P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
|
|
- Štěpánka Musilová
- před 8 lety
- Počet zobrazení:
Transkript
1 P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor s r - směr promítání a // s r, b// s r, A a : průmět A a π B b : průmět B b π Rovnoběžné promítání Pravoúhlé ( s r π ) Mongeovo promítání Pravoúhlá axonometrie, technická isometrie Kosoúhlé Kosoúhlé promítání Obecná axonometrie Vlastnosti rovnoběžného promítání Poznámka: Průměty bodů popíšeme bez čárky ABCDEFGH kvádr v základní poloze {O,x,y,z} souřadnicový systém (osový kříž) (x,y), (x,z), (y,z) souřadnicové roviny ) Útvar v průmětně a rovině rovnoběžné s průmětnou se promítne do shodného ) Rovnoběžné přímky se promítnou do rovnoběžných (nebo bodů) Rovnoběžné shodné úsečky se promítnou do rovnoběžných a shodných (nebo bodů) 3) Kolmice k souřadnicové rovině se promítne do rovnoběžky s příslušnou osou 4) Dělicí poměr bodů (např. střed úsečky) se zachová
2 Použití Mongeovo promítání : zadání prostorového objektu (sdružené pravoúhlé průměty), řešení prostorových úloh (plochy) Axonometrie, kosoúhlé promítání : názorný obrázek prostorového objektu sdružené pravoúhlé průměty axonometrie MONGEOVO PROMÍTÁNÍ ) Princip, základní pojmy π - půdorysna ν - nárysna x - základnice A - půdorys bodu A A - nárys bodu A A A - ordinála
3 ) Polohové úlohy A) Bod a přímka, přímka rovnoběžná s průmětnou, přímka kolmá k průmětně A a h // π f // ν o π n ν hlavní (horizontální) přímka hlavní (frontální) přímka promítací přímky B) Promítací rovina - rovina kolmá k průmětně určená svým příslušným průmětem α ν α // π α ν β π β // ν β π hlavní rovina hlavní rovina C) Průsečík křivky s promítací rovinou Průsečík přímky m s rovinou α ν Průsečík kružnice k s rovinou β π R m α : R R α m R m R,Q k α : R R Q Q β k R k β k Q k 3
4 D) Úlohy k procvičení: Doplňte chybějící průměty bodu A. A a A a A α A a β ) Metrické úlohy A) Skutečná velikost d úsečky AB - AB rovnoběžná s průmětnou : Vlastnosti rovnoběžného promítání: Úsečka rovnoběžná s průmětnou se promítne do příslušné průmětny ve skutečné velikosti. - AB v obecné poloze (sklopení promítací roviny do nárysny ) : A, A (A) = y A ( A ) A B ( B ) A B B, B (B) = y B Poznámka: Podobně postupujeme při sklopení do půdorysny. Řešení lze zjednodušit sklopením promítací roviny do hlavní roviny. Na jednu kolmici pak vynášíme příslušnou rozdílovou souřadnici. 4
5 B) Přímka kolmá k promítací rovině, rovina kolmá k hlavní přímce h ρ, ρ π h ρ, h // x ( h // π ) σ f, f // ν σ f Příklad: Daným bodem A sestrojte kolmici m k dané promítací rovině α a určete vzdálenost d bodu A od roviny α. A m, m ρ m A, m // x Vzdálenost d : C) Úlohy k procvičení: Příklad: Sestrojte skutečnou velikost d úsečky CD sklopením do půdorysny. Příklad: Daným bodem B sestrojte rovinu σ o a určete průsečík R σ o. 5
6 3) Kružnice v promítací rovině - k ( S, r) α α ν, r = 0 α π, r = 0 C D, α S = SD C = r C D, α S = SD C = r A S = SB = r C D // x C C, D D A B, CD osy elipsy k A S = SB = r C D // x C C, D D A B, CD osy elipsy k Příklad: Sestrojte kružnici k ( S, r = 5) v rovině kolmé na danou přímku o. 6
7 4) Kulová plocha - κ ( S,r ) Pravoúhlým průmětem kulové plochy je kruh stejného poloměru. Obrysové kružnice k, m dělí kouli na dvě polokoule: červenou horní polokouli, která je v půdorysu vidět, modrou přední polokouli, která je vidět v náryse. Příklad: Zobrazte kulovou plochu danou středem S a bodem M a určete viditelnost bodu M v obou průmětech. 7
8 ) Princip, základní pojmy KOSOÚHLÉ PROMÍTÁNÍ Krychle ve volné rovnoběžné projekci a v kosoúhlém promítání ( ω = 35, q = ) {O,x,y,z} souřadnicový systém (y,z) - průmětna M - kosoúhlý průmět bodu M M - kosoúhlý průmět půdorysu M Kosoúhlé promítání je rovnoběžné (šikmé) promítání do souřadnicové roviny (y,z). Je určeno osovým křížem (úhel ω) a poměrem zkrácení q. Zpravidla volíme: ω ( 90, 80 ), q (0, Rozměry ve směru os y a z jsou v průmětu ve skutečnosti, rozměry ve směru osy x jsou zkrácené (průmět = q. skutečnost) q = kosoúhlá isometrie ( ani na ose x nezkracujeme). Útvar v rovině (y,z) nebo v rovině rovnoběžné se zobrazí ve skutečné velikosti. 3 Kosoúhlý průmět krychle v základní poloze pro ω =35 a q =,,, : 4 4 Poznámka: Kosoúhlý průmět krychle v základní poloze pro q = a ω = 45, 35, 5, 35 :
9 Základní úloha: V kosoúhlém promítání ( ω =35, q = ) zobrazte bod M [30, 40, 0]. Postup je patrný z obrázku, jen připomínám zkrácení souřadnice x M : x M. q = 30. = 5 ) Zobrazení kružnice v souřadnicové nebo hlavní rovině 3 V kosoúhlém promítání ( 35, ) zobrazíme krychli (a=40) v základní poloze a do 4 viditelných stěn vepíšeme kružnice (r=0). Střední příčky stěn určují středy S vepsaných kružnic a dotykové body s hranami stěn. V čelní stěně (je rovnoběžná s průmětnou!) je průmětem kružnice, v boční a horní stěně je průmětem elipsa určená sdruženými průměry KL, MN. Průměry rovnoběžné s osou x jsou zkrácené, ostatní jsou ve skutečné velikosti. Průmětem kružnice v souřadnicové nebo hlavní rovině je elipsa (kružnice) určená sdruženými průměry ve směrech příslušných os. Zobrazení kružnice k ( S, r) v rovině rovnoběžné se souřadnicovou (x,y) nebo (x,z): ) Středem S vedeme rovnoběžky s příslušnými osami a omezíme je poloměrem r. Získáme sdružené průměry KL, MN elipsy (pozor na případné zkrácení). ) Sestrojíme opsaný rovnoběžník elipsy (hrany stěny krychle na horním obrázku). Sdružené průměry KL, MN jsou jeho středními příčkami. 3) Do opsaného rovnoběžníku vepíšeme elipsu. Elipsu načrtneme nebo pro přesnější kresbu použijeme příčkovou konstrukci.
10 Příklad: V koso. promítání ( ω =35, q = ) zobrazte kružnici k ( S, r = 5) ( xy). 3 3 Příklad: V koso. promítání ( ω =35, q = ) zobrazte kružnici k ( S, r = 0) α. 4 Příčková konstrukce elipsy Pomocný bod () leží v polovině příslušných úseček. Pomocné body (,,3) leží ve čtvrtinách příslušných úseček. 3
11 3) Zobrazení kulové plochy q = q = Kosoúhlým průmětem kulové plochy je elipsa (včetně vnitřku), jejíž tvar závisí na volbě zkrácení q. 4) Zobrazení prostorového objektu Příklad: V koso. promítání ( ω =35, q = ) zobrazte 3 objekt daný sdruženými průměty ve zmenšeném měřítku. Poznámka: Body,,3,4 jsou pomocné body pro správné umístění a zobrazení objektu. Na levém obrázku je naznačen možný postup pro výrobu daného tělesa. Poznámka: Nesmíme zapomenout na obrysové površky válcových ploch (které musí být rovnoběžné s osou y!) 4
12 4) Vojenská perspektiva Vojenská perspektiva je rovnoběžné (šikmé) promítání do souřadnicové roviny (x,y). Je dáno osovým křížem a poměrem zkrácení q. Průmětna = souřadnicová rovina (x,y) Parametry : nejčastěji volíme: q =, xz = 50 Poznámka: Vodorovné útvary se zobrazí ve skutečné velikosti Příklad: Ve vojenské perspektivě a v kosoúhlé isometrii zobrazte objekt daný sdruženými průměty ve zmenšeném měřítku. Porovnejte obtížnost a názornost obou metod. Vojenská perspektiva Kosoúhlá isometrie 5
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ
5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60
Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
Konstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné
Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
Zářezová metoda Kosoúhlé promítání
Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.)
Teoretické řešení střech Zastřešení daného půdorysu rovinami různého spádu vázaná ptačí perspektiva Řešené úlohy Příklad: tačí perspektivě vázané na Mongeovo promítání zobrazte řešení střechy nad daným
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
Polohové úlohy v axonometrii
Přímka p leží v rovině α. Doplňte p a p 2. Bod A leží v rovině α. Doplňte A a A 2. Přímka p leží v rovině α. Doplňte p a p 3. Sestrojte průmět a půdorys bodu A, který leží v rovině ρ. Přímka a leží v rovině.
Polohové úlohy v axonometrii
Sestrojte a označte průmět, půdorys, nárys a bokorys přímky p: y=3 a z=2. Sestrojte a popište stopy roviny : x=3 a určete její průsečík R s přímkou p. Sestrojte a označte průmět, půdorys, nárys a bokorys
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně
Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:
Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme
A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).
Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení
Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102
Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Test č. 6. Lineární perspektiva
Test č. 6 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Lineární perspektiva (1) Nad průměrem A S B S (A, B leží v základní rovině π) sestrojte metodou osmi tečen
Fotogrammetrie. zpracovala Petra Brůžková. Fakulta Architektury ČVUT v Praze 2012
Fotogrammetrie zpracovala Petra Brůžková Fakulta Architektury ČVUT v Praze 2012 Fotogrammetrie je geometrický postup, který nám umožňuje určení tvaru, velikosti a polohy reálných objektů na základě fotografického
Kótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho
Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;
Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L
Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text
Mongeovo zobrazení. Bod a přímka v rovině
Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka
Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE Diplomová práce Řezy rotačních těles v projekcích Vedoucí diplomové práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání:
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické osvětlení Vypracoval: Martin Hanuš Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že jsem ročníkovou
OBECNÉ ROTAČNÍ PLOCHY
OBECNÉ ROTAČNÍ PLOCHY 1. Základní konstrukce na rotačních plochách, tečné roviny a řezy rotačních ploch. Rotační plochy vznikají rotačním pohybem kolem osy. Máme-li v prostoru dánu přímku o a orientovaný
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok
Prùniky tìles v rùzných projekcích
UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:
Pravoúhlá axonometrie - řezy hranatých těles
Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA
Rys č. 1 Zobrazení objektu
Deskriptivní geometrie I zimní semestr 2018/19 Rys č. 1 Zobrazení objektu Pokyny pro vypracování platné pro všechny příklady Použijte čerchovanou čáru pro otočený půdorys v PA, KP. elips a parabol. Čerchovaná
středu promítání (oka) se objekty promítají do roviny (nahrazuje sítnici). Perspektivní obrazy
Lineární perspektiva Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu
(Počátek O zvolte 8 cm zleva a 19 cm zdola; pomocný půdorys vysuňte o 7 cm dolů.) x 2
Teoretické řešení střech Zastřešení daného půdorysu s praktickou úpravou kavalírní perspektiva Řešené úlohy Příklad: V kavalírní perspektivě (kosoúhlé promítání do nárysny ν, ω =, q = ) zobrazte praktickou
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2
Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m
Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m Geometrická zobrazení v rovině Shodná zobrazení v rovině: identita, posunutí, rotace, středová souměrnost osová souměrnost posunutá souměrnost
KONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Test č. 1. Kuželosečky, afinita a kolineace
Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2006-2007 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů
Zadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
Mongeovo zobrazení. Řez jehlanu
Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice
BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava
Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE
Pravoúhlá axonometrie. tělesa
Pravoúhlá axonometrie tělesa V Rhinu vypneme osy mřížky (tj. červenou vodorovnou a zelenou svislou čáru). Tyto osy v axonometrii vůbec nevyužijeme a zbytečně by se nám zde pletly. Stejně tak můžeme vypnout
Sedlová plocha (hyperbolický paraboloid)
Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy
11. Rotační a šroubové plochy
Rotační a šroubové plochy ÚM FSI VU v Brně Studijní text. Rotační a šroubové plochy. Rotační plochy Rotační plochy jsou plochy, které lze získat rotačním šablonováním křivky. Jejich rovnice je tedy tvaru
Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.
Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1
tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí
Řešené úlohy Rozvinutelná šroubová plocha v Mongeově promítání Příklad: V Mongeově promítání zobrazte půl závitu rozvinutelné šroubové plochy, jejíž hranou vratu je pravotočivá šroubovice, která prochází
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
Zobrazení a řezy těles v Mongeově promítání
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání
REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE
REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné
Elementární plochy-základní pojmy
-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),
PŘÍMKOVÉ PLOCHY. Přednáška DG2*A
PŘÍMKOVÉ PLOCHY Přednáška DG*A PŘÍMKOVÉ PLOCHY = plocha, jejímž každým bodem prochází alespoň jedna přímka plochy. Každá přímková plocha je určena třemi řídícími křivkami, příp. plochami. p k k k 3 Je-li
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Axiomy: Jsou to tvrzení o těchto pojmech a vztazích, která jsou přijata bez důkazů. Například:
1.Euklidovský prostor 1.1) Základními geomterickými útvary jsou bod přímka a rovina. Základním geometrickým vztahem je vztah incidence, který se většinou opisuje spojeními bod leží na přímce, přímka prochází
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala
VŠB-Technická univerzita Ostrava
Úvod do promítání Mgr. František Červenka VŠB-Technická univerzita Ostrava 6. 2. 2012 Mgr. František Červenka (VŠB-TUO) Úvod do promítání 6. 2. 2012 1 / 15 osnova 1 Semestr 2 Historie 3 Úvod do promítání
KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ
KÓTOVANÉ PROMÍTÁNÍ 2.KÓTOVANÉ PROMÍTÁNÍ Označíme: s...směr promítání, s p k c...kóta bodu C C 1 (k c )...kótovaný průmět bodu C. pokud k c 0 (k c 0), potom bod C leží nad (pod) průmětnou p. jednotka j=1cm
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
4.OBECNÁ AXONOMETRIE A KOSOÚHLÉ PROMÍTÁNÍ
4.BECNÁ AXNMETRIE A KSÚHLÉ PRMÍTÁNÍ Aonometrie kosoúhlé promítání voenská perspektiva pravoúhlá aonometrie Znalost těchto metod e ákladem skicování, které e potřebné i v době CAD sstémů. Kosoúhlé promítání
Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
A 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8].
strana 1 1. onometrie. 1.1 V pravoúhlé aonometrii obrate průmět bodu [4, 5, 8]. 1.2 Zobrate bývající pravoúhlé průmět bodu do souřadnicových rovin. Určete souřadnice bodu, který je obraen v pravoúhlé aonometrii.
11 Zobrazování objektů 3D grafiky
11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
Deskriptivní geometrie AD7 AD8
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie AD7 AD8 Kombinované studium Jan Šafařík Pavel Hon Brno c 2003 2004 Test č. 1 1 Deskriptivní
Test č. 1. Kuželosečky, afinita a kolineace
Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...