Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
|
|
- Daniela Blažková
- před 7 lety
- Počet zobrazení:
Transkript
1 Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně nejméně deset příkladů.
2 Str. 200, př Pohyb kvádru o hmotnosti 365kg na nakloněné rovině je brzděn třecí silou a lineární pružinou s tuhostí 365 N/m. Koeficient tření mezi nakloněnou rovinou a kvádrem je 0,1.Je li kvádr uvolněn z klidového stavu a při nenapnuté pružině, pro první fázi pohybu (neuvažujeme návrat kvádru zpět z nejvzdálenější polohy) určete: a) Maximální výchylku kvádru b) Rychlost kvádru ve vzdálenosti 4,6m od počáteční polohy c) Čas potřebný k dosažení vzdálenosti 4,6m od počáteční polohy Str př Částice padá vlivem gravitace v kapalném médiu. Vztlaková síla v médiu působící na částici je přímo úměrná rychlosti částice. Sestavte rovnice a vykreslete grafy závislostí dráhy a rychlosti částice na čase. Rychlost a počáteční výchylka na počátku jsou rovny nule. Str. 210, př Kvádr o hmotnosti 23kg se pohybuje po nakloněné rovině. Koeficient tření mezi kvádrem a nakloněnou rovinou je 0,2. Počáteční rychlost kvádru je 6m/s směrem dolů. Na kvádr působí síla dle obr. o velikosti F R = 0.5v (úměrná rychlosti kvádru). Určete: a) Rychlost kvádru po 5s pohybu b) Vzdálenost, kterou kvádr urazí za 5 sekund pohybu c) Maximální rychlost, kterou se kvádr bude pohybovat
3 Str. 218, př Letadlo klesá pod úhlem 20 vzhledem k vodorovnému povrchu. V okamžiku 5000m nad povrchem a při rychlosti 750km/h (stále klesá pod zadaným úhlem) je otevřena pumovnice s bombou. Určete, do jaké vzdálenosti bomba doletí. Tření o vzduch zanedbejte. Str. 219, př Kruhový disk rotuje ve vodorovné rovině. Na disku spočívá kvádr o hmotnosti 1,4kg ve vzdálenosti 200mm od osy rotace. Koeficient tření mezi diskem a kvádrem je 0,5. Disk se začne pohybovat s konstantním úhlovým zrychlením 0,5 rad/s 2. Určete čas, než začne kvádr po disku klouzat.
4 Str. 221, př Kulička o hmotnosti 3kg je upevněna na tyči zanedbatelné hmotnosti a uchycena lankem. Určete sílu v tyči, v okamžiku, kdy: a) Se kulička nachází ve stavu dle obr. (uchycena lankem) b) Bezprostředně po přestřižení lanka c) Je kulička v její nejnižší poloze Str. 259, př Vrata o rozměru 5x6m a hmotnosti 360kg jsou zavěšena a posunují se pomocí dvou kladiček. K jejich otevření bylo použito síly 1330N. Určete zrychlení vrat a síly přenesené na dveře v místě kladiček. Třecí síly a hmotnosti kladiček zanedbejte.
5 Str. 260, př Automobil o hmotnosti 1400kg má rozchod kol 3m. Těžiště je umístěno 1,3m před přední nápravou a ve výšce 0.5m od vozovky. Má li automobil zadní náhon a koeficient tření mezi vozovou a koly je 0.8, určete maximální zrychlení, které může automobil vyvinout, než dojde k prokluzu kol při jízdě do kopce pod úhlem 15. Tuto hodnotu srovnejte s maximálním zrychlením, které lze dosáhnout při jízdě po rovině. Str. 273, př Nevyvážené kolo má hmotnost 30kg a poloměr setrvačnosti vzhledem k ose rotace 100mm. Kolo je poháněno momentem C a otáčí se konstantními otáčkami 60 ot/min. Určete vodorovnou a svislou složku reakce v čepu A a průběh momentu pro jednu otáčku kola. Tento průběh vykreslete v grafu v intervalu Str. 276, př Tyč o hmotnosti 90kg s konci A a B je uchycena čepem v místě A a lankem v místě B. Jestliže dojde k přestřižení lanka, určete zrychlení těžiště tyče a reakce v čepu v na počátku pohybu. Určete též sílu v lanku, je li tyč ještě tímto lankem uchycena a úhlovou rychlost rotace tyče v její vertikální poloze. Tření v čepu zanedbejte.
6 Str. 276, př Disk o hmotnosti 25kg rotuje ve svislé rovině. V místě A je uchycen čepem. V poloze dle obr. je úhlová rychlost disku 20rad/s. Na disk též působí konstantní moment C o velikosti 50Nm. V této poloze určete úhlové zrychlení disku a sílu, kterou na něj čep působí (tj. reakce ve vazbě). Str. 321, př Na obrázku je vyobrazena brzda pro regulování spouštění tělesa. Rotační část soustrojí má hmotnost 113kg a poloměr setrvačnosti vzhledem k ose otáčení 110mm. Koeficient tření mezi brzdící tyčí a bubnem je 0.5. Hmotnost zavěšeného tělesa je 450kg. Je li užitá síla P 670N, určete: a) Sílu v laně, na kterém je těleso zavěšeno b) Zrychlení zavěšeného tělesa
7 Str. 358, př Dva kvádry A a B mají hmotnost 11kg a 22kg. V počáteční poloze jsou oba kvádry v klidu a pružina s tuhostí 365N/m je nenapnutá. Určete: a) Rychlost kvádru B v pozici 0.3m pod počáteční polohou b) Maximální vzdálenost, o kterou se kvádr B vychýlí
Testovací příklady MEC2
Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být
VíceRovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
VíceFyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
Vícen je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně
Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické
Více17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?
1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností
VíceZáklady fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Více7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.
Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,
VícePříklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
VíceDynamika hmotného bodu
Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,
VíceUrčení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny
Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V
VíceVIDEOSBÍRKA ENERGIE A HYBNOST
VIDEOSBÍRKA ENERGIE A HYBNOST 1. V poloze x=2 mělo těleso o hmotnosti 1kg rychlost 3 m/s. Graf znázorňuje velikost působící síly, která urychluje přímočarý pohyb tělesa. Těleso nemění svou výšku a při
VícePříklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
VícePříklady: 7., 8. Práce a energie
Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209
VíceDynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla
Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek
VíceRychlost, zrychlení, tíhové zrychlení
Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete
Více1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
VíceMECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
VíceBIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VíceSTATIKA Fakulta strojní, prezenční forma, středisko Šumperk
STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným
VíceDYNAMIKA ROTAČNÍ POHYB
DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)
VíceHmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
VíceBIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)
BIOMECHANIKA 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY BRZDÍCÍ
VíceMěření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
Víceb) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
VíceDynamika I - příklady do cvičení
Dynaika I - příklady do cvičení Poocí jednotek ověřte, zda platí vztah: ( sinβ + tgα cosβ) 2 2 2 v cos α L = L [] v [ s -1 ] g [ s -2 ] 2 g cos β π t = 4k v t [s] v [ s -1 ] [kg] k [kg -1 ] ln 2 L = 2k
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
VíceTÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
Vícem.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.
Obsah VYBRANÉ PŘÍKLADY DO CVIČENÍ 2007-08 Vybrané příklady [1] Koktavý, Úvod do studia fyziky... 1 Vybrané příklady [2] Koktavý, Mechanika hmotného bodu... 1 Vybrané příklady [3] Navarová, Čermáková, Sbírka
Více6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy
VícePřipravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
VíceDynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
VíceObr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
Více[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
VícePřípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
VíceZákladní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
VíceFYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
VíceDYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla
Více1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy
MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení
VíceTUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
VíceGraf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
VíceVýpočtový program DYNAMIKA VOZIDLA Tisk výsledků
Zadané hodnoty: n motoru M motoru [ot/min] [Nm] 1 86,4 15 96,4 2 12,7 25 14,2 3 16 35 11 4 93,7 45 84,9 5 75,6 55 68,2 Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků m = 1265 kg (pohotovostní hmotnost
VíceDigitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
VíceFYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
VíceMechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
VícePřijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
VíceELEKTRICKÉ STROJE - POHONY
ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou
VíceMechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
VícePříklady kmitavých pohybů. Mechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
VíceNecht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
VíceŘízení. Téma 1 VOZ 2 KVM 1
Řízení Téma 1 VOZ 2 KVM 1 Řízení Slouží k udržování nebo změně směru jízdy vozidla Rozdělení podle vztahu k nápravě řízení jednotlivými koly (natáčením kol kolem rejdového čepu) řízení celou nápravou (především
VíceŘízení. Slouží k udržování nebo změně směru jízdy vozidla
Řízení Slouží k udržování nebo změně směru jízdy vozidla ozdělení podle vztahu k nápravě 1. řízení jednotlivými koly (natáčením kol kolem rejdového čepu). řízení celou nápravou (především přívěsy) ozdělení
VícePohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
VíceŘešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
VíceOkamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z
5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r
VíceBIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
VíceFYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.
1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo
VíceKINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
VíceTheory Česky (Czech Republic)
Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce
Víceb=1.8m, c=2.1m. rychlostí dopadne?
MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m
VíceObsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
VícePokyny pro písemné vypracování úloh
ZADÁNÍ ÚLOH PRO KONZULTAČNÍ CVIČENÍ Z MECHANIKY F1030 Pokyny pro písemné vypracování úloh Pište čitelně, jasně a stručně. Prostě tak, aby řešení byli schopni pochopit Vaše kamarádky, kamarádi a zejména
VíceObsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
VíceDynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2
Dynamika Hybnost: p=m v. Newtonův zákon síly: F= d p, pro m=konst platí F=m dv dt =ma. Impulz síly: I = t1 t 2 F t dt. Zákon akce a reakce: F 1 = F 2 Newtonovy pohybové rovnice: d 2 r t 2 = F m. Výsledná
VícePokyny k řešení didaktického testu - Dynamika
Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se
VíceBIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
VíceKINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218
KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího
VíceÚlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
Vícesf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj
http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru
VíceIII. Dynamika hmotného bodu
III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]
VíceBIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,
VíceTest jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
VíceTÝMOVÁ CVIČENÍ PŘEDMĚTU APLIKOVANÁ MECHANIKA
Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní TÝMOVÁ CVIČENÍ PŘEDMĚTU APLIKOVANÁ MECHANIKA Návody k zpracování týmových projektů Ing. Milada Hlaváčková, Ph.D. Ostrava 2011 Tyto studijní
VíceSoubor úloh k Mechanice (komb. studium)
Soubor úloh k Mechanice (komb. studium) 1. úloha Pozrite si nasledujúce grafy, pričom si všimnite odlišné osi: Ktorý z grafov predstavuje pohyb s konštantnou rýchlosťou? (A) I, II a IV (B) I a III (C)
Více7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
VíceProjekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 2. Kinematika Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
VíceRotační pohyb kinematika a dynamika
Rotační pohyb kinematika a dynamika Výkon pro rotaci P = M k. ω úhlová rychlost ω = π. n / 30 [ s -1 ] frekvence otáčení n [ min -1 ] výkon P [ W ] pro stanovení krouticího momentu M k = 9550. P / n P
VíceObsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
VíceHydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Více11. Dynamika Úvod do dynamiky
11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale
Více1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy.
1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. Výtahy pracuji přerušovaně nebo plynule. Nastupování osob do výtahů nebo
VíceTematický celek: Jednoduché stroje. Úkol:
Název: Kladka jako jednoduchý stroj. Tematický celek: Jednoduché stroje. Úkol: 1. Kladka jako jednoduchý stroj. 2. Navrhněte konstrukci robota s pevnou kladkou. 3. Určete, jakou silou působil při zvedání
VíceShrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:
VíceBIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)
BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:
VíceExperimentální hodnocení bezpečnosti mobilní fotbalové brány
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány
VíceJméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_18_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
VíceF - Jednoduché stroje
F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
Více1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy.
1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. Výtahy pracuji přerušovaně nebo plynule. Nastupování osob do výtahů nebo
VíceKMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
VíceMĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
VíceDynamika vázaných soustav těles
Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro
Více( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210
Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími
VíceSestavení diferenciální a diferenční rovnice. Petr Hušek
Sestavení diferenciální a diferenční rovnice Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze MAS 1/13 ČVU
VíceDIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL HLAVNĚ ABY SE NEDOTKL ZEMĚ
46 DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL HLAVNĚ ABY SE NEDOTKL ZEMĚ HLAVNĚ ABY SE NEDOTKL ZEMĚ 47 pohyb, rotace, valivý pohyb, translační kinetická energie, rotační kinetická energie, tření
VíceFYZIKA DIDAKTICKÝ TEST
NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat
VíceKinematika. Tabulka 1: Derivace a integrály elementárních funkcí. Funkce Derivace Integrál konst 0 konst x x n n x n 1 x n 1.
Kinematika Definice: Známe-li časový průběh polohového vektoru r(t), potom určíme vektor okamžité rychlosti hmotného bodu časovou derivací vektoru r(t), v= d r dt Naopak, známe-li časový průběh vektoru
Více4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
VíceTŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
VíceBIOMECHANIKA SPORTU ODRAZ
BIOMECHANIKA SPORTU ODRAZ Co je to odraz? Základní činnost, bez které by nemohly být realizovány běžné lokomoční aktivity (opakované odrazy při chůzi, běhu) Komplex multi kloubních akcí, při kterém spolupůsobí
VíceMechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
Více