Implementace Bayesova kasifikátoru
|
|
- Dagmar Matějková
- před 6 lety
- Počet zobrazení:
Transkript
1 Implementace Bayesova kasifikátoru a diskriminačních funkcí v prostředí Matlab J. Havlík Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, Praha 6 xhavlikj@fel.cvut.cz Abstrakt Příspěvek se zabývá problematikou klasifikace prostorových pohybů palce ruky. Palec ruky je označen reflexní značkou, jejíž pohyb je sledován dvojicí videokamer ze dvou lineárně nezávislých směrů. Pohyb značky v prostoru je parametrizován a uložen jako posloupnost polohových vektorů. V příspěvku je uveden popis Bayesova klasifikátoru a klasifikátoru založeného na diskriminačních funkcích a tyto dva přístupy jsou porovnány. 1 Úvod Uvedené klasifikační algoritmy jsou částí řetězce použitého k výzkumu vzájemných souvislostí svalové a mozkové aktivity člověka. Mozková aktivita je v tomto výzkumu reprezentována elektro-encefalografickým signálem EEG). Signál EEG neobsahuje pouze části přímo související se sledovaným pohybem těla, ale obsahuje i části odrážející další životní funkce, např. artefakty očních pohybů. Aby bylo možné provádět srovnání EEG záznamu se záznamem svalové aktivity, bylo třeba zvolit jednoduchý pohyb malého svalu, který při pohybu příliš neovlivňuje své okolí. Jako sledovaný pohyb byl vybrán volný pohyb palce ruky. Svalová aktivita je reprezentována posloupností polohových vektorů značky umístěné na palci ruky. Účelem celého řetězce je nalézt typické změny mozkové aktivity odpovídající specifickým pohybům palce ruky. 2 Experiment Snímaná osoba hýbe prstem mezi 3 polohami, směr pohybu prstu je volen pokusnou osobou tak, aby všechny směry pohybu byly realizovány zhruba se stejnou četností. Pohyb prstu následuje vždy po optickém synchronizačním pulsu, perioda pulsů je6 ±1 vteřina. Snímaný pohyb je zaznamenáván dvojicí standardních DV videokamer rozlišení pixelů, snímkovací frekvence 25 snímků za vteřinu) ze dvou lineárně nezávislých směrů. Uspořádání měřicího pracoviště je zřejmé z obrázku 1. Palec ruky je označen speciální reflexní značkou. Pohyb této značky v zaznamenaných videosekvencích je parametrizován tak, aby bylo možné v každém půlsnímku zvlášt určit polohu této značky. Z každé vteřiny záznamu je tak získána posloupnost 50 polohových vektorů reprezentujících polohu palce ruky v prostoru. Tyto vektory, označme je x, jsou dále použity jako příznakové vektory pro klasifikaci pohybů prstu.
2 3 Bayesův klasifikátor 3.1 Klasifikační algoritmus Řešíme klasifikaci vstupních vektorů x do R tříd, indikátory tříd označme ω 1, ω 2,...,ω R. Apriorní pravděpodobnosti Pω 1 ), Pω 2 ),...,Pω R ) jsou známy a platí pro ně R Pω r )=1. 1) r=1 Apriorní pravděpodobnosti udávají, jaká je pravděpodobnost, že vektor x připadne do třídy s indikátorem ω r. Předpokládejme, že kromě apriorních pravděpodobností Pω r ) známe ještě všechny podmíněné hustoty pravděpodobnosti px ω r ) udávající rozložení hodnot x uvnitř jednotlivých tříd. Pak platí, že vektor příznaků x patří do třídy s indikátorem ω r s pravděpodobností kde Pω r x)= px ω r )Pω r ), 2) px) R px)= px ω r )Pω r ). 3) r=1 Pravděpodobnosti Pω r x) nazýváme aposteriorními pravděpodobnostmi, vztah 2) nazýváme Bayesovým vztahem [3]. Obrázek 1: Měřicí pracoviště Vektor příznaků x zařadíme do té třídy ω, pro níž platí ω =argmaxpω r x). 4) r Vzhledem k tomu, že jmenovatel Bayesova vztahu 2) je pro všechny aposteriorní pravděpodobnosti třídy) stejný, je možné provádět klasifikaci na základě velikosti čitatele tohoto zlomku.
3 Jak vyplývá z definice experimentu pokusné osoby jsou žádány, aby stacionární stavy mezi pohyby prstu náhodně střídaly tak, aby relativní četnost jednotlivých tříd pohybů byla zhruba stejná), apriorní pravděpodobnosti všech tříd jsou si rovny a platí pro ně Pω r )= 1 R pro všechna r=1,...,r. 5) Z uvedeného 5) vyplývá, že i čitatel Bayesova vztahu 2) je pro účely klasifikace možné dále zjednodušit a vlastní klasifikaci provádět pouze na základě velikostí podmíněných hustot pravděpodobností ω =argmax px ω r ). 6) r 3.2 Trénování klasifikátoru Ke správné klasifikaci příznakových vektorů x do tříd ω 1, ω 2,...,ω R potřebujeme, jak vyplývá z 6), znát podmíněné hustoty pravděpodobností px ω r ). Předpokládejme, že hustoty pravděpodobností px ω r ) udávající rozložení hodnot příznakových vektorů x v jednotlivých třídách odpovídají normálnímu rozložení a je tedy možné je popsat rovnicí px ω r )= 1 exp 1 ) 2π) N Σ r 2 x µ r ) Σ 1 r x µ r ), 7) kde N je počet prvků příznakového vektoru x, µ r je střední hodnota normálního rozdělení, Σ r je jeho kovarianční matice. [4] Pro získání hustot pravděpodobností px ω r ) pak potřebujeme znát pro každou klasifikovanou třídu hodnoty parametrů µ r aσ r. Tyto parametry získáme na základě statistického rozboru příznakových vektorů x, u nichž známe, ke které klasifikační třídě patří. 3.3 Odhad parametrů normálního rozdělení Předpokládejme, že máme trénovací množinu obsahující M vzájemně statisticky nezávislých příznakových vektorů x patřících k jedné třídě s identifikátorem ω r. Pak pro danou trénovací množinu můžeme psát px 1, x 2,...,x M q)= M px m q). 8) Hustota pravděpodobnosti na levé straně rovnice 8) je pro danou trénovací množinu vektorů x závislá pouze na parametru q a nazýváme ji funkcí věrohodnosti. Úkolem trénování klasifikátoru je nalézt pro danou třídu ω r takový parametr q, který maximalizuje věrohodnost 8), tedy q =argmax q M px m q). 9) Takovýto odhad parametru q nazýváme maximálně věrohodný odhad MLE - Maximum Likelihood Estimation).
4 Dosazením předpokládaného tvaru hustoty pravděpodobnosti px ω) 7) do rovnice pro věrohodnost 8) získáme podmíněnou hustotu pravděpodobnosti realizace trénovací množiny px 1, x 2,...,x M µ,σ)= M 1 = exp 1 ) 2π) N Σ 2 x m µ) Σ 1 x m µ). 10) Aniž bychom změnili polohu maxima 8), můžeme celou uvedenou rovnici zlogaritmovat logaritmus je monotónně rostoucí funkce a nabývá tedy maxima tam, kde jeho argument) lnpx 1, x 2,...,x M µ,σ)= = N M 2 ln2π) M 2 ln Σ 1 2 ) x m µ) Σ 1 x m µ). 11) Maximalizaci věrohodnostní funkce provedeme nalezením extrému funkce v závislosti na parametrech µ aσ. Nalezení parametru µ Provedeme parciální derivacilnpx 1, x 2,...,x M µ,σ) podle vektoru µ lnpx 1, x 2,...,x M µ,σ) µ ) = 1 x m µ) Σ 1 x m µ) 2 µ M =Σ 1 x m µ). 12) Výraz 12) položíme roven nule a dostáváme M Σ 1 x m µ)=0 13) µ= 1 M x m. 14) Výraz 14) je maximálně věrohodným odhadem parametru µ normálního rozdělení 7).
5 Nalezení parametruσ U parametru Σ postupujeme obdobně jako u předchozího parametru. Nejprve vypočteme parciální derivaci věrohodnostní funkce podle tohoto parametru a položíme ji rovnou nule. lnpx 1, x 2,...,x M µ,σ) = Σ = M ln Σ 2 Σ 1 2 = M 2 Σ Σ 1 M ) x m µ) Σ 1 x m µ) Σ x m µ)x m µ) ) Σ 1 =0 15) Poté řešením rovnice 15) vyjádříme parametr Σ, pro nějž je hodnota věrohodnostní funkce 8) maximální. = Σ= 1 M x m µ)x m µ) ) 16) Kovarianční maticeσje symetrická pozitivně definitní čtvercová matice s reálnými prvky σ ij, kde i, j=1,...,n [4]. Σ= σ1 2 σ σ 1N σ 21 σ σ 2N σ N1 σ N2... σ 2 N 17) Prvky σ 2 i na hlavní diagonále matice jsou rozptyly i-tého prvku vektorů x, prvky σ ij mimo hlavní diagonálu jsou kovariance i-tého a j-tého prvku těchto vektorů. Pokud jsou prvky příznakových vektorů x vzájemně nekorelované, je kovarianční maticeσdiagonální. 4 Diskriminační funkce 4.1 Klasifikační algoritmus Řešíme opět klasifikaci vstupních vektorů x do R tříd, indikátory tříd označme ω 1, ω 2,...,ω R. Hledáme množinu funkcí g r x), pro které platí g r x) > g s x) 18) pro každý vektor x a pro s = 1,2,...R, s r. Funkce splňující uvedenou nerovnost nazýváme diskriminační funkce, jejich výběr obvykle není jednoznačný [3]. Vektor příznaků x zařadíme do té třídy ω, pro níž platí S ohledem na rovnici 6) můžeme zvolit např. množinu funkcí ω =argmax g r x). 19) r g r x)=px ω r ). 20)
6 Je zřejmé, že platí-li px ω r ) > px ω s ) 21) pro každý vektor x a pro s=1,2,...r, s r, pak za stejných podmínek platí i Diskriminační funkce pak definujeme lnpx ω r ) >lnpx ω s ). 22) a dosadíme-li z rovnice 7), dostáváme g r x)=lnpx ω r ) 23) g r x)= N 2 ln2π) 1 2 ln Σ r 1 2 x m µ r ) Σ 1 r x m µ r ). 24) Po zanedbání konstant neovlivňujících nerovnost 18) můžeme předchozí rovnici přepsat do tvaru g r x)= ln Σ r x m µ r ) Σ 1 r x m µ r ). 25) Před vlastní klasifikací je třeba diskriminační klasifikátor rozhodující na základě vztahu 19) natrénovat, tedy pro jednotlivé třídy s identifikátory ω r najít hodnoty parametrů µ r aσ r. Při trénování postupujeme stejně jako při trénování Bayesova klasifikátoru. 4.2 Vlastnosti diskriminačních funkcí Z odvození rovnice 23), zejména ze vztahů 20) a 22) je zřejmé, že použití takto definovaných diskriminačních funkcí vede k výsledkově totožnému klasifikačnímu algoritmu, jako je Bayesův klasifikátor popsaný v části 3. Výhodou diskriminačních funkcí je jejich menší výpočetní náročnost ve srovnání s Bayesovým klasifikátorem, nebot ve vztahu 25) není třeba vypočítávat hodnotu exponenciální funkce tak, jako ve vztahu 7). / Členyln Σ r ve vztahu 25) a1 2π) N Σ r ve vztahu 7) jsou nezávislé na klasifikovaném vektoru x, můžeme je vypočítat před vlastní klasifikací jako konstantu pro každou třídu zvlášt a na výpočetní náročnosti algoritmů se tedy neprojeví. 5 Implementace Oba klasifikační algoritmy byly implementovány ve výpočetním systému MATLAB. 6 Výsledky Jak již bylo uvedeno, oba klasifikační algoritmy jsou co se týče výsledků klasifikace totožné a nemá smysl je z tohoto pohledu jakkoli porovnávat. Zajímavé však může být srovnání výpočetní náročnosti klasifikátorů postavených na těchto algoritmech, kde se ukazuje, že klasifikátor založený na diskriminačních funkcích je na stejném hardwaru zhruba o 20 % rychlejší, než Bayesův klasifikátor. Rychlost obou klasifikátorů byla ověřena na sadě příznakových vektorů.
7 7 Závěr Bayesův klasifikátor i klasifikátor využívající diskriminačních funkcí jsou klasifikátory založené na statistické analýze dat. Oba klasifikátory poskytují dostatečně spolehlivé výsledky přesnost klasifikace byla na použitých datových souborech větší než 95 %) a jsou snadno implementovatelné v prostředí MATLAB. Jak bylo ukázáno, použití diskriminačních funkcí může být výhodnější s ohledem na menší výpočetní náročnost klasifikátoru. Poděkování Tato práce byla podporována výzkumným záměrem č. MSM udělen Ministerstvem školství, mládeže a tělovýchovy České republiky). Reference [1] Jan Havlík and Zdeněk Horčík. Bayes classification of thumb motion. In 5th European Symposium on Biomedical Engineering ESBME 06 [CD-ROM], [2] Jan Havlík, Jan Uhlíř, and Zdeněk Horčík. Thumb motion classification using discrimination functions in press). In Applied Electronics University of West Bohemia in Pilsen, Pilsen, [3] Zdeněk Kotek, Vladimír Mařík, Václav Hlaváč, Josef Psutka, and Zdeněk Zdráhal. Metody rozpoznávání a jejich aplikace. Academia, Praha, [4] Karel Rektorys et al. Přehled užité matematiky II. Prometheus, Praha, Jan Havlík Katedra teorie obvodů, Fakulta elektrotechnická, České vysoké učení technické v Praze Technická 2, Praha 6, tel: , xhavlikj@fel.cvut.cz
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
Teorie náhodných matic aneb tak trochu jiná statistika
Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
8 Coxův model proporcionálních rizik I
8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Apriorní rozdělení. Jan Kracík.
Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
Nestranný odhad Statistické vyhodnocování exp. dat M. Čada
Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Bayesovské rozhodování - kritétium minimální střední ztráty
Bayesovské rozhodování - kritétium imální střední ztráty Lukáš Slánský, Ivana Čapková 6. června 2001 1 Formulace úlohy JE DÁNO: X množina možných pozorování (příznaků) x K množina hodnot skrytého parametru
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Klasifikace a rozpoznávání. Extrakce příznaků
Klasifikace a rozpoznávání Extrakce příznaků Extrakce příznaků - parametrizace Poté co jsme ze snímače obdržely data která jsou relevantní pro naši klasifikační úlohu, je potřeba je přizpůsobit potřebám
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Vícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
Kapitola 1. Logistická regrese. 1.1 Model
Kapitola Logistická regrese Předpokládám, že už jsme zavedli základní pojmy jako rysy a že už máme nějaké značení Velkost trenovacich dat a pocet parametru Motivační povídání... jeden z nejpoužívanějších
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
11 Analýza hlavních komponet
11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu
SRE 03 - Statistické rozpoznávání
SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Vytyčení polohy bodu polární metodou
Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
Z OBRAZOVÉHO ZÁZNAMU. Jan HAVLÍK. Katedra teorie obvodů, Fakulta elektrotechnická
POROVNÁNÍ HRANOVÝCH DETEKTORŮ POUŽITÝCH PŘI PARAMETRIZACI POHYBU Z OBRAZOVÉHO ZÁZNAMU Jan HAVLÍK Katedra teorie obvodů, Fakulta elektrotechnická České vysoké učení technické v Praze Abstrakt Tento článek
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
Markovské metody pro modelování pravděpodobnosti
Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
Vlastnosti odhadů ukazatelů způsobilosti
Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Zpracování digitalizovaného obrazu (ZDO) - Popisy III
Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování
Příklady - Bodový odhad
Příklady - odový odhad 5. října 03 Pražské metro Přijdu v pražském metru na nástupiště a tam zjistím, že metro v mém směru jelo před :30 a metro v opačném směru před 4:0. Udělejte bodový odhad, jak dlouho
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Náhodný vektor a jeho charakteristiky
Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich
verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový
1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných
Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie
Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Kapitola 4: Extrémy funkcí dvou proměnných 1/5
Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty