Charakterizace rozdělení
|
|
- Hana Marešová
- před 6 lety
- Počet zobrazení:
Transkript
1 Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K
2 μ = E ( X ) = xf ( x) dx + Speciální momenty Střední hodnota: (matematické očekávání) M 1 = E(X) = μ První centrální moment C 1 = 0 Rozptyl: C = D(X) = σ σ = D ( X ) = ( x μ) f ( x) dx + Šikmost: Třetí normovaný centrální moment Špičatost: Čtvrtý normovaný centrální moment Šikmost Špičatost f(x) f(x) 6 g 1 > 0 g 1 = 0 g 1 < 0 3 g X C 3( X ) 1( ) = σ * σ C4( X) g ( X) = σ * σ 1,8 x x
3 Vlastnosti střední hodnoty: E(X) M 1 (μ) Střední hodnota Konstanty A, B E(A X ± B) = A.E(X) ± B Nezávislé (X, Y) E(X ± Y) = E(X) ± E(Y) E(X*Y) = E(X)*E(Y) Korelované (X, Y), Míra závislosti vyjádřená kovariancí cov(x, Y) = E(X*Y) - E(X)*E(Y) E(X*Y) = E(X)*E(Y) + cov(x, Y) Centrování: X 0 = X - E(X) E(X 0 ) = 0 F 1 E( x) = Q( u) du 0 E(x) x Pro positivní X 0 platí E(X) = Q(u) du
4 Parametry polohy Módus: M 0 ~ Medián:. x relativní maximum na hustotě pravděpodobnosti... 50%ní kvantil f(x) f(x) f(x) x M = x ~ = Ex 05 o, () M o ~, ~ 05 x 05, M o E(x) E(x) x x x Pro kladná x platí: ~ x = E( X) /( 1 α), pak maximálně ~ x 05. = E(X) α
5 Kvantilová metoda pro lognormální data Tří parametrové lognormální rozdělení f ( x) = 1 exp{ * π *(1 + σ * Y )* τ 1 σ [ln(1 + σ * Y )] } P i i σ = N Parametr Y = x μ /τ x ( μ τ ) / σ Transformace z = ln[(1 + σ * Y ) vede na N(0,1) Pořádková statistika x (i) souvisí se standardizovanou normální 1/ σ ] pořádkovou statistikou z (i) exp( σ * z ( i) ) i) = μ + τ * σ 1 x ( μ + τ * g i ( σ ) g ( Pro známé σ je možné odhadnout parametry μ,τ jako směrnici a úsek regresní přímky x μ + τ * g ( ) ( i) i σ i σ ) = exp( σ * Φ σ 1 ( P i ) 1
6 Centrální tendence Průměr= 5 Průměr= Medián = 5 Medián = Módus = 9 Není módus
7 Rozptyl ~ x0.5 μ σ Vlastnosti rozptylu: D(X) = C = σ D(X) = E((X - E(X)) = E(X - X E(X) + E(X) ) = E(X ) - E(X) Konstanty A, B Nezávislé (X, Y) Pro centrované X a Y D(A X ± B) = A D(X) D(X ± Y) = D(X) + D(Y) D(X Y) = D(X) D(Y) + E(X) D(Y) + E(Y) D(X) Lineárně korelované (X, Y) D(X ± Y) = D(X)+D(Y) + *cov (X, Y) D(X y) = D(X) D(Y) + E(X) D(Y) + E(Y) D(X) + E(X) E(Y) cov(x, Y) Pro libovolné A platí E[(X- A) ] D(X) Rozptyl je nezáporný σ 0 D( x) = [ Q( u) μ] du 1 0
8 Standardizace U = X 0 / [D(X)] = [X- E(X)] / [D(X)] Platí, že: 1. E(U) = 0 a D(U) = 1. f(x) = (1/σ) f(u) 3. F(x) = F(u) 4. Q(Z) = μ + σ Q 0 (Z), pro 0 Z<1
9 Parametry variability Směrodatná odchylka σ = [D(X)] Průměrná absolutní odchylka d = E[abs(X - E(X))] Obecně platí d D(X). Pro normální rozdělení: d / σ = / π Interkvartilová odchylka Obecně platí q [ σ ]. Pro normální rozdělení q σ q =. *( ~ x ~ x )
10 Příklady variability Rozpětí = 1-7 = 5 Rozpětí = 1-7 = Data A Průměr = 15.5 s = Data B Průměr = 15.5 s =.958
11 Aproximace rovnoměrným rozdělením 1 Koncentrace: K = * σ * 3 E(x), σ σ a b interval koncentrace Pro rovnoměrné rozdělení je μ = (a + b)/ σ = (b - a) /1 μ σ 3 μ μ+ σ 3
12 Variační koeficient Relativní mírou variability je variační koeficient V = σ / E(X) Vlastnosti variačního koeficientu: 1. V(A) = 0,. V(A X) = V(X) 3. V(X + Y) = V ( X) * E ( X) + V ( Y) * E ( Y) EX) ( + EY) (
13 Přehled sumarizace dat Sumární míry Centrální tendence Kvartily Variace Průměr Medián Módus Rozpětí Rozptyl Variační koeficient Geometrický průměr Směrodatná odchylka
14 Přehled měr variability Variace Rozptyl Směrodatná odchylka Variační Rozpětí Populační rozptyl Populační koeficient Výběrový rozptyl Výběrová Interkvartilové rozpětí
15 Popisné statistiky polohy Centrální tendence Průměr aritmetický: (Σx/n) Medián: Centrální bod (dělicí bod) Variace směrodatná odchylka šikmost náklon rozdělení špičatost délka konců Zešikmené vpravo Mode < Median < Mean Symetrické Mean = Median =Mode Zešikmené vlevo Mean < Median < Mode
16 Rozdělení součtu náhodných veličin
17 Centrální limitní věta Nechť X, jsou z 1 X,... X n nezávislých stejně rozdělených náhodných veličin se střední hodnotou μ a směrodatnou odchylkou σ > 0 Nechť S = X1 + X Pak pro každé x < y lim P[ x n Φ n X n Sn nμ σ n y] = Φ( y) kde je distribuční funkce normálního rozdělení Φ( x)
18 Transformace náhodné veličiny Známe X s rozdělením f(x) a transformaci ("monotónní") Y = g(x) Hledáme rozdělení Y, tj. h(y) a) diskrétní náhodné veličiny h(y) = f[ g -1 (y) ] b) spojité náhodné veličiny h(y) = f[ g -1 (y) ] * d g -1 (y) / dy) kde d g -1 (y) / dy) je (normalizační faktor) Jakobián transformace
19 Příklady a) y = a x + b, g -1 (y) = (y-b)/a, h(y) = (1/ a ).f((y-b)/a) b) y = a x, g -1 (y) = (y/a), h(y) = (1/( a y )) f( (y/a)) c) y = a exp(x),g -1 (y) = ln(y/a), h(y) = f[ln(y/a) 1/y Lineární transformace: mění se pouze polohu a rozptýlení Nelineární transformace: již dochází ke změně tvaru rozdělení Transformace distribuční funkcí vede na rovnoměrné rozdělení!! y = F(x) f(y) = f[f -1 (y)] [d F -1 (y)] / dy = f[q(y)].q(y) = 1
20 g 1 = 1 * p N* p*( 1 p) Binomické rozdělení B(N,p)) Binomické rozdělení g 1 6 p 1 p = * *( ) N* p*( 1 p) Binomické rozdělení má náhodná veličina X vyjadřující počet výskytu jevu A (příznivý výsledek) v N nezávislých pokusech. Pravděpodobnost výskytu jevu A (příznivý výsledek) v jednom pokusu je p a jevu (nepříznivý výsledek) je q = 1 - p. A + 3 Pravděpodobnostní funkce Px i N ( = ) = * p *( p) 1 x x N i N i Fx ( ) = * p *( 1 p) i X N x Distribuční funkce i= 0 x Střední hodnota: E(X) = N p p je počet příznivých jevů v N nezávislých pokusech Rozptyl: D(X) = N p (1 - p) xp Módus: p (N+1)-1 <= Mo < = p (N+1) p = N
21 1 1 g 1 = g = 3 + λ λ Poissonovo rozdělení Poissonovo rozdělení Po(λ) má náhodná veličina X, která je rovna počtu jevů vdaném časovém nebo prostorovém intervalu, kde x je aritmetický průměr počtu jevů vdaném časovém nebo prostorovém intervalu Pravděpodobnostní funkce Distribuční funkce P( x = x i) = λ * e x λ / x! F( x) = λ * i = 0 i e λ / i! Střední hodnota E(X) =λ λ = x Rozptyl D(X) =λ
22 Normální rozdělení Normované normální rozdělení U N(0,1) P( U 1.65 ) = 0.90 f() = 0.05 P( U 1.98 ) = 0.95 f(3) = 0.04 P( -3 U 3 ) = f(4) = Normální rozdělení N((μ, σ ): 1 Hustota pravděpodobnosti f( x) = e x * π Distribuční funkce x μ Fx ( ) = Φ( ) Φ( x) = σ Střední hodnota: E(X) =μ Rozptyl: D(X) = σ Šikmost: Špičatost: g 1 = 0 g = 3 μ = x x = Σx i /N ( μ) / σ 1 * π x y exp( ) dy 0, , N = ( xi x) N 1 σ i= 1
23 Matematická statistika Populace X vzorkování Výběr{x i } i=1,...n f(x, μ, σ, g 1, g ) f ( x ), μ, σ, g 1, g Symbol " " označuje odhady parametrů nebo hustoty pravděpodobnosti zdat. Bodové odhady a Parametr a odhad je náhodná proměnná. Vychýlení odhadu b= a E( ) a Pokud je b = 0 jde o nevychýlený odhad. Rozptyl odhadu D( ) a je charakterizací "přesnosti odhadu"
24 Normální rozdělení X i mají rozdělení N( μ ) σ Parametr μ odhad x rozptyl Dx ( )= σ N D( x) = 1 N D( Σ x i) = Nσ = N σ N Parametr odhad rozptyl σ s D( s ) ρ( x, s ) = * σ = N Ne-normální rozdělení Korelační koeficient g 1 ( x) n 4
25 Pokud x i nemají normální rozdělení σ (g 1) D(s) 4N Směrodatná odchylka Směrodatná odchylka s je vychýleným odhadem veličiny σ. Platí, že E(s) < σ. Pro nevychýlený odhad lze odvodit σ = K u * s s (N 1) N 1.45 kde K u N 1 = Γ( ) N 1 N Γ( ) N 1 N 1 3 4N 37 3 N D( σ ) = σ (N) D(s) σ (N 1)
26 Variační koeficient Výběrový odhad V a odpovídající rozptyl D(V) lze vyjádřit ve tvaru V = x s D(V) N + (N 1) δ δ δ (1 + ( 1) N n N δ )
27 Odhady jsou pouze asymptotické (platí pro velké N ). Šikmost a špičatost Pro odhad šikmosti g 1 se používá výběrová šikmost rozptylem D( ), kde ĝ 1 N 3 N (x i x) i = 1 ĝ1 = D( ĝ 3 / 1 N (x i x) i = 1 ) (N ĝ 1 6N(N - )(N + s - 1) 1)(N + 3) Pro odhad špičatosti g platí ĝ = N N i = 1 N i = 1 (x (x i i x) x) 4 D( ĝ ) (N - 4N(N - 1) 3)(N - )(N + 5)(N + 3)
28 Omezení x i mají rozdělení N( μ, σ ) Maximální vybočující měření x k je omezeno nerovností ( n 1) ( x x) s K n Omezení na rozmezí dat x ) * ( 1) * ( n ) (1) ( x n s
29 Kvantilová metoda pro lognormální data Tří parametrové lognormální rozdělení f ( x) = Parametr 1 exp{ * π *(1 + σ * Y )* τ Y = x μ /τ P i x ( μ τ ) / σ i σ = N σ [ln(1 + σ * Y )] } Transformace z = ln[(1 + σ * Y ) 1/ σ ] vede na N(0,1) Pořádková statistika x (i) souvisí se standardizovanou normální pořádkovou statistikou z (i) exp( σ * z ( i) ) 1 x ( i) = μ + τ * μ + τ * g i ( σ ) σ Pro známéσ je možné odhadnout exp( σ * Φ g i ( σ ) = parametry μ,τ jako směrnici a úsek σ regresní přímky x μ + τ * g ( ) ( i) i σ 1 ( P i ) 1
30 Standardizace metodou Z-skóre (u, t, Z jsou transformované proměnné)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
ZÁKLADNÍ POJMY a analýza výběru
ZÁKLADNÍ POJMY a analýza výběru PARAMETR je statistická charakteristika základního souboru (značíse řeckými písmeny, např. střední hodnota μ ). STATISTIKA je statistická charakteristika výběrového souboru
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
JAK MODELOVAT VÝSLEDKY
JAK MODELOVAT VÝSLEDKY NÁHODNÝCH POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
1 Rozptyl a kovariance
Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
6.1 Normální (Gaussovo) rozdělení
6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?
A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Pravděpodobnost a statistika
Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Rovnoměrné rozdělení
Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
Vlastnosti odhadů ukazatelů způsobilosti
Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
Deskriptivní statistické metody II. Míry polohy Míry variability
Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které
Kvantily a písmenové hodnoty E E E E-02
Na úloze ukážeme postup průzkumové analýzy dat. Při výrobě calciferolu se provádí kontrola meziproduktu 3,5 DNB esteru calciferolu metodou HPLC. Sleduje se také obsah přítomného ergosterinu jako nečistoty,
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční
NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
Pravděpodobnost a matematická statistika
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopravní Pravděpodobnost a matematická statistika RNDr. Jana Novovičová, CSc. 1999 Vydavatelství ČVUT Lektor : Doc. Ing. Miloslav Vošvrda, CSc. (c) RNDr. Jana
PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v