Metodologie pro Informační studia a knihovnictví 2
|
|
- Naděžda Čechová
- před 9 lety
- Počet zobrazení:
Transkript
1 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci dat. Jak zobrazovat spojité proměnné. Obsah Nekategorizované proměnné... 2 Aritmetický průměr... 2 Minimum, maximum a rozpětí... 3 Rozptyl a směrodatná odchylka... 4 Percentily... 6 Zobrazování kardinálních dat... 8
2 Nekategorizované proměnné Nekategorizované proměnné jsou ty proměnné, které mohou nabývat všech hodnot z daného intervalu. Může jednat o plat, věk, počet obyvatel města, délku pracovní zkušenosti v měsících Aritmetický průměr Aritmetický průměr je třetí mírou centrální tendence. U kardinálních dat lze jako míry centrální tendence využívat všechny tři: modus, medián, aritmetický průměr. Aritmetický průměr je ukazatelem průměrné hodnoty, nemusí být ale vždy ukazatelem nejvhodnějším vhodné je jej kombinovat s mediánem. Aritmetický průměr je totiž velmi citlivý na extrémní hodnoty. I jedna extrémní hodnota může výrazně posunout aritmetický průměr. Příklad: V roce 2010 byl podle serveru Platy.cz průměrný měsíční plat Kč. Medián byl však na hodnotě Kč. Znamená to, že průměr vychýlil menší počet jedinců s výrazně vyšším platem. Pro připomenutí: Modus se používá, pokud: rozdělení má více vrcholů, chceme zjistit nejčastější hodnoty. Medián používáme, pokud: jsou data ordinální nebo kardinální, chceme znát střed rozložení dat, (v kombinaci s průměrem) pokud soubor obsahuje extrémní hodnoty, jestliže je rozložení dat zešikmené. Aritmetický průměr je vhodné používat, pokud jsou data kardinální, rozložení je symetrické, chceme použít statistické testy. (Hendl 2009) Aritmetický průměr v Excelu Příkaz PRŮMĚR
3 Aritmetický průměr v SPSS Pro zjištění hodnot měr centrální tendence v SPSS zadáte Analyze Descriptive Statistics Frequencies Statistics Mean, Median, Mode Minimum, maximum a rozpětí První charakteristiky nekategorizovaných dat, na které se díváme už při fázi čištění dat, jsou minimální a maximální hodnoty. Z nich také snadno spočítáme rozpětí. Rozpětí je nejjednodušší míra variability a snadno se vypočítá jako rozdíl mezi nejvyšší a nejnižší hodnotou. Např. Je-li minimální hodnota 18 a maximální 1024, rozpětí hodnot proměnné v souboru je 106. Minimum, maximum a rozpětí v Excelu Příkaz MIN(oblast hodnot) Příkaz MAX(oblast hodnot) Rozpětí jako rozdíl hodnot MAX a MIN Minimum, maximum a rozpětí v SPSS Vypočítání rozpětí můžete v SPSS zadat tímto řetězcem: Analyze Frequencies Statistics:
4 Rozptyl a směrodatná odchylka Rozptyl je definován jako střední hodnota kvadrátů odchylek od střední hodnoty (průměru). Vyjadřuje variabilitu rozdělení souboru náhodných hodnot kolem její střední hodnoty. Při průměrování odchylek dělíme číslem n-1. S rozptylem úzce souvisí směrodatná odchylka. Ta se vypočítá jako odmocnina z rozptylu. Vrací tedy míru rozptýlenosti do měřítka původních dat. V podstatě nám říká, uvnitř jakého intervalu okolo průměru leží zvolené procento případů tedy čím je směrodatná odchylka menší, tím lépe pro aritmetický průměr. Hendl (2009) srozumitelně vysvětluje, jak dochází k výpočtu směrodatné odchylky: 1. Nejprve si vypočítáme všechny odchylky od průměru (např. při hodu kostkou vždy spočítáme odchylku konkrétní hozené hodnoty od celkového průměru). 2. Umocnění na druhou převede záporné odchylky na kladná čísla. Zároveň zvýrazní váhu extrémnějších odchylek. 3. Sečteme kvadratických odchylek. 4. Dělením číslem n-1 získáme průměrnou kvadratickou odchylku. 5. Odmocnina (v případě směrodatné odchylky) převede výsledek do původního měřítka dat. Pro názornost si pojďme ukázat příklad, který dobře znáte hodnocení vyučujících na KISKu a směrodatnou odchylku tohoto hodnocení.
5 Průměrné hodnocení proměnné Učitel jako odborník je u obou vyučujících podobné jeden vyučující má průměrné hodnocení 9, druhý má průměrné hodnocení 10. Směrodatná odchylka (zvýrazněná hvězdičkami) nám ale poskytne rychlou další informaci říká nám, jak moc se hodnocení všech respondentů pohybovalo kolem průměru. Vidíme, že zatímco v druhém případě se hodnocení výjimečně shodovalo a studující se shodli na tom, že učitel je skutečný odborník, v prvním případě nebyla shoda zdaleka tak veliká. Rozptyl a směrodatná odchylka v Excelu rozptyl příkaz VAR směrodatná odchylka příkaz SMODCH.VÝBĚR Rozptyl a směrodatná odchylka v SPSS Vypočítání rozptylu a směrodatné odchylky můžete v SPSS zadat tímto řetězcem: Analyze Frequencies Statistics:
6 Percentily Percentil x je hodnota, pro kterou platí, že x procent případů má hodnotu menší nebo rovnu percentilu x. Nejčastěji se využívají: MEDIÁN (x50) KVARTILY (x25, x50, x75) DECILY (x10, x20, x30, x40, x50, x60, x70, x80, x90) Například vás může zajímat, jak jsou rozloženy příjmy obyvatel v horním a spodním percentilu. Tato informace spolu s mediánem ukazuje, jak moc jsou rozevřené pomyslné nůžky mezi horní a spodní vrstvou společnosti. Zdroj: Percentil v Excelu Příkaz PERCENTIL (rozpětí dat;hodnota percentilu z intervalu 0-1) Tedy např. percentil 50 můžeme zapsat jako =PERCENTIL(A1:A30;0,5) Percentil v SPSS Vypočítání rozptylu a směrodatné odchylky můžete v SPSS opět zadat tímto řetězcem: Analyze Frequencies Statistics (políčko Percentile Values).
7 Šikmost a špičatost Spojitá data nabývají málokdy tzv. normálního rozložení. Při popisu dat si všímáme zešikmení a špičatosti dat. Ad šikmost: Symetrické (normální) rozložení - aritmetický průměr, medián a modus mají stejné nebo velmi podobné hodnoty. (0) Pokud je aritmetický průměr větší než medián, který je zase větší než modus, znamená to, že je více případů menších než průměr a naše rozložení je šikmé doprava. (+) Třetí možností je, že je více případů větších než aritmetický průměr. Ten je pak menší než medián a ten je menší než modus. Naše rozložení je šikmé doleva. (-) Špičatost zase udává, jak moc jsou data nakumulována v oblasti středních hodnot.
8 Šikmost a špičatost v Excelu příkaz SKEW (šikmost) příkaz KURT (špičatost) Šikmost a špičatost v SPSS Analyze Frequencies Statistics (políčko Distribution). Zobrazování kardinálních dat Pro zobrazování kardinálních dat se používá několik možných grafů Histogram Histogram je podobný sloupcovému grafu, mezi jednotlivými sloupci ale nejsou mezery. Pracujeteli v Excelu, můžete využít klasický sloupcový graf. Příklad histogramu distribuce IQ v populaci (zdroj: IQscope.com) Spojnicové grafy Chcete-li ukázat, jak se hodnoty proměnné měnily v čase, je vhodné použít spojnicový graf.
9 Příklad využité spojnicového grafu spokojenost s mobilními operátory Bodové grafy Bodové grafy zachycují jednotlivé hodnoty proměnných a využívají se v třídění druhého stupně jako zachycení toho, jak jedna proměnná ovlivňuje druhou (o tomto grafu více v dalších modulech). Literatura Hendl, J. Přehled statistických metod analýzy dat. Praha : Portál 2009 Levine, D. M., & Stephan, D. (2010). Even you can learn statistics: A guide for everyone who has ever been afraid of statistics. Upper Saddle River, N.J: FT Press.
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis
Deskriptivní statistika (kategorizované proměnné)
Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,
Deskriptivní statistika (kategorizované proměnné)
Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 4: Kódování a rekódování. Deskriptivní statistika popis dat I Co se dozvíte v tomto modulu? Co zjišťujeme u nominálních proměnných? Co zjišťujeme
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT
LEKCE 02a UNIVARIAČNÍ ANALÝZA KATEGORIZOVANÝCH DAT 1 Základní statistickou úlohou je popis stavu základního souboru Východiskem je většinou výběrový soubor (odvozujeme popis základního souboru z popisu
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Minimální hodnota. Tabulka 11
PŘÍLOHA č.1 Výsledné hodnoty Výsledky - ženy (SOŠ i SOU, maturitní i učební obory) Aritmetický průměr Maximální hodnota Minimální hodnota Medián Modus Rozptyl Směrodatná odchylka SOM 0,49 2,00 0,00 0,33
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
Statistická analýza dat v psychologii
PSY117 2016 Statistická analýza dat v psychologii Přednáška 2 MÍRY CENTRÁLNÍ TENDENCE A VARIABILITY He uses statistics as a drunken man uses lampposts for support rather than illumination. Andrew Lang
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Základní analýza dat. Úvod
Základní analýza dat literatura: Hendl, J. 2006: Přehled statistických metod zpracování dat. Analýza a metaanalýza dat. Praha: Portál. Macháček, J. 2001: Studie k velkomoravské keramice. Metody, analýzy
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Návrhy dalších možností statistického zpracování aktualizovaných dat
Návrhy dalších možností statistického zpracování aktualizovaných dat Při zjišťování disparit ve fyzické dostupnosti bydlení navrhuji použití těchto statistických metod: Bag plot; Krabicové grafy a jejich
VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách
ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
Metodologie pro ISK 2, jaro Ladislava Z. Suchá
Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění
Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2
Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
Statistika v současnosti
1. STATISTIKA z latin. Status (stav nebo stát) 1562 Benátky 17. stol. Německo Anglie 16.-17. st. tzv. politická aritmetika Ideální typ člověka - Adolphe QUETÉLET 18. a 19. st. pozorování a popis zákonitostí
Návod pro práci s SPSS
Návod pro práci s SPSS Návody pro práci s programem SPSS pro kurz Metodologie pro Informační studia a knihovnictví 2 (jaro 2013) Ladislava Zbiejczuk Suchá Instalace programu SPSS najdete v INETu. Po přihlášení
Úvod do statistické metodologie
Přenos jakékoli části této prezentace mimo účastníky semináře je zakázán bez písemné dohody se StatSoft CR s.r.o. (Dell Software Group). Úvod do statistické metodologie 1. lékařská fakulta Univerzity Karlovy
Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2
Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,
Metodologie pro Informační studia a knihovnictví
Metodologie pro Informační studia a knihovnictví Transformace proměnných Co se dozvíte v tomto modulu? Jak vytvořit novou proměnnou pomocí rekódování? Jak vytvořit novou proměnnou pomocí aritmetických
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Obecné, centrální a normované momenty
Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
ČETNOSTI A ROZLOŽENÍ ČETNOSTÍ
PSY117/454 Statistická analýza dat v psychologii Přednáška 2 ČETNOSTI A ROZLOŽENÍ ČETNOSTÍ Je snadné lhát s pomocí statistiky. Je těžké říkat pravdu bez ní. Andrejs Dunkels; wikiquote Jaké hodnoty máme
Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013
Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?
Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)
Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =
Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář
Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru
JAK MODELOVAT VÝSLEDKY
JAK MODELOVAT VÝSLEDKY NÁHODNÝCH POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
Pearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 6: Transformace proměnných Co se dozvíte v tomto modulu? Jak vytvořit novou proměnnou pomocí rekódování? Jak vytvořit novou proměnnou pomocí aritmetických
Příprava souboru dat a analýza
UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (LS 2007) Kvantitativní metody výzkumu v praxi PRAKTIKUM část 2 Příprava souboru dat a analýza Jiří Šafr jiri.safr@seznam.cz vytvořeno
1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)
1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 9: Úvod do induktivní statistiky Obsah Induktivní statistika... 2 Kdy můžeme zobecňovat?... 2 Logika statistické indukce... 3 Proč nelze jednoduše
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Kontingenční tabulky v Excelu. Představení programu Statistica
ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky