití počítačových sítí: 1. Sdílení dat přenos souborů, prohlížení souborů
K čemu slouží počítačové sítě
Počítačové sítě Počítačová síť je spojení dvou a více počítačů kabelem, telefonní linkou, nebo jiným způsobem tak, aby spolu mohly vzájemně komunikovat. K čemu slouží počítačové sítě Sdílení prostředků
CCNA I. 3. Connecting to the Network. CCNA I.: 3. Connecting to the network
CCNA I. 3. Connecting to the Network Základní pojmy Konvergence sítí (telefony, TV, PC, GSM) SOHO (Small Office and Home Office) nabídka a prodej produktů evidence objednávek komunikace se zákazníky zábava
Technologie počítačových komunikací
Informatika 2 Technické prostředky počítačové techniky - 9 Technologie počítačových komunikací Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz
Internet. Počítačová síť, adresy, domény a připojení. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie
Internet Počítačová síť, adresy, domény a připojení Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Počítačová síť počítačová síť = označení pro několik navzájem propojených počítačů,
3.17 Využívané síťové protokoly
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Střední průmyslová škola strojnická Vsetín CZ.1.07/1.5.00/34.0483 Ing.
Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován
Další síťová zařízení
Další síťová zařízení Cíl kapitoly: Žák popíše aktivní síťové prvky a vysvětlí princip jejich fungování. Klíčové pojmy: Aktivní síťové prvky, vzájemné propojování, rámce (frames), opakovač repeater, regenerační
Měření latence síťových prvků Michal Krumnikl
Měření latence síťových prvků Michal Krumnikl OBSAH 1 Obsah 1 Úvod 2 1.1 Přepínání............................. 2 1.2 Úkol mostu a switche....................... 2 1.3 Mosty vs. switche.........................
Seznámit posluchače se základními principy činnosti lokálních počítačových sítí a způsobu jejich spojování:
Přednáška č.1 Seznámit posluchače se základními principy činnosti lokálních počítačových sítí a způsobu jejich spojování: Úvod Strukturovaná kabeláž LAN, WAN propojování počítačových sítí Ethernet úvod
STANDARDY POČÍTAČOVÝCH SÍTÍ
STANDARDY POČÍTAČOVÝCH SÍTÍ Standard = norma; předpis; požadavek na vlastnosti, chování a parametry, které platí pro všechny stejně. Počítačová síť musí zajistit bezproblémovou komunikaci mezi připojenými
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií
VY_32_INOVACE_31_20 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední
Úvod Úrovňová architektura sítě Prvky síťové architektury Historie Příklady
Úvod Úrovňová architektura sítě Prvky síťové architektury Historie Příklady 1 Pracovní stanice modem Pracovní stanice Směrovač sítě Směrovač sítě Pracovní stanice Aplikační server Směrovač sítě 2 Soubor
Virtální lokální sítě (VLAN)
Virtální lokální sítě (VLAN) Virtuální LAN slouží k logickému rozdělení sítě nezávisle na fyzickém uspořádání. Lze tedy LAN síť segmentovat na menší sítě uvnitř fyzické struktury původní sítě. Druhým důležitým
PB169 Operační systémy a sítě
PB169 Operační systémy a sítě Architektura poč. sítí, model OSI Marek Kumpošt, Zdeněk Říha Úvod počítačová síť Počítačová síť skupina počítačů a síťových zařízení vzájemně spojených komunikačním médiem
Univerzita Jana Evangelisty Purkyně Automatizace Téma: Datová komunikace. Osnova přednášky
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
Topologie počítačových sítí Topologie = popisuje způsob zapojení sítí, jejich architekturu adt 1) Sběrnicová topologie (BUS)
Počítačové sítě Je to spojení dvou a více uzlů (uzel = počítač nebo další síť), za pomoci pasivních a aktivních prvků při čemž toto spojení nám umožňuje = sdílení technických prostředků, sdílení dat, vzdálenou
Počítačová síť je spojení dvou a více počítačů kabelem, telefonní linkou,
Počítačové sítě Počítačová síť je spojení dvou a více počítačů kabelem, telefonní linkou, optickým vláknem nebo jiným způsobem tak, aby spolu mohly vzájemně komunikovat. K čemu slouží počítačové sítě Sdílení
přenosové rychlosti v počítačových sítích útlum
přenosové rychlosti v počítačových sítích útlum větší pro vyšší frekvence zvyšuje se s rostoucí délkou kabelu odolnost vůči rušení (interference) přeslechy (crosstalks)= přenášený signál může ovlivňovat
Směrovací protokol Mesh (802.11s) na platformě Mikrotik
Směrovací protokol Mesh (802.11s) na platformě Mikrotik J. Bartošek, P. Havíček Abstrakt: V této práci je popsán princip fungování směrovacího protokolu mesh na platformě mikrotik. Na této platformě ovšem
Zabezpečení v síti IP
Zabezpečení v síti IP Problematika zabezpečení je dnes v počítačových sítích jednou z nejdůležitějších oblastí. Uvážíme-li kolik citlivých informací je dnes v počítačích uloženo pak je požadavek na co
JAK ČÍST TUTO PREZENTACI
PŘENOSOVÉ METODY V IP SÍTÍCH, S DŮRAZEM NA BEZPEČNOSTNÍ TECHNOLOGIE David Prachař, ABBAS a.s. JAK ČÍST TUTO PREZENTACI UŽIVATEL TECHNIK SPECIALISTA VÝZNAM POUŽÍVANÝCH TERMÍNŮ TERMÍN SWITCH ROUTER OSI
5. Směrování v počítačových sítích a směrovací protokoly
5. Směrování v počítačových sítích a směrovací protokoly Studijní cíl V této kapitole si představíme proces směrování IP.. Seznámení s procesem směrování na IP vrstvě a s protokoly RIP, RIPv2, EIGRP a
Síťové prvky seznámení s problematikou. s problematikou
Síťové prvky seznámení s problematikou s problematikou 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy Seznámení s problematikou prvků sítí 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr
1. Standardizace na fyzické vrstvě OSI (vodiče, koncovky...)
1. Standardizace na fyzické vrstvě OSI (vodiče, koncovky...) přenosová média o slouží k distribuci signálu o možno v něm šířit elektromagnetické vlny o elektrické vodiče (el. signály) kroucená dvoulinka,
Model ISO - OSI. 5 až 7 - uživatelská část, 1 až 3 - síťová část
Zatímco první čtyři vrstvy jsou poměrně exaktně definovány, zbylé tři vrstvy nemusí být striktně použity tak, jak jsou definovány podle tohoto modelu. (Příkladem, kdy nejsou v modelu použity všechny vrstvy,
Projekt Pospolu. Aktivní a pasivní propojovací prvky
Projekt Pospolu Aktivní a pasivní propojovací prvky obor 18-20-M/01 Informační technologie Autorem materiálu a všech jeho částí je Josef Petr. Technické vybavení je tvořené přenosovým médiem (kabelem),
Ethernet. Značení Verze Typy 10 Mb/s 100 Mb/s 1000 Mb/s. Josef J. Horálek, Soňa Neradová IPS1 - Přednáška č.4
Přednáška č.4 Ethernet Značení Verze Typy 10 Mb/s 100 Mb/s 1000 Mb/s 10 Base X číslo vyjadřuje přenosovou rychlost v Mb/s BASE označuje typ přenášeného signálu (základní pásmo) Číslo (2, 5,..) vyjadřuje
Elektrické parametry spojů v číslicových zařízeních
Elektrické parametry spojů v číslicových zařízeních Co je třeba znát z teoretických základů? jak vyjádřit schopnost přenášet data jak ji správně chápat jak a v čem ji měřit čím je schopnost přenášet data
TÉMATICKÝ OKRUH Počítače, sítě a operační systémy
TÉMATICKÝ OKRUH Počítače, sítě a operační systémy Číslo otázky : 9. Otázka : Propojování počítačových sítí: most-přepínač, virtuální sítě, směrovač. Směrování, směrovací tabulka, směrovací protokoly. Obsah
Hodinový rozpis kurzu Správce počítačové sítě (100 hod.)
Hodinový rozpis kurzu Správce počítačové sítě (100 hod.) Předmět: Bezpečnost a ochrana zdraví při práci (1 v.h.) 1. VYUČOVACÍ HODINA BOZP Předmět: Základní pojmy a principy sítí (6 v.h.) 2. VYUČOVACÍ HODINA
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Základy počítačových sítí Model počítačové sítě, protokoly
Základy počítačových sítí Model počítačové sítě, protokoly Základy počítačových sítí Lekce Ing. Jiří ledvina, CSc Úvod - protokoly pravidla podle kterých síťové komponenty vzájemně komunikují představují
Virtuální sítě 2.část VLAN
Virtuální sítě 2.část VLAN Cíl kapitoly Cílem této části kapitoly je porozumět a umět navrhnout základní schéma virtuálních lokálních sítí. Klíčové pojmy: Broadcast doména, členství VLAN, IEEE 802.10,
metodický list č. 1 Internet protokol, návaznost na nižší vrstvy, směrování
metodický list č. 1 Internet protokol, návaznost na nižší vrstvy, směrování Cílem tohoto tematického celku je poznat formát internet protokolu (IP) a pochopit základní principy jeho fungování včetně návazných
Počítačové sítě pro V3.x Teoretická průprava II. Ing. František Kovařík
Počítačové sítě pro V3.x Teoretická průprava II. Ing. František Kovařík SŠ IT a SP, Brno frantisek.kovarik@sspbrno.cz Model TCP/IP - IP vrstva 2 Obsah 3. bloku IPv4 záhlaví, IP adresy ARP/RARP, ICMP, IGMP,
Protokoly vrstvy datových spojů LAN Specifikace IEEE 802 pokrývá :
Protokoly vrstvy datových spojů LAN Specifikace IEEE 802 pokrývá : vrstvu fyzickou (standardy xxbasexxxx např. 100BASE TX) vrstvu datových spojů: Definice logického rozhraní specifikace IEEE 802.2 Specifikace
Bezdrátové sítě Wi-Fi Původním cíl: Dnes
Bezdrátové sítě Nejrozšířenější je Wi-Fi (nebo také Wi-fi, WiFi, Wifi, wifi) Standard pro lokální bezdrátové sítě (Wireless LAN, WLAN) a vychází ze specifikace IEEE 802.11. Původním cíl: Zajišťovat vzájemné
3.15 Topologie počítačových sítí
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Střední průmyslová škola strojnická Vsetín CZ.1.07/1.5.00/34.0483 Ing.
Základy topologie a komunikace sítí LAN
Sítě podle rozsahu Local Area Network LAN v jedné nebo několika sousedních budovách. V rámci budovy se používá strukturovaná kabeláž kombinují UTP kabely a optické kabely. Pro spojování budov se používají
Telekomunikační sítě LAN sítě
Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava Telekomunikační sítě LAN sítě Datum: 14.2.2012 Autor: Ing. Petr Machník, Ph.D. Kontakt: petr.machnik@vsb.cz Předmět: Telekomunikační sítě ts_120214_kapitola3
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo didaktického materiálu EU-OVK-VZ-III/2-ZÁ-319. Počítačové sítě
Číslo a název šablony III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo didaktického materiálu EU-OVK-VZ-III/2-ZÁ-319 Druh didaktického materiálu DUM Autor Ing. Renata Zárubová Jazyk čeština
Počítačové sítě. Počítačová síť. VYT Počítačové sítě
Počítačové sítě Počítačová síť Je soubor technických prostředků, které umožňují spojení mezi počítači a výměnu informací prostřednictvím tohoto spojení. Postupný rozvoj během druhé poloviny 20. století.
4. Síťová vrstva. Síťová vrstva. Počítačové sítě I. 1 (6) KST/IPS1. Studijní cíl. Představíme si funkci síťové vrstvy a jednotlivé protokoly.
4. Síťová vrstva Studijní cíl Představíme si funkci síťové vrstvy a jednotlivé protokoly. Doba nutná k nastudování 3 hodiny Síťová vrstva Síťová vrstva zajišťuje směrování a poskytuje jediné síťové rozhraní
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Síťové vrstvy a protokoly Síťové vrstvy Fyzická vrstva Lan,
Technologie počítačových sítí 2. přednáška
Technologie počítačových sítí 2. přednáška Obsah druhé přednášky Síťové protokoly Síťové protokoly Typy protokolů Protokol ISO OSI - Fyzická vrstva - Linková vrstva - Síťová vrstva - Transportní vrstva
A7B38UOS Sítě LAN Ethernet Síťové nástroje
A7B38UOS Sítě LAN Ethernet Síťové nástroje LAN lokální počítačové sítě stanice spolu komunikují pomocí sdíleného média: kroucená dvoulinka (Twisted Pair) optický kabel (Fibre Cable) bezdrátové spojení
POČÍTAČOVÉ SÍTĚ ZÁKLADNÍ INFORMACE
POČÍTAČOVÉ SÍTĚ ZÁKLADNÍ INFORMACE 2005 OBSAH SOŠS a SOU Kadaň Školení SIPVZ Počítačové sítě POÈÍTAÈOVÉ SÍTÌ...3 TOPOLOGIE SÍTÍ...3 SBÌRNICE (BUS)...3 HVÌZDA (STAR)...4 KRUH (RING)...4 TYPY KABELÙ PRO
Proč počítačovou sí? 9 Výhody sítí 9 Druhy sítí 9. Základní prvky sítě 10 Vybavení počítače 10 Prvky sítě mimo PC 10 Klasické dělení součástí sítí 10
Úvod 9 Proč počítačovou sí? 9 Výhody sítí 9 Druhy sítí 9 Základní prvky sítě 10 Vybavení počítače 10 Prvky sítě mimo PC 10 Klasické dělení součástí sítí 10 KAPITOLA 1 Hardwarové prvky sítí 11 Kabely 11
HiPath HG 1500 Multimediální komunikace ve společnostech střední velikosti
HiPath HG 1500 Multimediální komunikace ve společnostech střední velikosti HiPath HG 1500 je ekonomicky výhodné řešení komunikace pro společnosti se středním objemem datového provozu. HiPath HG 1500 mění
POKUD JSOU PRACOVNÍCI SPOJENI DO SÍTĚ MOHOU SDÍLET: Data Zprávy Grafiku Tiskárny Faxové přístroje Modemy Další hardwarové zdroje
CO JE TO SÍŤ? Pojmem počítačová síť se rozumí zejména spojení dvou a více počítačů tak aby mohli navzájem sdílet své prostředky. Přitom je jedno zda se jedná o prostředky hardwarové nebo softwarové. Před
1 Počítačové sítě, internet
1 Počítačové sítě, internet Počítačová síť není nic jiného než propojení několika počítačů mezi sebou. Takovéto propojení počítačů umožňuje pohodlnou komunikaci a výměnu dat mezi počítači. Jsou-li do sítě
Wi-Fi aplikace v důlním prostředí. Robert Sztabla
Robert Sztabla Robert Sztabla Program Páteřní síť Lokalizace objektů Hlasové přenosy Datové přenosy v reálném čase Bezpečnost Shrnutí Páteřní síť Wi-Fi aplikace v důlním prostředí Spolehlivé zasíťování
Co je to počítačová síť?
Co je to počítačová síť? Pojmem počítačová síť se rozumí zejména spojení dvou a více počítačů tak, aby mohli navzájem sdílet své prostředky. Přitom je jedno zda se jedná o prostředky hardwarové nebo softwarové.
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Předmět: Počítačové sítě Téma: Počítačové sítě Vyučující: Ing. Milan Káža Třída: EK1 Hodina: 21-22 Číslo: III/2 4. Síťové