Validace klimatických modelů: výsledky mezinárodního projektu VALUE
|
|
- Blažena Bláhová
- před 8 lety
- Počet zobrazení:
Transkript
1 Validace klimatických modelů: výsledky mezinárodního projektu VALUE Radan HUTH Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta UK, Praha Ústav fyziky atmosféry AV ČR, Praha
2 Klimatické modely globální klimatické modely (GCMs) Earth s System Models horiz. rozlišení: ~ 1 regionální klimatické modely (RCMs) horiz. rozlišení: ~ 10 km, pokusy o ~ 1 km statistický downscaling (SDS) rozlišení: lokální klasický downscaling (Perfect Prog) stochastické generátory bias-correction / quantile mapping / (Model Output Statistic) fakticky lokalizace výstupů modelů je to ještě downscaling?
3 Validace srovnání výstupů (klimatického) modelu s realitou úspěšná validace = nutná (ale ne postačující) podmínka pro použití modelu v jiných podmínkách (zejm. budoucí klima) ale: co validovat? každý si validuje, co se mu hodí mnohé důležité vlastnosti (veličiny) jsou přehlíženy co znamená úspěšná?
4 VALUE akce COST (European Cooperation in Science and Technology) ES1102 = Validating and Integrating Downscaling Methods for Climate Change Research hlavní cíl: to establish a network to systematically validate and improve downscaling methods for climate change research vyjít přitom z požadavků koncových uživatelů soustředění na statistické metody; dynamické jako referenční předseda: Douglas Maraun (Kiel Graz), místopředseda: Martin Widmann (Birmingham) 29 zemí (!) chybělo snad jen Slovensko, Lotyšsko a Estonsko účast za ČR národní zástupci v řídícím výboru: M.Dubrovský, R.Huth
5 VALUE - struktura 5 pracovních balíků (workpackages) 1. Syntéza: koordinace, dialog se stakeholdery (ne steakholdery!), přehled požadavků koncových uživatelů (O.Rössler, CH) 2. Data: vytvoření referenčních datových souborů, RCM simulace pro experimenty s pseudo-realitou (J.M.Gutiérrez, ES; S.Kotlarski, CH) 3. Validace: validace prostorové a časové proměnlivosti a vztahů mezi proměnnými (R.Huth, CZ M.Widmann, UK; R.Wilcke, AT SE) 4. Extrémy: validace extrémů a zlepšení metod jejich downscalingu (E.Hertig, DE) 5. Sub-daily: downscaling v sub-denním měřítku (J.Wibig, PL) struktura ne moc efektivní, ale po bitvě
6 VALUE výsledky validační rámec publikován v Earth s Future (Maraun et al. 2015)
7 Validační rámec validační strom teplota marginální (tj. týkající se rozdělení) směrodatná odchylka denních hodnot poměr model / skutečnost
8 Validační rámec validační strom horké vlny časový střední doba trvání rozdíl model minus skutečnost
9 Validační portál autor: Univerzita Santader download dat (prediktory i prediktandy) upload výsledků downscalingu (časové řady) výpočet validačních charakteristik
10 Validační portál
11 Validační rámec soupis mnoha validačních kritérií zcela běžných (průměr, roční chod) málo používaných (mezidenní proměnlivost) zcela opomíjených (prostorový počet stupňů volnosti)
12 VALUE výsledky vlastní výsledky special issue v Int. J. Climatol. [hostující editoři E.Katragkou (GR), C.Jack (ZA)] v současnosti se dokončují články (celkem ~ 10) review of end user needs data a datové soubory popis použitých SDS metod výsledky validačního experimentu další experimenty jsou naplánovány (např. s využitím pseudo-reality) ale dosažení výsledků je nejisté
13 Downscaleovací modely klasické SDS modely (PerfectProg) MOS SDS (bias correction; quantile mapping) stochastické generátory počasí RCM: RACMO
14 Validační experiment predictory / okrajové podmínky z ERA-Interim (všechny metody vč. RCM) RACMO RCM (metody MOS) stanic z ECA&D proměnné s denním krokem: Tmin, Tprům, Tmax, srážky křížová validace (5-fold)
15 Validované charakteristiky rozdělení průměr průměrná denní intenzita srážek (průměr jen ze srážkových dní ( 1 mm)) směrodatná odchylka denních hodnot podíl rozptylu v nízkofrekvenčních (ročních) a vysokofrekvenčních (měsíčních) složkách šikmost charakteristické dny a hodnoty četnost ledových, mrazových, letních, tropických dnů četnost tropických nocí počty dní se srážkami 1, 10, 20 mm % celkového úhrnu vypadlého ve dnech s 10, 20 mm extrémy 2. a 98. percentil ze všech hodnot i jen ze srážkových dní 98. percentil jen ze srážkových dní ( 1 mm) % celkového úhrnu srážek přesahujících 98. percentil 20-leté návratové hodnoty (levý i pravý chvost) suchá / vlhká / studená / teplá období (< / 1 mm; 10. / 90. percentil) 90. percentil délky medián maximální roční délky
16 Validované charakteristiky časová struktura krátká (mezidenní) autokorelace se zpožděním 1, 2, 3 dny pro T přechodové pravděpodobnosti (vlhký-vlhký, suchý-vlhký) pro P charakteristická období (suchá / vlhká / studená / teplá) medián a průměr délky roční chod minimum, maximum, amplituda (absolutní & relativní) fáze maxima nesymetrie (počet dní mezi ročním max a min) dlouhodobá proměnlivost rozptyl měsíčních hodnot rozptyl ročních hodnot prostorová struktura korelace: dekorelační vzdálenost (pro korelaci = 0,35 / 0,20 pro srážky / teplotu) počet prostorových stupňů volnosti regionalizace pomocí PCA vztahy mezi proměnnými ještě se na tom pracuje (hlavní autorka je na mateřské)
17 Validované charakteristiky (některé) charekteristiy zatím validovány zřídka či jen výjimečně i když důležité pro (aspoň některé) impaktové sektory trendy zásadní pro úspěch downscalingu dynam. i statist. downscaling má značné problémy s reprodukcí trendů nevalidovali jsme protože to nastavení esperimentu (křížová validace) neumožňuje úkol do budoucna
18 ERA.75 ERA 2 RACMO raw MOS PP WG
19
20
21 Tmax lag-1 day autocorrelation, JJA PP methods without stochastic component overestimate persistence MOS methods are not designed to affect temporal structure they tend to replicate forcing data larger overestimation of Tmin persistence Tmin PP methods with stochastic component strongly underestimate persistence
22 mean cold / warm spell length cold, DJF reflects performance in persistence warm, JJA underestimation by WGs probably result of assuming normal distribution
23 too high in ERA reanalysis gives spatially aggregated, not pointwise data wet-wet transition probability, JJA (DJF very similar) MOS methods able to correct for wet bias in driving data some PP methods are not designed for precip downscaling WGs perform well by definition dry-wet?
24 amplitude of annual cycle temp precip reanalysis strongly underestimates annual cycle of precip!!!
25 Station correlograms, precip
26 correlation length, precip most methods tend to overestimate correlation length (even reanalysis) bias is seasonally dependent
27 no. of dofs, daily precip no. of dofs, monthly precip WGs are not designed to provide spatial dependencies general overestimation of spatial autocorrelations too few spatial dofs
28 Závěry různé typy SDS modelů & jednotlivé DS modely se chovají odlišně žádná jasná preference pro nějaký typ SDS / jeden SDS model volba SDS modelu se musí odvíjet od účelu SDS cvičení různé účely upřednostňují různé metody použití jediného SDS modelu obvykle nestačí současné použití více SDS modelů (i různých typů) je výhodné a doporučuje se použití na výstupy GCMs: chyby glob. modelů se přičítají k chybám SDS metod nebo je SDS modely mohou do určité míry opravit komplexní porovnání dynamického a statistického downscalingu je ještě třeba udělat
29 List of DS methods
Petr Štěpánek, Pavel Zahradníček, Aleš Farda, Petr Skalák, Miroslav Trnka, Jan Meitner, Kamil Rajdl. Ústav výzkumu globální změny AV ČR, v.v.
Petr Štěpánek, Pavel Zahradníček, Aleš Farda, Petr Skalák, Miroslav Trnka, Jan Meitner, Kamil Rajdl Ústav výzkumu globální změny AV ČR, v.v.i Český hydrometeorologický ústav, pobočka Brno - Euro-CORDEX
KLIMATICKÝ DOWNSCALING. ZOO76 Meteorologie a klimatologie Petr Kolář PřF MU Brno
ZOO76 Meteorologie a klimatologie Petr Kolář PřF MU Brno 12.12.2012 Definice: klimatický downscaling zahrnuje soubor technik, které využívají předpovědí globálních klimatických modelů (AOGCMs) k získávání
Změny v rozložení klimatických pásem podle modelových projekcí projektu CMIP5
Katedra fyziky atmosféry Matematicko-fyzikální fakulta Univerzity Karlovy Změny v rozložení klimatických pásem podle modelových projekcí projektu CMIP5 M. Belda, T. Halenka, E. Holtanová, J. Kalvová michal.belda@mff.cuni.cz
Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum
Změna klimatu v ČR Trend změn na území ČR probíhá v kontextu se změnami klimatu v Evropě. Dvě hlavní klimatologické charakteristiky, které probíhajícím změnám klimatického systému Země nejvýrazněji podléhají
NEDÁVNÉ HORKÉ VLNY VE STŘEDNÍ EVROPĚ V KONTEXTU KLIMATICKÉ ZMĚNY
Ondřej Lhotka 1,2,3 & Jan Kyselý 1,2 NEDÁVNÉ HORKÉ VLNY VE STŘEDNÍ EVROPĚ V KONTEXTU KLIMATICKÉ ZMĚNY Klimatická změna v ČR: projevy, důsledky, adaptace Uherské Hradiště, 21.9. 23.9.2016 1 Ústav fyziky
Změna klimatu dnes a zítra
Změna klimatu dnes a zítra a jakou roli v ní hraje člověk Radan HUTH Přírodovědecká fakulta Univerzity Karlovy Ústav fyziky atmosféry AV ČR, v.v.i. Ústav výzkumu globální změny AV ČR, v.v.i. O čem to bude?
Nejistoty v konstrukci regionálních scénářů změny klimatu. Martin Dubrovský Ústav fyziky atmosféry AVČR. České Budějovice,
Nejistoty v konstrukci regionálních scénářů změny klimatu Martin Dubrovský Ústav fyziky atmosféry AVČR České Budějovice, 12.4.2007 Slovo úvodem Přednáška bude o projekci klimatu v tomto století, převážně
Klimatická změna minulá, současná i budoucí: Příčiny a projevy
Klimatická změna minulá, současná i budoucí: Příčiny a projevy Radan HUTH Přírodovědecká fakulta Univerzity Karlovy Ústav fyziky atmosféry AV ČR, v.v.i. Ústav výzkumu globální změny AV ČR, v.v.i. O čem
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Zima na severní Moravě a ve Slezsku v letech 2005-2012
Zima na severní Moravě a ve Slezsku v letech 2005-2012 Vypracoval: Mgr. Tomáš Ostrožlík ČHMÚ, pobočka Ostrava Poruba RPP Zima na severní Moravě a ve Slezsku v letech 2005-2012 - teplotní poměry - sněhové
VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE PM 2,5 V BRNĚ ( ) Dr. Gražyna Knozová, Mgr. Robert Skeřil, Ph.D.
VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE PM 2,5 V BRNĚ (2004-2014) Dr. Gražyna Knozová, Mgr. Robert Skeřil, Ph.D. Podklady denní koncentrace PM 2,5, Brno-Tuřany 2004-2014, dodatečně data z pěti stanic
Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1
Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát
Jak se projevuje změna klimatu v Praze?
Jak se projevuje změna klimatu v Praze? Michal Žák (Pavel Zahradníček) Český hydrometeorologický ústav Katedra fyziky atmosféry Matematicko-fyzikální fakulta Univerzita Karlova Větší růst letních dnů
Projevy klimatické změny v západních Čechách (podle sekulární stanice Klatovy v období )
Projevy klimatické změny v západních Čechách (podle sekulární stanice Klatovy v období 1916 2015) RNDr. Jiří Hostýnek Ing. Karel Sklenář Vybrané klimatologické prvky, způsoby zpracování a použité metody
Možné dopady měnícího se klimatu na území České republiky
Český hydrometeorologický ústav, pobočka Brno Mendelova univerzita v Brně Možné dopady měnícího se klimatu na území České republiky Jaroslav Rožnovský Naše podnebí proč je takové Extrémy počasí v posledních
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
DLOUHODOBÉ ZMĚNY SKUPENSTVÍ SRÁŽEK V ČESKÉ REPUBLICE
DLOUHODOBÉ ZMĚNY SKUPENSTVÍ SRÁŽEK V ČESKÉ REPUBLICE Martin HYNČICA 1,2 a Radan HUTH 1,3 Výroční seminář ČMES, Ostrožská Nová Ves, 21.9. 23.9. 2016 1 Katedra fyzické geografie a geoekologie PřF, UK 2 Český
TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY
Rožnovský, J., Litschmann, T. (ed.): XIV. Česko-slovenská bioklimatologická konference, Lednice na Moravě 2.-4. září 2002, ISBN 80-85813-99-8, s. 242-253 TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY
Pasivní domy v době klimatické změny
1 Pasivní domy v době klimatické změny Pavel Kopecký ČVUT, FSv, Katedra konstrukcí pozemních staveb UCEEB, Centrum energeticky efektivních budov pavel.kopecky@fsv.cvut.cz Vysvětlení motivace 2 Obrázek
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM,
SPC v případě autokorelovaných dat Jiří Michálek, Jan Král OSSM, 2.6.202 Pojem korelace Statistická vazba mezi veličinami Korelace vs. stochastická nezávislost Koeficient korelace = míra lineární vazby
5. hodnotící zpráva IPCC. Radim Tolasz Český hydrometeorologický ústav
5. hodnotící zpráva IPCC Radim Tolasz Český hydrometeorologický ústav Mění se klima? Zvyšuje se extremita klimatu? Nebo nám jenom globalizovaný svět zprostředkovává informace rychleji a možná i přesněji
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Klimatické modely a scénáře změny klimatu. Jaroslava Kalvová, MFF UK v Praze
Klimatické modely a scénáře změny klimatu Jaroslava Kalvová, MFF UK v Praze Jak se vytvářejí klimatické modely Verifikace modelů V čem spočívají hlavní nejistoty modelových projekcí Kvantifikace neurčitostí
REGIONÁLNÍ KONCENTRACE AKTIVIT PODNIKŮ. Příklad využití individuálních dat ve spojení s autokorelační statistikou
REGIONÁLNÍ KONCENTRACE AKTIVIT PODNIKŮ Příklad využití individuálních dat ve spojení s autokorelační statistikou Kristýna Meislová [meislova@tc.cz] 14. dubna 2016 Co bude následovat I. Proč zkoumat prostorovou
Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.
SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Uni- and multi-dimensional parametric tests for comparison of sample results
Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita
IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok
IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní
Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS
Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební
Výstupy regionálních klimatických modelů na území ČR pro období 2015 až 2060
50 40 Výstupy regionálních klimatických modelů na území ČR pro období 2015 až 2060 0 10 20 30 4 Mgr. Michal Belda, Ph.D. doc. RNDr. Petr Pišoft, Ph.D. Mgr. Michal Žák, Ph.D. Katedra fyziky atmosféry Matematicko-fyzikální
Zpracování výstupů RCM pro období a pro scénáře RCP4.5 a RCP8.5
Zpracování výstupů RCM pro období a pro scénáře a teplotní charakteristiky teplota průměrná, maximální, minimální počty letních a tropických dnů, tropických nocí, ledových a mrazových dnů četnost výskytu
Vliv emisí z měst ve střední Evropě na atmosférickou chemii a klima
Vliv emisí z měst ve střední Evropě na atmosférickou chemii a klima, Tomáš Halenka, Michal Belda Matematicko-fyzikální fakulta UK v Praze Katedra fyziky atmosféry Výroční seminář ČMeS 21-23. září, 2015,
Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS
Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 9 Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET Software FREET Simulace metodou LHS
Metody analýzy modelů. Radek Pelánek
Metody analýzy modelů Radek Pelánek Fáze modelování 1 Formulace problému 2 Základní návrh modelu 3 Budování modelu 4 Verifikace a validace 5 Simulace a analýza 6 Sumarizace výsledků Simulace a analýza
Specifics of the urban climate on the example of medium-sized city
Specifika městského klimatu na příkladu středně velkého města Specifics of the urban climate on the example of medium-sized city Jaroslav Rožnovský, Hana Pokladníková, Tomáš Středa Český hydrometeorologický
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Minimální hodnota. Tabulka 11
PŘÍLOHA č.1 Výsledné hodnoty Výsledky - ženy (SOŠ i SOU, maturitní i učební obory) Aritmetický průměr Maximální hodnota Minimální hodnota Medián Modus Rozptyl Směrodatná odchylka SOM 0,49 2,00 0,00 0,33
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
extrémní projevy počasí
Zm extrémní projevy počasí Tomáš Halenka, Jaroslava Kalvová KMOP MFF UK Pozorované změny průměrných hodnot Co považujeme za extrémní jev (teplota vzduchu, srážky, vítr) Extrémní jevy v současnosti Extrémní
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Tepelný ostrov v Praze a možnosti zmírnění jeho negativních dopadů. Michal Žák (Pavel Zahradníček) Český hydrometeorologický ústav
Tepelný ostrov v Praze a možnosti zmírnění jeho negativních dopadů Michal Žák (Pavel Zahradníček) Český hydrometeorologický ústav 0,8 0,6 0,4 0,2 0,0 1 2 3 4 5 6 7 8 9 10 11 12 Teplota pozdě odpoledne
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Interpolační funkce. Lineární interpolace
Interpolační funkce VEKTOR RASTR Metody Globální Regrese - trend Lokální Lineární interpolace Výstupy Regrese lokální trend Inverse Distance Weighted IDW Spline Thiessenovy polygony Natural Neighbours
Univerzita Pardubice. Fakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Statistické zpracování dat Semestrální práce Interpolace, aproximace a spline 2007 Jindřich Freisleben Obsah
aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR
aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR 1 aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické
Vliv města na interakce mezi klimatem a kvalitou ovzduší
Vliv města na interakce mezi klimatem a kvalitou ovzduší, Tomáš Halenka, Michal Belda, Kateřina Šindelářová Matematicko-fyzikální fakulta UK v Praze Katedra meteorologie a ochrany prostředí Projekt TEPELNÝ
Očekávaný vývoj klimatu v Evropě a ČR ve 21. století
Očekávaný vývoj klimatu v Evropě a ČR ve 21. století Projected 21 st Century Climate In Europe and Czechia Martin Dubrovský dub@ufa.cas.cz Ústav fyziky atmosféry AVČR, Praha, Česká republika Ústav výzkumu
MOŽNOSTI KONSTRUKCE BUDOUCÍCH SCÉNÁŘŮ ÚMRTNOSTI SOUVISEJÍCÍ SE STRESEM Z HORKA V ČR A JEJICH OMEZENÍ
Rožnovský, J., Litschmann, T. (ed): Seminář Extrémy počasí a podnebí, Brno, 11. března 2004, ISBN 80-86690-12-1 MOŽNOSTI KONSTRUKCE BUDOUCÍCH SCÉNÁŘŮ ÚMRTNOSTI SOUVISEJÍCÍ SE STRESEM Z HORKA V ČR A JEJICH
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
Ing. Eva Hamplová, Ph.D. Ing. Jaroslav Kovárník, Ph.D.
XIX. MEZINÁRODNÍ KOLOKVIUM O REGIONÁLNÍCH VĚDÁCH ANALÝZA VÝVOJE POČTU PODNIKATELSKÝCH JEDNOTEK V ČESKÉ REPUBLICE V LETECH 2008-2014 ANALYSIS OF ENTREPRENEURSHIP DEVELOPMENT IN THE CZECH REPUBLIC FROM 2008
Hodnocení zranitelnosti hl.m. Prahy vůči dopadům klimatické změny
Hodnocení zranitelnosti hl.m. Prahy vůči dopadům klimatické změny Eliška K. Lorencová, Petr Bašta, Adam Emmer, David Vačkář Ústav výzkumu globální změny AV ČR, v.v.i. Konference k přípravě Implementačního
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci
Výstupy regionálních klimatických modelů na území ČR pro období 2015 až 2060
50 40 Výstupy regionálních klimatických modelů na území ČR pro období 2015 až 2060 Mgr. Michal Belda, Ph.D. doc. RNDr. Petr Pišoft, Ph.D. Mgr. Michal Žák, Ph.D. Katedra fyziky atmosféry Matematicko-fyzikální
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Představení tématu. Viktor Třebický CI2, o. p. s.
Představení tématu Viktor Třebický CI2, o. p. s. CI2, o.p.s. http://www.ci2.co.cz indikatory.ci2.co.cz http://adaptace.ci2.co.cz/ Kateřinská 26, Praha 2 1 CI2, o.p.s. www.ci2.co.cz indikatory.ci2.co.cz
OBSERVATOŘ KOŠETICE RNDr. Milan Váňa, Ph.D
OBSERVATOŘ KOŠETICE RNDr. Milan Váňa, Ph.D Připraveno pro rozšířenou poradu ÚOČO 22-24.9.2009 Radostovice http://www.chmi.cz/uoco/struct/odd/ook/index.htm Historie Začátek 80 let minulého století zahájení
METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR
Katedra vojenské geografie a meteorologie Univerzita obrany Kounicova 65 612 00 Brno METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR 1 1. Obecná charakteristika Teplota
SAMIRA Dostupná satelitní data. Roman Juras, Jana Ďoubalová
SAMIRA Dostupná satelitní data Roman Juras, Jana Ďoubalová Roman.juras@chmi.cz Jana.doubalova@chmi.cz Mapování znečištění pomocí kombinace dat: staniční měření, satelitní data a model (CTM) Produkty družice
88 % obyvatel. Pouze 38 % obyvatel. České republiky považuje změnu klimatu za závažný problém.
88 % obyvatel Pouze 38 % obyvatel České republiky považuje změnu klimatu za závažný problém. České republiky uvádí, že za posledních šest měsíců vykonali nějakou aktivitu, aby zmírnili změnu klimatu. 21
Hodnocení úrovně koncentrace PM 10 na stanici Most a Kopisty v průběhu hydrologické rekultivace zbytkové jámy lomu Most Ležáky 1
Hodnocení úrovně koncentrace PM 1 na stanici Most a Kopisty v průběhu hydrologické rekultivace zbytkové jámy lomu Most Ležáky 1 Projekt č. TA12592 je řešen s finanční podporou TA ČR Znečištění ovzduší
REGIONÁLNÍ GEOGRAFIE AMERIKY. 3. přednáška Klima
REGIONÁLNÍ GEOGRAFIE AMERIKY 3. přednáška Klima Faktory ovlivňující klima (obecně): astronomické geografické: zeměpisná šířka a délka, vzdálenost od oceánu, reliéf všeobecná cirkulace atmosféry mořské
EXTRÉMY V TEPLOTNÍCH ŘADÁCH
ROBUST 24 c JČMF 24 EXTRÉMY V TEPLOTNÍCH ŘADÁCH Monika Rencová Klíčová slova: Teorie extrémů, teplotní řady, tříparametrické Weibullovo rozdělení. Abstrakt: Ze statistického hlediska je užitečné studovat
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Vliv horka na úmrtnost v ČR. Aleš Urban, Jan Kyselý et al. ÚFA AV ČR PřF UK
Vliv horka na úmrtnost v ČR Aleš Urban, Jan Kyselý et al. ÚFA AV ČR PřF UK Motivace Období extrémních teplot vzduchu jsou v našich zeměpisných šířkách nejrizikovějším atmosférickým jevem majícím přímý
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Využití software ITEMAN k položkové analýze a analýze výsledků testů
11. konference ČAPV Sociální a kulturní souvislosti výchovy a vzdělávání Využití software ITEMAN k položkové analýze a analýze výsledků testů Petr Byčkovský, Marie Marková Postup při návrhu a ověření testu
MĚŘENÍ VÝPARU V ÚSTÍ NAD ORLICÍ V LETECH
MĚŘENÍ VÝPARU V ÚSTÍ NAD ORLICÍ V LETECH 1971-2000 Karel Plíšek Popis stanice a způsobu měření: Měření výparu bylo prováděno z volné vodní hladiny výparoměrem GGI-3000 (hladina o ploše 3000 cm 2 ) na profesionální
Zpravodaj. Českého hydrometeorologického ústavu, pobočky Ostrava. Číslo 9 / Český hydrometeorologický ústav, pobočka Ostrava
Českého hydrometeorologického ústavu, pobočky Ostrava, vydává Český hydrometeorologický ústav, pobočka Ostrava, K Myslivně 3/2182, 708 00 Ostrava. Informace a údaje uvedené v tomto materiálu neprošly předepsanou
SROVNÁNÍ VÝVOJE TEPLOT DVOU KLIMATICKÝCH REGIONŮ S VÝHLEDEM DO BUDOUCNA
SROVNÁNÍ VÝVOJE TEPLOT DVOU KLIMATICKÝCH REGIONŮ S VÝHLEDEM DO BUDOUCNA Comparison of temperature changes of two climatic regions with a view to the future Vlček V. 1,2, Středová H. 1, Mužíková B. 1 1
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis
Pravděpodobný vývoj. změn n klimatu. a reakce společnosti. IPCC charakteristika. Klimatický systém m a. Teplota jako indikátor. lní jev.
Pravděpodobný vývoj změny klimatu a reakce společnosti Jan P r e t e l Seminář Klimatická změna možné dopady na vodní systémy a vodní hodpodářství Česká limnologická společnost Praha, 10.12.2007 IPCC charakteristika
Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára
Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic
Změny klimatu a jejich vliv na zajištění krmivové základny
Změny klimatu a jejich vliv na zajištění krmivové základny Zdeněk Žalud a kol. Mendelova univerzita v Brně Ústav výzkumu globální změny AV ČR Seč, 6.12.2018 Rok 2018 teplota a srážky průměr ČR měsíc Tprům
Disponibilní vodní zdroje a jejich zabezpečenost
Adam Vizina (VÚV, ČZU), Martin Hanel (ČZU, VÚV), Radek Vlnas (ČHMÚ, VÚV) a kol. Disponibilní vodní zdroje a jejich zabezpečenost Výzkumný ústav vodohospodářský T. G. Masaryka veřejná výzkumná instituce,
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích
Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Nedostatešný popis systému a jeho modelu vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělit fyzickou nebo
Hydrologie (cvičení z hydrometrie)
Univerzita Karlova v Praze Přírodovědecká fakulta Katedra fyzické geografie a geoekologie Hydrologie (cvičení z hydrometrie) Zhodnocení variability odtokového režimu pomocí základních grafických a statistických
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV VODNÍHO HOSPODÁŘSTVÍ KRAJINY FACULTY OF CIVIL ENGINEERING INSTITUTE OF LANDSCAPE WATER MANAGEMENT STOCHASTICKÉ GENEROVÁNÍ
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
GEOGRAFIE ČR. klimatologie a hydrologie. letní semestr přednáška 6. Mgr. Michal Holub,
GEOGRAFIE ČR klimatologie a hydrologie přednáška 6 letní semestr 2009 Mgr. Michal Holub, holub@garmin.cz klima x počasí přechodný typ klimatu na pomezí oceánu a kontinentu jednotlivé měřené a sledované
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
ODHADY NÁVRATOVÝCH HODNOT PRO
ODHADY NÁVRATOVÝCH HODNOT PRO SRÁŽKOVÁ A TEPLOTNÍ DATA Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Novohradské statistické dny ÚVOD Velká pozornost
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
VÝSKYT EXTRÉMNÍCH HODNOT TEPLOT VZDUCHU V PRŮBĚHU DVOU STOLETÍ V PRAŽSKÉM KLEMENTINU
Rožnovský, J., Litschmann, T. (ed): Seminář Extrémy počasí a podnebí, Brno, 11. března 2004, ISBN 80-86690-12-1 VÝSKYT EXTRÉMNÍCH HODNOT TEPLOT VZDUCHU V PRŮBĚHU DVOU STOLETÍ V PRAŽSKÉM KLEMENTINU Jaroslav
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Souhrn nejdůležitějších výstupů Studie vlivu klimatu projektu GRACE
Souhrn nejdůležitějších výstupů Studie vlivu klimatu projektu GRACE Souhrn uvádí výsledky dílčí studie Vliv klimatické změny na celkovou vodnost oblasti Hřensko Křinice/Kirnitzsch a oblasti Petrovice Lückendorf
Statistika - charakteristiky variability
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
4. Zpracování číselných dat
4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední
SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek
SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální