Katedra počítačů FEL

Rozměr: px
Začít zobrazení ze stránky:

Download "Katedra počítačů FEL"

Transkript

1 TIS Navrhněte KMP vyhledávací stroj pro vzorek v = kakadu, 2. Pro stejný vzorek navrhněte deterministický konečný automat. 3. Simulujte činnost obou strojů na textu T = dukakakaduka, porovnejte jejich činnost z hlediska paměťové a časové složitosti.

2 TIS Navrhněte BM vyhledávací stroj pro vzorek v = kakao, pro výpočet fail funkce použijte jednu z metod Bad-character shift, first fit nebo best fit. Určete pravidla pro výpočet vámi zvolené fail funkce. 2. Pro stejný vzorek navrhněte suffixový automat. 3. Simulujte činnost obou strojů na textu T = pijtekakakao, porovnejte jejich činnost z hlediska paměťové a časové složitosti.

3 TIS Navrhněte AC vyhledávací stroj pro množinu vzorků V = {kolo, loto, ol}, 2. Pro stejnou množinu vzorků navrhněte deterministický konečný automat. 3. Simulujte činnost obou strojů na textu T = kolotoce, porovnejte jejich činnost z hlediska paměťové a časové složitosti.

4 TIS Navrhněte CW vyhledávací stroj pro množinu vzorků V = {kolo, loto}, 2. Popište pravidla výpočtu funkcí shift1 a shift2. 3. Simulujte činnost CW vyhledávacího stroje na textu T = kolotoce, zhodnoťte jeho činnost z hlediska paměťové a časové složitosti.

5 TIS Vytvořte nedeterministický faktorový automat pro vzorek v = abbbabcb. 2. Vytvořte ekvivalentní deterministický automat. 3. Pomocí tohoto automatu nalezněte nejdelší opakující se podřetězec bez překryvu (s mezerou a bez mezery) a nejdelší opakující se podřetězec s překryvem. 4. Nalezněte všechny nejčatěji se opakující podřetězce. U bodů 3 a 4 vysvětlete vztah pozice nalezeného podřetězce a čísla stavu deterministického automatu.

6 TIS Vytvořte nedeterministický automat přijímající všechny podřetězce vzorku v s maximálně jednou záměnou (Hammingova vzdálenost). v = abbbabcb 2. Vytvořte ekvivalentní deterministický automat. 3. Pomocí tohoto automatu nalezněte nejdelší opakující se podřetězec bez překryvu (s mezerou a bez mezery) a nejdelší opakující se podřetězec s překryvem(s k Hamm =1). 4. Nalezněte všechny nejčatěji se opakující podřetězce. U bodů 3 a 4 vysvětlete vztah pozice nalezeného podřetězce a čísla stavu deterministického automatu.

7 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou záměnou (Hammingova vzdálenost). v = abba 2. Simulujte jeho činnost nad textem aabcabbaacba pomocí dynamického programování. 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.

8 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou chybou v Levensteinově vzdálenosti. v = abca 2. Simulujte jeho činnost nad textem T = bacacbbca pomocí dynamického programování. 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.

9 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou chybou v Levensteinově vzdálenosti. v = abca 2. Simulujte jeho činnost nad textem T = bacacba pomocí bitového paralelismu (použijte algoritmus SHIFT-AND nebo Shift-OR). 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.

10 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou záměnou (Hammingova vzdálenost). v = abba 2. Simulujte jeho činnost nad textem T = aabccba pomocí bitového paralelismu (použijte algoritmus SHIFT-AND nebo Shift-OR). 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.

11 TIS Vytvořte sufixový automat pro pro přibližné protisměrné vyhledávání v textu vzorku v s maximálně jednou záměnou (Hammingova vzdálenost). v = abba 2. Simulujte jeho činnost nad textem T = bacbacbbcacca.

12 TIS 731 Mějme uspořádanou abecedu Σ = {a(1),b(2),c(3),d(4),e(5),f(6)}, kde číslo v závorce určuje pořadí daného symbolu v našem uspořádání. Vzdálenost dvou symbolů je definována jako absolutní hodnota rozdílu jejich pořadí, např. d(a, c)= 1 3 =2. 1. Vytvořte vyhledávací automat pro vzorek v s maximálně dvěma chybami v δ vzdálenosti nad abecedou Σ. 2. Je tento automat deterministický? v = abbab 3. Simulujte práci tohoto automatu pro text T = aabcabbaacba

13 TIS 751 Mějme uspořádanou abecedu Σ = {a(1),b(2),c(3),d(4),e(5),f(6)}, kde číslo v závorce určuje pořadí daného symbolu v našem uspořádání. Vzdálenost dvou symbolů je definována jako absolutní hodnota rozdílu jejich pořadí, např. d(a, c)= 1 3 =2. 1. Vytvořte vyhledávací automat pro vzorek v s maximálně dvěma chybami v γ vzdálenosti nad abecedou Σ. v = abbab 2. Simulujte práci tohoto automatu pro text T = aabcabbaacba

14 TIS 791 Mějme uspořádanou abecedu Σ = {a(1),b(2),c(3),d(4),e(5),f(6)}, kde číslo v závorce určuje pořadí daného symbolu v našem uspořádání. Vzdálenost dvou symbolů je definována jako absolutní hodnota rozdílu jejich pořadí, např. d(a, c)= 1 3 =2. 1. Vytvořte vyhledávací automat pro vzorek v s maximálně dvěma chybami v γ vzdálenosti a jednou chybou v δ nad abecedou Σ. 2. Je tento automat deterministický? v = abbab 3. Simulujte práci tohoto automatu pro text T = aabcabbaacba

Hledání v textu algoritmem Boyer Moore

Hledání v textu algoritmem Boyer Moore Zápočtová práce z Algoritmů a Datových Struktur II (NTIN061) Hledání v textu algoritmem Boyer Moore David Pěgřímek http://davpe.net Algoritmus Boyer Moore[1] slouží k vyhledání vzoru V v zadaném textu

Více

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový

Více

Vyhledávání v textu. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava

Vyhledávání v textu. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Vyhledávání v textu doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 9. března 209 Jiří Dvorský (VŠB TUO) Vyhledávání v textu 402

Více

Základy algoritmizace. Pattern matching

Základy algoritmizace. Pattern matching Základy algoritmizace Pattern matching 1 Pattern matching Úloha nalézt v nějakém textu výskyty zadaných textových vzorků patří v počítačové praxi k nejfrekventovanějším. Algoritmy, které ji řeší se používají

Více

Dynamické programování UIN009 Efektivní algoritmy 1

Dynamické programování UIN009 Efektivní algoritmy 1 Dynamické programování. 10.3.2005 UIN009 Efektivní algoritmy 1 Srovnání metody rozděl a panuj a dynamického programování Rozděl a panuj: top-down Dynamické programování: bottom-up Rozděl a panuj: překrývání

Více

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat

Více

Návrh Designu: Radek Mařík

Návrh Designu: Radek Mařík 1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1

Více

Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková strategie na vysoké škole

Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková strategie na vysoké škole Pattern matching Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CI jako výuková strategie na vysoké škole Pattern matching porovnávání vzorů Hledání

Více

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Univerzální Turingův stroj a Nedeterministický Turingův stroj 27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův

Více

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43 Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Hardwarová realizace konečných automatů

Hardwarová realizace konečných automatů BI-AAG - Automaty a gramatiky Katedra teoretické informatiky ČVUT FIT 11.1.21 Co potřebujeme Úvod Potřebujeme: zakódovat vstupní abecedu, zakódovat stavy automatu, pamatovat si současný stav, realizovat

Více

1. Databázové systémy (MP leden 2010)

1. Databázové systémy (MP leden 2010) 1. Databázové systémy (MP leden 2010) Fyzickáimplementace zadáníaněkterářešení 1 1.Zkolikaajakýchčástíseskládáčasprovstupněvýstupníoperaci? Ze tří částí: Seektime ječas,nežsehlavadiskudostanenadsprávnou

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat

Více

1.4. VEKTOROVÝ SOUČIN

1.4. VEKTOROVÝ SOUČIN .4. VEKTOROVÝ SOUČIN V této kapitole se dozvíte: definici vektorového (také vnějšího) součinu, jeho vlastnosti a geometrický význam; co rozumíme pravotočivou ortonormální nebo ortogonální bází; definici

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

1. Pojmy a definice. 2. Naivní algoritmus. 3. Boyer Moore

1. Pojmy a definice. 2. Naivní algoritmus. 3. Boyer Moore Algoritmy vyhledávaní v textu s lineární a sublineární složitostí, (naivní, Boyer-Moore), využití konečných automatů pro přesné a přibližné hledání v textu 1. Pojmy a definice Abeceda: Konečná množina

Více

Třída PTIME a třída NPTIME. NP-úplnost.

Třída PTIME a třída NPTIME. NP-úplnost. VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Soustavy lineárních a kvadratických rovnic o dvou neznámých

Soustavy lineárních a kvadratických rovnic o dvou neznámých Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1

Více

Vyhledávání řetězců. a b a c a a b. a b a c a b. a b a c a b

Vyhledávání řetězců. a b a c a a b. a b a c a b. a b a c a b Vyhledávání řetězců (Pattern Matching) T: P: a b a c a a b a b a c a b 4 1 3 2 a b a c a b Přehled 1. Co je vyhledávání řetězců 2. Algoritmus hrubé síly (Brute force) 3. Algoritmus Boyer Moore 4. Knuth

Více

Přijímací zkouška na navazující magisterské studium 2017

Přijímací zkouška na navazující magisterské studium 2017 Přijímací zkouška na navazující magisterské studium 207 Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný

Více

Složitost Filip Hlásek

Složitost Filip Hlásek Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,

Více

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31 Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu

Více

kupní cena: 680 500,- Kč Splatnost jednorázově, do 30 dnů ode dne podpisu kupní smlouvy na účet prodávajícího. Návrh č. 2.

kupní cena: 680 500,- Kč Splatnost jednorázově, do 30 dnů ode dne podpisu kupní smlouvy na účet prodávajícího. Návrh č. 2. Návrh č. 1. kupní cena: 680 500,- Kč Návrh č. 2. kupní cena: 681 500,- Kč Návrh č. 3. 1 kupní cena: 682 500,- Kč Návrh č. 4. kupní cena: 683 500,- Kč Návrh č. 5. 2 kupní cena: 684 000,- Kč Návrh č. 6.

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný

Více

Programování II. Návrh programu I 2018/19

Programování II. Návrh programu I 2018/19 Programování II Návrh programu I 2018/19 Osnova přednášky Co víme? Objektový návrh programu. Příklad. Co víme? Třída Třída je popisem objektů se společnými vlastnostmi. class private:

Více

Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní.

Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní. Teoretická informatika referáty 1 Referátč.1 Vysvětlete, co znamená tvrzení, že operace levého kvocientu je asociativní. Pak toto tvrzení pečlivě dokažte či vyvraťte. Dálevysvětlete,pročprokonečnýautomat

Více

: Teoretická informatika(ti)

: Teoretická informatika(ti) 460-4065: Teoretická informatika(ti) prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) 460-4065 1/ 25 Základní informace

Více

Algoritmy II. Otázky k průběžnému testu znalostí

Algoritmy II. Otázky k průběžnému testu znalostí Algoritmy II Otázky k průběžnému testu znalostí Revize ze dne 19. února 2018 2 Lineární datové struktury 1 1. Vysvětlete co znamená, že zásobník představuje paměť typu LIFO. 2. Co je to vrchol zásobníku?

Více

63. ročník Matematické olympiády 2013/2014

63. ročník Matematické olympiády 2013/2014 63. ročník Matematické olympiády 2013/2014 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích

Více

LinuxDays 2017 Ondřej Guth GNU grep LD 17 1 / 14

LinuxDays 2017 Ondřej Guth GNU grep LD 17 1 / 14 Používáte GNU grep? A víte, jak funguje uvnitř? Ondřej Guth ondrej.guth@fit.cvut.cz LinuxDays 2017 Ondřej Guth GNU grep LD 17 1 / 14 1 Úvod 2 Přehled zpracování vstupu 3 Obyčejný řetězec jako regulární

Více

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,

Více

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů: Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH

Více

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného

Více

Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A

Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle

Více

Témata bakalářských prací 2015/2016

Témata bakalářských prací 2015/2016 Témata bakalářských prací 2015/2016 Název: Analýza magnetických akumulátorů kinetické energie. 1. Proveďte rešerši známých magnetických systémů v konstrukci strojů. 2. Proveďte citlivostní analýzu vybraných

Více

Konečný automat. Jan Kybic.

Konečný automat. Jan Kybic. Konečný automat Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 33 Konečný automat finite state machine Konečný automat = výpočetní model, primitivní počítač Řídící jednotka s

Více

VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY

VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY Jméno a příjmení: Školní rok: Třída: VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf 2007/2008 VI2 PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY Petr VOPALECKÝ Číslo úlohy: Počet

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

Rovnice přímky v prostoru

Rovnice přímky v prostoru Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé

Více

Obor: Informatika Únor 2006 Okruh: Základy matematiky Otázka: 1. Jméno: Bodů:...

Obor: Informatika Únor 2006 Okruh: Základy matematiky Otázka: 1. Jméno: Bodů:... Inf-M-1 Obor: Informatika Únor 2006 Okruh: Základy matematiky Otázka: 1. Uvažujte funkci f(x) =ln(x 2 x): Najděte její definiční obor, nulové body, vypočtěte jednostranné limity v krajních bodech definičních

Více

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20 Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,

Více

Základy algoritmizace, Turingův stroj

Základy algoritmizace, Turingův stroj Základy algoritmizace, Turingův stroj Matematické algoritmy (K611MA) Jan Přikryl, Miroslav Vlček 2. přednáška K611MA čtvrtek 1. října 2009 verze: 2009-10-15 00:55 1 1 Teoretický základ algoritmizace 1.1

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. 9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující

Více

Dynamické programování. Optimální binární vyhledávací strom

Dynamické programování. Optimální binární vyhledávací strom The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The

Více

Formální jazyky a automaty Petr Šimeček

Formální jazyky a automaty Petr Šimeček Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat

Více

Lexikální analýza Teorie programovacích jazyků

Lexikální analýza Teorie programovacích jazyků Lexikální analýza Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Osnova dnešní přednášky 1 Úvod do teorie překladačů kompilátor a interpret

Více

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32 Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často

Více

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

ZADÁNÍ BAKALÁŘSKÉ PRÁCE ZADÁNÍ BAKALÁŘSKÉ PRÁCE Název: Návrh a implementace modifikací algoritmu protisměrného vyhledávání ve stromech Student: Kamil Červený Vedoucí: Ing. Jan Trávníček Studijní program: Informatika Studijní

Více

Teoretická informatika TIN

Teoretická informatika TIN Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Teoretická informatika - Úkol č.1

Teoretická informatika - Úkol č.1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je

Více

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky Tato skripta jsou určena pro kurs Základy matematické informatiky

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března / 50

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března / 50 Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března 2013 1/ 50 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často

Více

FRP 6. cvičení Měření rizika

FRP 6. cvičení Měření rizika FRP 6. cvičení Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění

Více

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1

Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

Střední průmyslová škola, Ústí nad Labem, Resslova 5, příspěvková organizace

Střední průmyslová škola, Ústí nad Labem, Resslova 5, příspěvková organizace Číslo zadání: 1 Název zadání : Kombinační automat dvoubitová binární sčítačka Zadání : Navrhněte LO pro dvoubitovou binární sčítačku z TTL obvodů a) Proveďte analýzu zadané úlohy. b) Navrhněte sčítačku

Více

Suffixové stromy. Osnova:

Suffixové stromy.  Osnova: Suffixové stromy http://jakub.kotrla.net/suffixtrees/ Osnova: Motivační příklad Přehled možných řešení Definice suffixového stromu Řešení pomocí suffixových stromů Konstrukce suffixového stromu Další použití,

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

Uplatnění metod na zvolený jazyk

Uplatnění metod na zvolený jazyk Uplatnění metod na zvolený jazyk Při výběru mezi metodami výše popsanými se řídíme především podle typu symbolů, které jazyk obsahuje. Výhodná bývá často kombinace těchto metod nejdřív použijeme metodu

Více

Studijní program ELEKTROTECHNIKA A INFORMATIKA

Studijní program ELEKTROTECHNIKA A INFORMATIKA STÁTNÍ ZÁVĚREČNÁ ZKOUŠKA Studijní obor APLIKOVANÁ INFORMATIKA Studijní program ELEKTROTECHNIKA A INFORMATIKA Tento dokument je platný pro studenty oboru Aplikovaná informatika, kteří začali studovat nejpozději

Více

Zadání semestrálního projektu PAM

Zadání semestrálního projektu PAM P ř evaděč RS485 Navrhněte s procesorem AT89C2051 převaděč komunikační sběrnice RS485 s automatickým obracením směru převodníku po přenosu bytu. Převaděč vybavte manuálním nastavením přenosové rychlosti

Více

Zadání projektů k modulu: 1. Základy integrální logistiky

Zadání projektů k modulu: 1. Základy integrální logistiky projektů k modulu: 1. Základy integrální logistiky Identifikace cílů pro firemní politiku logistiky P01 Aplikujte definici pojmu firemní politika logistiky a navrhněte smysluplné cíle pro politiku logistiky

Více

NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32

NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32 NP-úplnost M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května 2007 1/ 32 Rozhodovací problémy Definice Rozhodovací problém je takový, kde je množina možných výstupů dvouprvková

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky.

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky. PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Písemná zkouška z předmětu Teoretická informatika (UKÁZKA) Doba trvání: 90 minut Max. zisk: 65 bodů Minimální bodový zisk nutný k uznání: 25 bodů (jak je ovšem

Více

Maturitní témata Školní rok: 2015/2016

Maturitní témata Školní rok: 2015/2016 Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní

Více

y (5) (x) y (4) (x) + 4y (3) (x) 12y (x) 45y (x) 27y(x) (horní indexy značí derivaci) pro 3. y(x) = x sin 3x 4. y(x) = x cos 3x 9.

y (5) (x) y (4) (x) + 4y (3) (x) 12y (x) 45y (x) 27y(x) (horní indexy značí derivaci) pro 3. y(x) = x sin 3x 4. y(x) = x cos 3x 9. Přezdívka: Jméno a příjmení: výsledek 101 Vypočtěte y x y 4 x + 4y x 12y x 4y x 27yx horní indexy značí derivaci pro 1. yx = sin x 2. yx = cos x. yx = x sin x 4. yx = x cos x. yx = e x 1 6. yx = xe x 7.

Více

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost 1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný

Více

Teoretická informatika průběh výuky v semestru 1

Teoretická informatika průběh výuky v semestru 1 Teoretická informatika průběh výuky v semestru 1 Týden 1 Po přednášce 14.9. bude text asi mírně modifikován, ale příklady na cvičení se nezmění. (Navíc dodám na web slidy.) Přednáška Na začátku jsme si

Více

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti

Více

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27 Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného

Více

Fakulta informačních technologií. Teoretická informatika

Fakulta informačních technologií. Teoretická informatika Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme

Více

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

4. Teorie informace, teorie složitosti algoritmů. doc. Ing. Róbert Lórencz, CSc.

4. Teorie informace, teorie složitosti algoritmů. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 4. Teorie informace, teorie složitosti algoritmů doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Standardní algoritmy vyhledávací.

Standardní algoritmy vyhledávací. Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární

Více

Na rozšiřující přednášce minulý týden jsme se věnovali zejména. algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární výraz

Na rozšiřující přednášce minulý týden jsme se věnovali zejména. algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární výraz Teoretická informatika průběh výuky v semestru 1 Týden 5 Přednáška Na rozšiřující přednášce minulý týden jsme se věnovali zejména algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Pod slovem automat si většina lidí představí automat na kávu. Jiným toto slovo

Pod slovem automat si většina lidí představí automat na kávu. Jiným toto slovo J. Hora, P. Jedlička ÚVODNÍ PŘÍKLDY Úvodní příklady Pod slovem automat si většina lidí představí automat na kávu. Jiným toto slovo může navodit představu nonstop herny a automatů, na kterých se točí tři

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 66 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 66 sekvencí pokud biologové objeví nový gen, většinou se nezná jeho funkce zkouší se zjistit, kterým

Více