Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
|
|
- Stanislav Valenta
- před 8 lety
- Počet zobrazení:
Transkript
1 Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a. 3, 3, 4, 5, 6, 8, 8, 8, 9 d. 1, 1, 3, 4, 4, 5, 9 b. 2, 4, 4, 4, 6, 7, 7 e. 1, 4, 6, 7, 8, 8 c. 7, 7, 8, 9, 10, 10, Pro rozložení a, b z minulého příkladu určete: a. (X průměr) b. (X medián) c. (X modus) 4. Jaký je (a) průměr a (b) modus tohoto rozložení četností? 5. Jaký je (a) průměr a (b) modus tohoto rozložení četností? 6. Jaký je medián tohoto rozložení? 4, 5, 7, 7, 7, 7, 9, Jaký je medián tohoto kumulativního rozložení četností? 8. Jaký je medián tohoto kumulativního rozložení četností?
2 9. Co byste řekli o tvaru každého z těchto rozložení? 10. Tým výzkumníků studuje depresi mezi ženami. V rámci určitých krajů ČR je provedeno několik šetření, a pro každé z nich je vypočítán průměrný skór deprese. Data jsou shrnuta v následující tabulce. Jaký je průměrný skór deprese pro všechny ženy? Jihomoravský Středočeský Západočeský Průměr n Školní psycholog zjistil následující vzorek IQ skórů na střední škole. Jaký je (a) průměr a (b) medián? Otázky pro počítačové zpracování 12. Následující rozložení je hypotetický vzorek IQ skórů u studentů prvního ročníku vysoké školy. Z těchto dat načrtněte histogram a vypočítejte průměr, medián a modus. Jakým způsobem ovlivňuje tvar tohoto rozložení relativní hodnoty těchto tří měření centrální tendence? 13. Následující hypotetický vzorek dat obsahuje všechny skóry, které byly zjištěny při závěrečné zkoušce ze statistiky. Zkonstruujte histogram, vypočtěte všechny hodnoty centrální tendence a v kontextu tvaru daného rozložení okomentujte relativní hodnoty průměru, mediánu a modu.
3 1. Je symetrické Odpovědi
4 Minulé cvičení ilustruje, že (X průměr) se rovná nule. Suma hodnot X mínus medián nebo modus se bude rovnat nule tehdy, pokud jsou stejné jako průměr, což je případ normálního rozložení. Ani rozložení A, ani B nejsou normální. Skutečnost, že pro rozložení A (X medián) = 0, je náhoda. 4. a. Průměr = 8,65 b. Modus = 9 5. a. Průměr = 17,93 b. Modus = 15 a 16
5 6. Medián = 6,5 + 0,5 = 7 (Toto je přesný výpočet mediánu, počítáme-li s intervaly (nebo s hodnotami jako s intervaly, tj. skór 7 zastupuje hodnoty od 6,5 do 7,499). Pro běžnou psychologickou statistiku stačí: medián je zde mezi 2 sedmičkami, a je tedy roven Medián = 5,5 + [(30/2 4)/11 * 5] = 10,5 8. Medián = 21,5 + [(16/2 4)/6 * 3] = 23,5 9. a. Pozitivně zešikmené b. Negativně zešikmené c. Symetrické, unimodální d. Symetrické, bimodální e. Negativně zešikmené f. Pozitivně zešikmené 11. a. Průměr = 104,8 b. Medián = Průměr = 109,73; Medián = 100,5; Modus = 100. Následující histogram ukazuje pozitivní zešikmení, což je v souladu s faktem, kdy průměr je větší než medián (Poznámka: některý počítačový software zobrazuje histogramy jako sloupcové grafy, tj. s mezerami mezi sloupci, což je i tento případ) 13. Průměr = 28,12; Medián = 32; Modus = 35. Tento histogram ukazuje, že rozložení je negativně zešikmené, což je v souladu s faktem, kdy průměr je menší než medián
6 Otázky k měření variability 1. Jsou dány dva vzorky, v jednom se n = 36, ve druhém n = 60. Které rozložení bude mít větší rozptyl? Který vzorek má pravděpodobně větší variační rozpětí? 2. Předpokládejme dva vzorky: v prvním je průměr = 78, ve druhém = 155. Který vzorek bude mít větší rozptyl? 3. Školní psycholog chce informovat učitele o průměru a směrodatné odchylce IQ skórů studentů. Vypočítejte průměr a směrodatnou odchylku IQ skórů: 98, 111, 102, 100, 101, Vypočítejte variační rozpětí, rozptyl a směrodatnou odchylku z těchto skórů: 2, 4, 7, 4, 8, 5, 1, 4, 4, 5 5. Výzkumník, který použil srdeční tep jak závislou proměnou zjistil, že rozložení skórů srdečního tepu je pozitivně zešikmené. 75. percentil je zjištěn u tepu = 111 a 25. percentil u tepu = 81. Druhý kvartil je 101. a. Spočítejte kvartilové rozpětí (IQR) b. Spočítejte kvartilovou odchylku (SIQR, semi-interquartile range)
7 6. Pro každou situaci uvažte, zda byste použili s nebo σ: a. Trenéra zajímá variabilita skórů jeho týmu za celou sezónu b. Klinický lékař hodnotí nový lék na sexuální dysfunkci c. Vyučující chce poskytnout zpětnou vazbu studentům o pololetních zkouškách d. Výrobce vezme vzorek žárovek, aby odhadl variabilitu jejich života 7. Spočítejte rozptyl a směrodatnou odchylku těchto skórů. Předpokládejte, že nebudou použity tak, aby se z nich odvodil stupeň variability v populaci. 22, 32, 21, 20, 19, 15, Která sada skórů má větší rozptyl? Sada A: 2, 4, 5, 1, 1, 2, 3, 9 Sada B: 34, 39, 34, 35, 33, Rozložení má průměr 500 a směrodatnou odchylku 100. Předpokládejte, že rozložení je negativně zešikmené. Na základě toho, co víte, je možné určit procento skórů, které spadají mezi 400 a 600? Jestliže ano, jaký je procentuální obsah? 10. Jaká je hlavní nevýhoda při použití variačního rozpětí pro měření rozptýlenosti? 11. Jako popisná statistika, co je lepším indexem variability, rozptyl nebo směrodatná odchylka? Proč? 12. Jaká je populační směrodatná odchylka této sady skórů? 9, 7, 10, 14, 12, 9, 16, 13, Jestliže má rozložení průměr = 4,5 a s 2 = 1,6, jaký bude průměr a s 2, když ke všem hrubým skórům přičteme 10? 14. Experiment se zajímá hodnocením dvou odlišných technik změny postojů. Závislou proměnou je postoj vůči imigrantům. V následující tabulce, vyšší čísla odráží více pozitivní postoj. Technika A Technika B Technika A Spočítejte:
8 Technika B Spočítejte: 15. Doplňte následující tabulku. µ = 50 a σ = 5. Specifikované konstanty jsou použity tak, že transformují skóry rozložení. Otázky pro počítačové zpracování Určete průměr, rozptyl, směrodatnou odchylku a variační rozpětí pro každé z následujících sad skórů. 16. Skóry: 17. Skóry: 18. Skóry:
9 Odpovědi 1. Nelze říci, které bude mít větší rozptyl, ale n = 60 poskytne pravděpodobně přesnější odhad rozptylu v populaci. Vzorek o n = 60 bude mít pravděpodobně větší variační rozpětí. 2. Na základě velikosti průměru nemůžete odhadnout rozptyl. 3. Průměr = 103,5, s = 5,24 4. Variační rozpětí = 8 1 = 7, rozptyl = 4,27, směrodatná odchylka = 2,07 9. Nelze 10. Jsou ovlivněny extrémními skóry. 11. Směrodatná odchylka, je totiž nejsnadněji interpretovatelná, neboť je v původních jednotkách měřené proměnné. 12. σ = 2, Průměr = 14,5 a s 2 = 1, Technika A Technika B 15.
10 16, 17, 18: Otázky k transformacím: percentily, z-skóry, T-skóry 1. Je dáno následující rozložení četností, jaký je percentil těchto skórů: a. 56 b. 60 c. 54 d. 49
11 2. Transformujete tyto skóry populace na z-skóry a T-skóry: Hrubé skóry: 4, 5, 7, 9, 10, Je dán průměr = 14 a s 2 = 16. Jaký je z-skór hrubého skóru 11? 4. V rozložení je průměr = 25 a s = 3. Jaký hrubý skór odpovídá z-skóru = 36? 5. Jestliže má rozložení průměr = 130 a směrodatnou odchylku = 13, jaká je pravděpodobnost náhodně vybraného skóru nad 140? 6. Je-li průměr = 34 a s = 3, jaké procento skórů je nižších než 27? 7. Jaké je celkové procento skórů, které leží za z-skóry ± 1,96? 8. Jaká část skórů spadá mezi z-skóry ± 1,64? 9. Jaké je z, když pravděpodobnost namátkově vybraného skóru je: a. pod (doleva) z = 0,4207 f. nad z = 0,2946 b. pod z = 0,3821 g. nad z = 0,4641 c. nad (doprava) z = 0,3192 h. pod z = 0,4247 d. nad z = 0,0694 i. nad z = 0,2119 e. pod z = 0, Jaká je pravděpodobnost náhodně vylosovaného skóru mezi z-skóry + 0,56 a 1,2? 11. V rozložení je průměr = 78 a s = 7, jaká je pravděpodobnost vybraného skóru mezi 72 a 80? 12. V distribuci, která má průměr = 123 a rozptyl 49, určete celkové procento skórů spadající nad 130 a pod Standardizovaný dotazník depresivity má průměr 25 a směrodatnou odchylku 5. Jaká je pravděpodobnost, že náhodně vybraná osoba bude mít skór mezi 20 a 30? 14. Standardizovaný test analytického myšlení má průměr = 70 a směrodatnou odchylku 7. Ředitel školy chce identifikovat nejlepší a nejhorší studenty na základě jejich skórů. Nejlepší jsou ti, jejichž percentil je 90 a vyšší, nejhorší ti, jejichž percentil je 10 a nižší.
12 Jaké jsou mezní hrubé skóry, které by měl ředitel použít, aby identifikoval dané dvě skupiny studentů? 15. Převeďte následující soubor hrubých skórů na T-skóry. 2, 4, 5, 6, 8, Je dáno rozložení s průměrem = 48 a s = 4. Jaký mají percentil následující hodnoty: a. 43 b. 57 c. 48 d. 50 e Ve 100 bodovém závěrečném testu máme µ = 78 a σ = 7. Jaké skóry mají tito čtyři studenti? a. Laura, s percentilem 95 b. Jana, jestliže patří do 80. percentilu c. Honza, jehož skór byl lepší než 30 procent ostatních studentů d. Gabriel, s percentilem Pro následující rozložení s průměrem = 35 a s = 3, určete procento skórů, které jsou: a. nad z = + 1,20 b. nad z = - 0,36 c. pod z = - 0,56 d. pod z = - 0,79 e. pod z = - 1,10 f. pod z = + 0,98 g. nad z = + 0, Profesorka Engelová dala studentům závěrečný test z psychopatologie a zjistila, že µ = 56 a σ = 5. a. Jestliže je 38 minimální úspěšný skór, kolik procent studentů neuspělo? b. Jestliže profesorka Engelová chce, aby známka C pokryla středních 30 procent daného rozložení, jaké budou hraniční skóry? c. Jaký bude hraniční skór pro známku A, když víte, že pouze 10 procent nejlepších ji obdrželo? 20. Student obdržel skór, který patří do 80 percentilu. a. Jaký z-skór odpovídá tomuto pořadí? b. Je možné, na základě uvedených informací, určit hrubý skór? 21. Je dáno následující skupinové frekvenční rozložení. Jaký je percentil náležející skóru 172?
13 22. Pro následující skupinové frekvenční rozložení určete: Otázky pro počítačové zpracování 23. Pro následující soubor dat, určete skóry, které spadají do 25., 50., 75. percentilu. Soubor je platný i pro otázky 24, Převeďte všechny hrubé skóry na z-skóry. Jaký je průměr a směrodatná odchylka rozložení z-skórů? 25. Specifikujte následující popisné statistiky: a σ, tehdy, když víte, že soubor je populace a pokud je soubor dat vzorek skórů.
14 Odpovědi 7. 0, ,025 = 2,5% + 2,5% = 5% 8. 0,45 + 0,45 = 45% + 45% = 90% 10. 0, ,2123 = 0, , ,1141 = 0, , ,1587 = 0,3174 = 31,74%
15 13. (z s = ± 1). Odpověď je 0, z s = ± 1,28 (z tabulky) X = 70 ± 1,28(7) = 61 a 79 > 79 = nejlepší studenti a < 61 nejhorší studenti 16. Z skóry jsou používány k nalezení procenta skórů pod hodnotou hrubých skórů 20. a. z = 0,84 (z tabulky) b. Ne, potřebujete průměr a směrodatnou odchylku
16 24. Měl by být µ= 0 a σ = 1,0; mohou se objevit malé diskrepance díky zaokrouhlování.
2.3 Který z nich je bodem, pod i nad kterým leží polovina skórů seřazených podle velikosti?
Otázky k tématu 3 střední hodnoty, variabilita a z-skóry I. Střední hodnoty 1. Jestliže máme soubor skórů proměnné X: 1,3,6,8,9,9,10,10,10 1.1 Jaká je hodnota modu? 1.2 Jaké je n? Jaká je hodnota mediánu?
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Induktivní statistika. z-skóry pravděpodobnost
Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
PSY Statistická analýza dat v psychologii Přednáška 3. Transformace skórů a kvantily normálního rozložení
PSY117 2016 Statistická analýza dat v psychologii Přednáška 3 Transformace skórů a kvantily normálního rozložení Transformace skórů (dat) Pro usnadnění porozumění a možnost dalších analýz často přepočítáváme
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2
Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Statistická analýza dat v psychologii
PSY117 2016 Statistická analýza dat v psychologii Přednáška 2 MÍRY CENTRÁLNÍ TENDENCE A VARIABILITY He uses statistics as a drunken man uses lampposts for support rather than illumination. Andrew Lang
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
22. Pravděpodobnost a statistika
22. Pravděpodobnost a statistika Pravděpodobnost náhodných jevů. Klasická pravděpodobnost. Statistický soubor, statistické jednotky, statistické znaky. Četnosti, jejich rozdělení a grafické znázornění.
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Příloha podrobný výklad vybraných pojmů
Příloha podrobný výklad vybraných pojmů 1.1 Parametry (popisné charakteristiky) základního souboru 1.1.1 Míry polohy (střední hodnoty) Aritmetický průměr představuje pravděpodobně nejznámější střední hodnotou,
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Deskriptivní statistika (kategorizované proměnné)
Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Pracovní list č. 3 Charakteristiky variability
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Minimální hodnota. Tabulka 11
PŘÍLOHA č.1 Výsledné hodnoty Výsledky - ženy (SOŠ i SOU, maturitní i učební obory) Aritmetický průměr Maximální hodnota Minimální hodnota Medián Modus Rozptyl Směrodatná odchylka SOM 0,49 2,00 0,00 0,33
Obecné, centrální a normované momenty
Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT
LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT 1 Základní statistickou úlohou je popis stavu základního souboru Východiskem je většinou výběrový soubor (odvozujeme popis základního souboru z popisu
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova 1.LF UK, 22. a 30. března 2017 Motivace 1 Velké množství (medicínských
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
Biostatistika Cvičení 7
TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120
KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
1.3 K čemu slouží linearizační transformace? V jakém případě o ní uvažujeme?
Otázky k tématu 6 regrese 1 1. Vyberte správnou odpověď 1.1 Který termín patří mezi ostatní nejméně? a) percentil b) korelace c) regrese d) predikce 1.2 O lineárním vztahu mezi dvěma proměnnými. a) vypovídá
Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika
Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář
Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru
1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)
1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí
VADÍ - NEVADÍ ANEB STATISTIKA KOLEM NÁS
VADÍ - NEVADÍ ANEB STATISTIKA KOLEM NÁS Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky, Katedra aplikované matematiky ŠKOMAM 19 29. 1. 2019
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná