Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
|
|
- Petra Kučerová
- před 6 lety
- Počet zobrazení:
Transkript
1 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
2 Pravděpodobnost a matematická statistika týden ( ) Data, typy dat, variabilita, frekvenční analýza (histogramy, četnosti absolutní, relativní, prosté, kumulativní), základní statistické charakteristiky (průměr, výběr.rozptyl, minimum, maximum, medián, kvartily, boxplot), sešikmenná rozdělení (vzájemná poloha mediánu a střední hodnoty), chvosty, kvantily 2. týden ( ) Princip statistické indukce, výběr, vlastnosti výběru, experiment. Náhodná veličina, rozdělení pravděpodobnosti a jeho souvislost s histogramem. Pravděpodobnost, pravidla pro počítání s pravděpodobností, podmíněná pravděpodobnost, závislost náhodných veličin. Využití závislosti při stanovení pravděpodobnosti - věta o úplné pravděpodobnosti a Bayesova věta 3.týden ( ) Pravděpodobnost, náhodná veličina, rozdělení pravděpodobnosti a jeho souvislost s histogramem. Pravidla pro počítání s pravděpodobností, podmíněná pravděpodobnost, závislost náhodných veličin. Využití závislosti při stanovení pravděpodobnosti - věta o úplné pravděpodobnosti a Bayesova věta 4.týden ( ) Rozdělení chyb měření - normální rozdělení a počítání s ním. Odhady parametrů normálního rozdělení. Intervaly spolehlivosti pro normální data. Jednovýběrové testy o střední hodnotě 5.týden ( ) Výběrový poměr jako odhad pravděpodobnosti sledovaného jevu. lternativní rozdělení, binomické rozdělení. Intervalový odhad výběrového poměru. Výběry s vracením a bez vracení (binomické a hypergeometrické rozdělení) 6.týden ( ) odpadá 7.týden ( ) Poruchy v čase (Poissonův proces). Poissonovo rozdělení, exponenciální rozdělení, jeho výhody a nevýhody, modelování doby do poruchy pomocí Weibullova rozdělení, lognormálního rozdělení, případně useknuté normální rozdělení. 8.týden ( ) Testy dobré shody, Q-Q graf (pouze vysvětlení), testy normality. Některé neparametrické testy 9.týden ( ) Dvě náhodné veličiny - srovnání dvou výběrů (dvouvýběrové testy) 10. týden ( ) Dvě náhodné veličiny. Dvourozměrné četnosti jako odhad dvourozměrného rozdělení, frekvenční tabulka. Marginální rozdělení (vše pouze diskrétně s tabulkou) 11. týden ( ) Závislost náhodných veličin, míry závislosti (kovariance, korelace), test významnosti korelačního koeficientu 12. týden ( ) Regrese, lineární regresní model (přímková, kvadratická, polynomická regrese), analýza reziduí, pásy spolehlivosti 13. týden ( ) Více výběrů, jednoduché třídění, NOV. 14. týden ( ) Rezerva, opakování, testy normality (náhrada za )
3 Realita (data)
4 náhoda Realita (data)
5 náhoda Výběr, pozorování, měření Realita (data) (data)
6 náhoda Výběr, pozorování, měření Realita (data) (data) nalýza dat
7 náhoda Výběr, pozorování, měření Realita Statistická inference (data) (data) nalýza dat
8 náhoda Důležité: Naplánování experimentu!!! Výběr, pozorování, měření Realita Statistická inference (data) (data) nalýza dat
9 náhoda Důležité: Naplánování experimentu!!! Výběr, pozorování, měření Realita Statistická inference (data) (data) nalýza dat Nutná znalost matematické statistiky
10 náhoda Důležité: Naplánování experimentu!!! Výběr, pozorování, měření Využití principu statistické indukce Statistická inference Realita (data) (data) nalýza dat Nutná znalost matematické statistiky
11 náhoda Důležité: Naplánování experimentu!!! Výběr, pozorování, měření Využití principu statistické indukce Statistická inference Realita (data) (data) nalýza dat Nutná znalost matematické statistiky
12 Realita (data)
13 2. Principy statistické indukce Realita (data)
14 2. Principy statistické indukce Základní soubor, náhodná povaha sledovaného znaku Realita (data)
15 2. Principy statistické indukce Základní soubor, náhodná povaha sledovaného znaku Výběr, reprezentativnost, nezávislost Realita (data)
16 2. Principy statistické indukce Základní soubor, náhodná povaha sledovaného znaku Výběr, reprezentativnost, nezávislost Realita (data) Opakovatelnost sledovaného jevu za přibližně stejných podmínek
17 2. Principy statistické indukce Základní soubor, náhodná povaha sledovaného znaku Výběr, reprezentativnost, nezávislost Realita (data) Opakovatelnost sledovaného jevu za přibližně stejných podmínek Náhodný experiment, plán experimentu
18 2. Principy statistické indukce Základní soubor, náhodná povaha sledovaného znaku Výběr, reprezentativnost, nezávislost Realita (data) Opakovatelnost sledovaného jevu za přibližně stejných podmínek Náhodný experiment, plán experimentu Měřitelnost sledovaného znaku
19 2. Principy statistické indukce Základní soubor, náhodná povaha sledovaného znaku Výběr, reprezentativnost, nezávislost Realita (data) Opakovatelnost sledovaného jevu za přibližně stejných podmínek Náhodný experiment, plán experimentu Měřitelnost sledovaného znaku Odhady parametrů, odhady rozdělení
20 2. Principy statistické indukce Za splnění základních podmínek: sledovaný znak má statistickou povahu (náhodnost, opakovatelnost) výběr ze základního souboru je reprezentativním výběrem vzhledem k celému základnímu souboru můžeme výsledky, získané na základě nezávislých pozorování sledovaného znaku na výběru ze základního souboru, zobecnit na celý základní soubor. POZOR!!! Důležitá je ta reprezentativnost, což souvisí s tím, že indukované závěry platí pouze za přibližně stejných podmínek.
21 2. Principy statistické indukce Příklad 1: Hmotnost obsahu balíčků kávy Provedli jsme 50 měření hmotnosti obsahu balíčků, vybraných nezávisle na sobě, vždy po 10 min. provozu balícího automatu. Z měření odhadneme střední hodnotu a interval, v němž by se mělo pohybovat cca 95% hmotností všech vyrobených balíčků. Příklad 2: Průjezd vozidel mýtnou branou Provedeme 50 měření časů mezi po sobě jedoucími vozidly. Výsledku, které získáme, zobecníme na provoz všech vozidel v daném místě, v daném čase, případně zobecníme na delší časový interval, ve kterém je podobný provoz. Příklad 3: Počty vadných výrobků v baleních Zkontrolovali jsme 50 náhodně vybraných balení a každé z nich jsme zkontrolovali. Podle poměru počtu vadných a počtu zkontrlovaných jsme odhadli % vadných výrobků v celé produkci.
22
23 3. Pravděpodobnost Náhoda a pravděpodobnost,
24 3. Pravděpodobnost Náhoda a pravděpodobnost, náhodný jev, náhodná veličina
25 3. Pravděpodobnost Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti a jeho souvislost s histogramem
26 3. Pravděpodobnost Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti a jeho souvislost s histogramem pravidla pro počítání s pravděpodobností
27 3. Pravděpodobnost Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti a jeho souvislost s histogramem pravidla pro počítání s pravděpodobností podmíněná pravděpodobnost
28 3. Pravděpodobnost Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti a jeho souvislost s histogramem pravidla pro počítání s pravděpodobností podmíněná pravděpodobnost závislost náhodných veličin
29 3. Pravděpodobnost Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti a jeho souvislost s histogramem pravidla pro počítání s pravděpodobností podmíněná pravděpodobnost závislost náhodných veličin využití závislosti při stanovení pravděpodobnosti - věta o úplné pravděpodobnosti a Bayesova věta
30 3. Pravděpodobnost C
31 3. Pravděpodobnost 1) P () = µ() µ() C
32 3. Pravděpodobnost 1) 2) P () = µ() µ() P () 0, 1 C
33 3. Pravděpodobnost 1) 2) P () = µ() µ() P () 0, 1 C 3) P (Ø) = 0, P() =1
34 3. Pravděpodobnost 1) P () = µ() µ() C 2) P () 0, 1 B 3) P (Ø) = 0, P() =1
35 3. Pravděpodobnost 1) P () = µ() µ() C 2) P () 0, 1 B 3) P (Ø) = 0, P() =1 4) P ( B) =P ()+P (B) P ( B)
36 3. Pravděpodobnost 1) P () = µ() µ() C 2) P () 0, 1 B 3) P (Ø) = 0, P() =1 4) P ( B) =P ()+P (B) P ( B) 5) P ( B) =P () P ( B)
37 3. Pravděpodobnost 1) P () = µ() µ() C 2) P () 0, 1 B 3) P (Ø) = 0, P() =1 4) P ( B) =P ()+P (B) P ( B) 5) P ( B) =P () P ( B) 6) P ( C )=1 P ()
38 3. Pravděpodobnost 1) P () = µ() µ() C 2) P () 0, 1 B 3) P (Ø) = 0, P() =1 4) P ( B) =P ()+P (B) P ( B) 5) P ( B) =P () P ( B) 6) P ( C )=1 P () P ( B) =?
39 B
40 Podmíněná pravděpodobnost P ( B) =P ().P (B ) B
41 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B
42 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Příklad: Je známo, že v dlouhodobém průměru je mezi 1000 dodaných komponent 2,34% vadných výrobků výrobce, 1,08% vadných výrobků výrobce B, 65,97% bezvadných výrobků výrobce a zbytek (30,6%) jsou bezvadné výrobky od výrobce B. Lze považovat jev, že výrobek je vadný, za stochasticky závislý na výrobci?
43 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Příklad: Jevy a V jsou stochasticky nezávislé právě když P (V ) =P (V )
44 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Jevy a V jsou stochasticky nezávislé právě když P (V ) =P (V )
45 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Jevy a V jsou stochasticky nezávislé právě když P (V ) =P (V ) P ( V )=P() P ( V )=P().P (V )
46 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Jevy a V jsou stochasticky nezávislé právě když P (V ) =P (V ) P ( V )=P () P ( V )=P ().P (V ) B vada (V) 2,34 1,08 bez vady 65,98 30,60
47 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Jevy a V jsou stochasticky nezávislé právě když P (V ) =P (V ) P ( V )=P () P ( V )=P ().P (V ) B vada (V) 2,34 1,08 bez vady 65,98 30,60 celkem 3,42 96,58 celkem 68,32 31,68 100
48 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B 2,34 = 3,42. 68,32 B celkem vada (V) 2,34 1,08 bez vady 65,98 30,60 3,42 96,58 celkem 68,32 31,68 100
49 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Příklad: 2,34 = 3,42. 68,32 B celkem vada (V) 2,34 1,08 bez vady 65,98 30,60 3,42 96,58 celkem 68,32 31,68 100
50 Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Příklad: 2,34 = 3,42. 68,32 B celkem 1,08 = 3,42. 31,68 65,98 = 96,58. 68,32 vada (V) 2,34 1,08 bez vady 65,98 30,60 3,42 96,58 30,60 = 96,58. 31,68 celkem 68,32 31,68 100
51 30,60 = 96,58. 31,68 o.k. Podmíněná pravděpodobnost P ( B) =P ().P (B ) P (B ) = P ( B) P () B Příklad: Jev, že výrobek je vadný, lze považovat za stochasticky nezávislý na výrobci. 2,34 = 3,42. 68,32 B celkem 1,08 = 3,42. 31,68 65,98 = 96,58. 68,32 vada (V) 2,34 1,08 bez vady 65,98 30,60 3,42 96,58 celkem 68,32 31,68 100
52
53 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 =
54 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = H 1 H 2 H 3 H 4
55 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = H 1 H 2 H 3 H 4
56 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P () =P ( H 1 ).P (H 1 ) H 1 H 2 H 3 H 4 +P ( H 2 ).P (H 2 ) +P ( H 3 ).P (H 3 ) +P ( H 4 ).P (H 4 )
57 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P () =P ( H 1 ).P (H 1 ) H 1 H 2 H 3 H 4 +P ( H 2 ).P (H 2 ) +P ( H 3 ).P (H 3 ) +P ( H 4 ).P (H 4 ) Příklad: Na trhu jsou výrobky od čtyř výrobců v pořadí, B, C a D v poměru 1:2:4:5. Zmetkovitost je u těchto výrobců po řadě 0,5%, 0,8%, 0,3% a 0,3%. Jaká je pravděpodobnost, že náhodně vybraný výrobek na trhu bude vadný? bude-li vadný, jaká je pravděpodobnost, že byl vyroben výrobcem?
58 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P () =P ( H 1 ).P (H 1 ) H 1 H 2 H 3 H 4 Příklad: +P ( H 2 ).P (H 2 ) +P ( H 3 ).P (H 3 ) +P ( H 4 ).P (H 4 )
59 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P () =P ( H 1 ).P (H 1 ) H 1 H 2 H 3 H 4 Příklad: +P ( H 2 ).P (H 2 ) +P ( H 3 ).P (H 3 ) +P ( H 4 ).P (H 4 ) P (H1) = 1/12, P ( H1) = 0,005 P (H2) = 2/12, P ( H2) = 0,008 P (H3) = 4/12, P ( H3) = 0,003 P (H4) = 5/12, P ( H4) = 0,003 P () = ( )/12000 = 0,004
60 Věta o úplné pravděpodobnosti je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P () =P ( H 1 ).P (H 1 ) H 1 H 2 H 3 H 4 Příklad: +P ( H 2 ).P (H 2 ) +P ( H 3 ).P (H 3 ) +P ( H 4 ).P (H 4 ) P (H1) = 1/12, P ( H1) = 0,005 P (H2) = 2/12, P ( H2) = 0,008 P (H3) = 4/12, P ( H3) = 0,003 P (H4) = 5/12, P ( H4) = 0,003 P () = ( )/12000 = 0,004
61 Bayesova věta je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = H 1 H 2 H 3 H 4
62 Bayesova věta je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P (H 1 ) = P ( H 1 ).P (H 1 ) P () H 1 H 2 H 3 H 4
63 Bayesova věta je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = H 1 H 2 H 3 H 4
64 Bayesova věta je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P (H 1 ) = P ( H 1 ).P (H 1 ) 4 i=1 P ( H i).p (H i ) H 1 H 2 H 3 H 4
65 Bayesova věta je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P (H 1 ) = P ( H 1 ).P (H 1 ) 4 i=1 P ( H i).p (H i ) H 1 H 2 H 3 H 4 Příklad: P (H1) = 0,08333, P ( H1) = 0,005 P (H2) = 0,16667, P ( H2) = 0,008 P (H3) = 0,33333, P ( H3) = 0,003 P (H4) = 0,41667, P ( H4) = 0,003 P (H1 ) = 0,005.0,08333/0,004 = 0,10417
66 Bayesova věta je náhodný jev, {H 1,H 2,H 3,H 4 } je úplné pokrytí H i H j =Ø, H 1 H 2 H 3 H 4 = P (H 1 ) = P ( H 1 ).P (H 1 ) 4 i=1 P ( H i).p (H i ) H 1 H 2 H 3 H 4 Příklad: P (H1) = 0,08333, P ( H1) = 0,005 P (H2) = 0,16667, P ( H2) = 0,008 P (H3) = 0,33333, P ( H3) = 0,003 P (H4) = 0,41667, P ( H4) = 0,003 P (H1 ) = 0,005.0,08333/0,004 = 0,10417
67 Bayesova věta 0,01 0,002
68 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 0,002
69 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,80 + 0,008 0,01 V 0,20-0,002 kompresor 0,99 B 0,05 + 0,0495 0,95-0,9405 0,01 0,002
70 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 V 0,80 0, ,008 0,002 0,008 P (V +) = 0,008+0,0495 kompresor 0,99 B 0,05 + 0,0495 0,95-0,9405 0,01 0,002
71 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 V 0,80 0, ,008 0,002 0,008 P (V +) = 0,008+0,0495 kompresor 0,99 B 0,05 + 0,0495 0,95-0,9405 0,01 0,002
72 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 V 0,80 0, ,008 0,002 0,008 P (V +) = 0,008+0,0495 kompresor 0,99 B 0,05 + 0,0495 0,95-0,9405 0,01 0,002
73 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 V 0,80 0, ,008 0,002 0,008 P (V +) = 0,008+0,0495 kompresor 0,99 B 0,05 + 0,0495 0,95-0,9405 0,01 0,002
74 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 V 0,80 0, ,008 0,002 0,008 P (V +) = 0,008+0,0495 kompresor 0,99 B 0,05 + 0,0495 0,95-0,9405 0,01 0,002
75 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 V 0,80 0, ,008 0,002 0,008 P (V +) = 0,008+0,0495 kompresor 0,99 B 0,05 + 0,0495 = 0,1391 0,95-0,9405 0,01 0,002
76 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? 0,01 V 0,80 0, ,008 0,002 0,008 P (V +) = 0,008+0,0495 kompresor 0,99 B 0,05 + 0,0495 = 0,1391 0,95-0,9405 0,01 0,002
77 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? kompresor 0,139 0,861 V B 0,80 0,20 0,05 0, ,0111 0,0028 0,0042 0,8179 0,01 0,002 0,0111 P2(V +) = 0,0111+0,0042 Při opakovaném testu
78 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? kompresor 0,139 0,861 V B 0,80 0,20 0,05 0, ,0111 0,0028 0,0042 0,8179 0,01 0,002 0,0111 P2(V +) = 0,0111+0,0042 = 0,7255 Při opakovaném testu
79 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? kompresor 0,139 0,861 V B 0,80 0,20 0,05 0, ,0111 0,0028 0,0042 0,8179 0,01 0,002 0,0111 P2(V +) = 0,0111+0,0042 = 0,7255 Při opakovaném testu
80 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? kompresor 0,7255 0,2745 V B 0,80 0,20 0,05 0, ,5804 0,1451 0,0137 0,2608 0,01 0,002 0,5804 P3(V +) = 0,5804+0,0137 Při opakovaném testu
81 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? kompresor 0,7255 0,2745 V B 0,80 0,20 0,05 0, ,5804 0,1451 0,0137 0,2608 0,01 0,002 0,5804 P3(V +) = 0,5804+0,0137 = 0,977 Při opakovaném testu
82 Bayesova věta Příklad: Tělo kompresoru musí být 100% hermeticky uzavřeno. V průměru jeden ze sta kompresorů trochu netěsní a je třeba jej rozložit a znovu složit. Zkouška těsnosti odhalí vadný výrobek s pravděpodobností 0,8. Naproti tomu, s pravděpodobností 0,05 označí jako vadný bezvadný výrobek. Jaká je pravděpodobnost vady u výrobku, který zkouška označila jako vadný? kompresor 0,7255 0,2745 V B 0,80 0,20 0,05 0, ,5804 0,1451 0,0137 0,2608 0,01 0,002 0,5804 P3(V +) = 0,5804+0,0137 = 0,977 Při opakovaném testu
83 Tato přednáška je na
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Úvod do teorie pravděpodobnosti Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Tématické okruhy pro státní závěrečné zkoušky. magisterské studium
Tématické okruhy pro státní závěrečné zkoušky magisterské studium studijní obor "Řízení jakosti" školní rok 2009/2010 Management jakosti A 1. Koncepce managementu jakosti, charakteristiky a účel, normy
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem
Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Biostatistika Cvičení 7
TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Ing. Michael Rost, Ph.D.
Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty
Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel
Dvouvýběrové a párové testy Komentované řešení pomocí MS Excel Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci glukózy v
hl d STATISTICKÝCH METOD zpraeování dat portál Analýza a metaanalýzadat
Jan HENDL f. : rl :\ hl d STATSTCKÝCH METOD zpraeování dat Analýza a metaanalýzadat ~\ 1! ~ p portál , Obsah. P"edmluva.., 13 1 Úvod 17 1.1 Empirický výzkum a jeho etapy................. 19 1.2 Významteorieprovýzkum,
PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.
Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Vícerozměrné statistické metody
Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?
Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/
Studijní program Matematika Obor Pravděpodobnost, matematická statistika a ekonometrie
Studijní program Matematika Obor Pravděpodobnost, matematická statistika a ekonometrie Doporučené průběhy studia pro rok 2014/15 24. září 2014 Vysvětlivky: Tento dokument obsahuje několik alternativních
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické