Katedra počítačů FEL
|
|
- Olga Zemanová
- před 8 lety
- Počet zobrazení:
Transkript
1 TIS Navrhněte KMP vyhledávací stroj pro vzorek v = kakadu, 2. Pro stejný vzorek navrhněte deterministický konečný automat. 3. Simulujte činnost obou strojů na textu T = dukakakaduka, porovnejte jejich činnost z hlediska paměťové a časové složitosti.
2 TIS Navrhněte BM vyhledávací stroj pro vzorek v = kakao, pro výpočet fail funkce použijte jednu z metod Bad-character shift, first fit nebo best fit. Určete pravidla pro výpočet vámi zvolené fail funkce. 2. Pro stejný vzorek navrhněte suffixový automat. 3. Simulujte činnost obou strojů na textu T = pijtekakakao, porovnejte jejich činnost z hlediska paměťové a časové složitosti.
3 TIS Navrhněte AC vyhledávací stroj pro množinu vzorků V = {kolo, loto, ol}, 2. Pro stejnou množinu vzorků navrhněte deterministický konečný automat. 3. Simulujte činnost obou strojů na textu T = kolotoce, porovnejte jejich činnost z hlediska paměťové a časové složitosti.
4 TIS Navrhněte CW vyhledávací stroj pro množinu vzorků V = {kolo, loto}, 2. Popište pravidla výpočtu funkcí shift1 a shift2. 3. Simulujte činnost CW vyhledávacího stroje na textu T = kolotoce, zhodnoťte jeho činnost z hlediska paměťové a časové složitosti.
5 TIS Vytvořte nedeterministický faktorový automat pro vzorek v = abbbabcb. 2. Vytvořte ekvivalentní deterministický automat. 3. Pomocí tohoto automatu nalezněte nejdelší opakující se podřetězec bez překryvu (s mezerou a bez mezery) a nejdelší opakující se podřetězec s překryvem. 4. Nalezněte všechny nejčatěji se opakující podřetězce. U bodů 3 a 4 vysvětlete vztah pozice nalezeného podřetězce a čísla stavu deterministického automatu.
6 TIS Vytvořte nedeterministický automat přijímající všechny podřetězce vzorku v s maximálně jednou záměnou (Hammingova vzdálenost). v = abbbabcb 2. Vytvořte ekvivalentní deterministický automat. 3. Pomocí tohoto automatu nalezněte nejdelší opakující se podřetězec bez překryvu (s mezerou a bez mezery) a nejdelší opakující se podřetězec s překryvem(s k Hamm =1). 4. Nalezněte všechny nejčatěji se opakující podřetězce. U bodů 3 a 4 vysvětlete vztah pozice nalezeného podřetězce a čísla stavu deterministického automatu.
7 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou záměnou (Hammingova vzdálenost). v = abba 2. Simulujte jeho činnost nad textem aabcabbaacba pomocí dynamického programování. 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.
8 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou chybou v Levensteinově vzdálenosti. v = abca 2. Simulujte jeho činnost nad textem T = bacacbbca pomocí dynamického programování. 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.
9 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou chybou v Levensteinově vzdálenosti. v = abca 2. Simulujte jeho činnost nad textem T = bacacba pomocí bitového paralelismu (použijte algoritmus SHIFT-AND nebo Shift-OR). 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.
10 TIS Vytvořte nedeterministický vyhledávací automat pro vzorek v s maximálně jednou záměnou (Hammingova vzdálenost). v = abba 2. Simulujte jeho činnost nad textem T = aabccba pomocí bitového paralelismu (použijte algoritmus SHIFT-AND nebo Shift-OR). 3. Definujte pravidla výpočtu ve Vámi použitém algoritmu.
11 TIS Vytvořte sufixový automat pro pro přibližné protisměrné vyhledávání v textu vzorku v s maximálně jednou záměnou (Hammingova vzdálenost). v = abba 2. Simulujte jeho činnost nad textem T = bacbacbbcacca.
12 TIS 731 Mějme uspořádanou abecedu Σ = {a(1),b(2),c(3),d(4),e(5),f(6)}, kde číslo v závorce určuje pořadí daného symbolu v našem uspořádání. Vzdálenost dvou symbolů je definována jako absolutní hodnota rozdílu jejich pořadí, např. d(a, c)= 1 3 =2. 1. Vytvořte vyhledávací automat pro vzorek v s maximálně dvěma chybami v δ vzdálenosti nad abecedou Σ. 2. Je tento automat deterministický? v = abbab 3. Simulujte práci tohoto automatu pro text T = aabcabbaacba
13 TIS 751 Mějme uspořádanou abecedu Σ = {a(1),b(2),c(3),d(4),e(5),f(6)}, kde číslo v závorce určuje pořadí daného symbolu v našem uspořádání. Vzdálenost dvou symbolů je definována jako absolutní hodnota rozdílu jejich pořadí, např. d(a, c)= 1 3 =2. 1. Vytvořte vyhledávací automat pro vzorek v s maximálně dvěma chybami v γ vzdálenosti nad abecedou Σ. v = abbab 2. Simulujte práci tohoto automatu pro text T = aabcabbaacba
14 TIS 791 Mějme uspořádanou abecedu Σ = {a(1),b(2),c(3),d(4),e(5),f(6)}, kde číslo v závorce určuje pořadí daného symbolu v našem uspořádání. Vzdálenost dvou symbolů je definována jako absolutní hodnota rozdílu jejich pořadí, např. d(a, c)= 1 3 =2. 1. Vytvořte vyhledávací automat pro vzorek v s maximálně dvěma chybami v γ vzdálenosti a jednou chybou v δ nad abecedou Σ. 2. Je tento automat deterministický? v = abbab 3. Simulujte práci tohoto automatu pro text T = aabcabbaacba
Hledání v textu algoritmem Boyer Moore
Zápočtová práce z Algoritmů a Datových Struktur II (NTIN061) Hledání v textu algoritmem Boyer Moore David Pěgřímek http://davpe.net Algoritmus Boyer Moore[1] slouží k vyhledání vzoru V v zadaném textu
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
Vyhledávání v textu. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava
Vyhledávání v textu doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 9. března 209 Jiří Dvorský (VŠB TUO) Vyhledávání v textu 402
Základy algoritmizace. Pattern matching
Základy algoritmizace Pattern matching 1 Pattern matching Úloha nalézt v nějakém textu výskyty zadaných textových vzorků patří v počítačové praxi k nejfrekventovanějším. Algoritmy, které ji řeší se používají
Dynamické programování UIN009 Efektivní algoritmy 1
Dynamické programování. 10.3.2005 UIN009 Efektivní algoritmy 1 Srovnání metody rozděl a panuj a dynamického programování Rozděl a panuj: top-down Dynamické programování: bottom-up Rozděl a panuj: překrývání
Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b
ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat
Návrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková strategie na vysoké škole
Pattern matching Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CI jako výuková strategie na vysoké škole Pattern matching porovnávání vzorů Hledání
Univerzální Turingův stroj a Nedeterministický Turingův stroj
27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Hardwarová realizace konečných automatů
BI-AAG - Automaty a gramatiky Katedra teoretické informatiky ČVUT FIT 11.1.21 Co potřebujeme Úvod Potřebujeme: zakódovat vstupní abecedu, zakódovat stavy automatu, pamatovat si současný stav, realizovat
1. Databázové systémy (MP leden 2010)
1. Databázové systémy (MP leden 2010) Fyzickáimplementace zadáníaněkterářešení 1 1.Zkolikaajakýchčástíseskládáčasprovstupněvýstupníoperaci? Ze tří částí: Seektime ječas,nežsehlavadiskudostanenadsprávnou
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
1.4. VEKTOROVÝ SOUČIN
.4. VEKTOROVÝ SOUČIN V této kapitole se dozvíte: definici vektorového (také vnějšího) součinu, jeho vlastnosti a geometrický význam; co rozumíme pravotočivou ortonormální nebo ortogonální bází; definici
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
1. Pojmy a definice. 2. Naivní algoritmus. 3. Boyer Moore
Algoritmy vyhledávaní v textu s lineární a sublineární složitostí, (naivní, Boyer-Moore), využití konečných automatů pro přesné a přibližné hledání v textu 1. Pojmy a definice Abeceda: Konečná množina
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Soustavy lineárních a kvadratických rovnic o dvou neznámých
Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1
Vyhledávání řetězců. a b a c a a b. a b a c a b. a b a c a b
Vyhledávání řetězců (Pattern Matching) T: P: a b a c a a b a b a c a b 4 1 3 2 a b a c a b Přehled 1. Co je vyhledávání řetězců 2. Algoritmus hrubé síly (Brute force) 3. Algoritmus Boyer Moore 4. Knuth
Přijímací zkouška na navazující magisterské studium 2017
Přijímací zkouška na navazující magisterské studium 207 Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31
Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu
kupní cena: 680 500,- Kč Splatnost jednorázově, do 30 dnů ode dne podpisu kupní smlouvy na účet prodávajícího. Návrh č. 2.
Návrh č. 1. kupní cena: 680 500,- Kč Návrh č. 2. kupní cena: 681 500,- Kč Návrh č. 3. 1 kupní cena: 682 500,- Kč Návrh č. 4. kupní cena: 683 500,- Kč Návrh č. 5. 2 kupní cena: 684 000,- Kč Návrh č. 6.
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
Programování II. Návrh programu I 2018/19
Programování II Návrh programu I 2018/19 Osnova přednášky Co víme? Objektový návrh programu. Příklad. Co víme? Třída Třída je popisem objektů se společnými vlastnostmi. class private:
Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní.
Teoretická informatika referáty 1 Referátč.1 Vysvětlete, co znamená tvrzení, že operace levého kvocientu je asociativní. Pak toto tvrzení pečlivě dokažte či vyvraťte. Dálevysvětlete,pročprokonečnýautomat
: Teoretická informatika(ti)
460-4065: Teoretická informatika(ti) prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) 460-4065 1/ 25 Základní informace
Algoritmy II. Otázky k průběžnému testu znalostí
Algoritmy II Otázky k průběžnému testu znalostí Revize ze dne 19. února 2018 2 Lineární datové struktury 1 1. Vysvětlete co znamená, že zásobník představuje paměť typu LIFO. 2. Co je to vrchol zásobníku?
63. ročník Matematické olympiády 2013/2014
63. ročník Matematické olympiády 2013/2014 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích
LinuxDays 2017 Ondřej Guth GNU grep LD 17 1 / 14
Používáte GNU grep? A víte, jak funguje uvnitř? Ondřej Guth ondrej.guth@fit.cvut.cz LinuxDays 2017 Ondřej Guth GNU grep LD 17 1 / 14 1 Úvod 2 Přehled zpracování vstupu 3 Obyčejný řetězec jako regulární
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
Programy na PODMÍNĚNÝ příkaz IF a CASE
Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:
Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH
Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy
Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
Témata bakalářských prací 2015/2016
Témata bakalářských prací 2015/2016 Název: Analýza magnetických akumulátorů kinetické energie. 1. Proveďte rešerši známých magnetických systémů v konstrukci strojů. 2. Proveďte citlivostní analýzu vybraných
Konečný automat. Jan Kybic.
Konečný automat Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 33 Konečný automat finite state machine Konečný automat = výpočetní model, primitivní počítač Řídící jednotka s
VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY
Jméno a příjmení: Školní rok: Třída: VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf 2007/2008 VI2 PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY Petr VOPALECKÝ Číslo úlohy: Počet
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Rovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
Obor: Informatika Únor 2006 Okruh: Základy matematiky Otázka: 1. Jméno: Bodů:...
Inf-M-1 Obor: Informatika Únor 2006 Okruh: Základy matematiky Otázka: 1. Uvažujte funkci f(x) =ln(x 2 x): Najděte její definiční obor, nulové body, vypočtěte jednostranné limity v krajních bodech definičních
Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,
Základy algoritmizace, Turingův stroj
Základy algoritmizace, Turingův stroj Matematické algoritmy (K611MA) Jan Přikryl, Miroslav Vlček 2. přednáška K611MA čtvrtek 1. října 2009 verze: 2009-10-15 00:55 1 1 Teoretický základ algoritmizace 1.1
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.
9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující
Dynamické programování. Optimální binární vyhledávací strom
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Lexikální analýza Teorie programovacích jazyků
Lexikální analýza Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Osnova dnešní přednášky 1 Úvod do teorie překladačů kompilátor a interpret
PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32
Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často
ZADÁNÍ BAKALÁŘSKÉ PRÁCE
ZADÁNÍ BAKALÁŘSKÉ PRÁCE Název: Návrh a implementace modifikací algoritmu protisměrného vyhledávání ve stromech Student: Kamil Červený Vedoucí: Ing. Jan Trávníček Studijní program: Informatika Studijní
Teoretická informatika TIN
Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
Teoretická informatika - Úkol č.1
Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je
UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky
UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky Tato skripta jsou určena pro kurs Základy matematické informatiky
Dotazy tvorba nových polí (vypočítané pole)
Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března / 50
Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března 2013 1/ 50 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často
FRP 6. cvičení Měření rizika
FRP 6. cvičení Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění
- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku
Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová
Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1
Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
Střední průmyslová škola, Ústí nad Labem, Resslova 5, příspěvková organizace
Číslo zadání: 1 Název zadání : Kombinační automat dvoubitová binární sčítačka Zadání : Navrhněte LO pro dvoubitovou binární sčítačku z TTL obvodů a) Proveďte analýzu zadané úlohy. b) Navrhněte sčítačku
Suffixové stromy. Osnova:
Suffixové stromy http://jakub.kotrla.net/suffixtrees/ Osnova: Motivační příklad Přehled možných řešení Definice suffixového stromu Řešení pomocí suffixových stromů Konstrukce suffixového stromu Další použití,
Konečný automat Teorie programovacích jazyků
Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu
Uplatnění metod na zvolený jazyk
Uplatnění metod na zvolený jazyk Při výběru mezi metodami výše popsanými se řídíme především podle typu symbolů, které jazyk obsahuje. Výhodná bývá často kombinace těchto metod nejdřív použijeme metodu
Studijní program ELEKTROTECHNIKA A INFORMATIKA
STÁTNÍ ZÁVĚREČNÁ ZKOUŠKA Studijní obor APLIKOVANÁ INFORMATIKA Studijní program ELEKTROTECHNIKA A INFORMATIKA Tento dokument je platný pro studenty oboru Aplikovaná informatika, kteří začali studovat nejpozději
Zadání semestrálního projektu PAM
P ř evaděč RS485 Navrhněte s procesorem AT89C2051 převaděč komunikační sběrnice RS485 s automatickým obracením směru převodníku po přenosu bytu. Převaděč vybavte manuálním nastavením přenosové rychlosti
Zadání projektů k modulu: 1. Základy integrální logistiky
projektů k modulu: 1. Základy integrální logistiky Identifikace cílů pro firemní politiku logistiky P01 Aplikujte definici pojmu firemní politika logistiky a navrhněte smysluplné cíle pro politiku logistiky
NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32
NP-úplnost M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května 2007 1/ 32 Rozhodovací problémy Definice Rozhodovací problém je takový, kde je množina možných výstupů dvouprvková
AUTOMATY A GRAMATIKY
AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky.
PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Písemná zkouška z předmětu Teoretická informatika (UKÁZKA) Doba trvání: 90 minut Max. zisk: 65 bodů Minimální bodový zisk nutný k uznání: 25 bodů (jak je ovšem
Maturitní témata Školní rok: 2015/2016
Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní
y (5) (x) y (4) (x) + 4y (3) (x) 12y (x) 45y (x) 27y(x) (horní indexy značí derivaci) pro 3. y(x) = x sin 3x 4. y(x) = x cos 3x 9.
Přezdívka: Jméno a příjmení: výsledek 101 Vypočtěte y x y 4 x + 4y x 12y x 4y x 27yx horní indexy značí derivaci pro 1. yx = sin x 2. yx = cos x. yx = x sin x 4. yx = x cos x. yx = e x 1 6. yx = xe x 7.
Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost
1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný
Teoretická informatika průběh výuky v semestru 1
Teoretická informatika průběh výuky v semestru 1 Týden 1 Po přednášce 14.9. bude text asi mírně modifikován, ale příklady na cvičení se nezmění. (Navíc dodám na web slidy.) Přednáška Na začátku jsme si
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27
Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného
Fakulta informačních technologií. Teoretická informatika
Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
Elektrická měření pro I. ročník (Laboratorní cvičení)
Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření
4. Teorie informace, teorie složitosti algoritmů. doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 4. Teorie informace, teorie složitosti algoritmů doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Standardní algoritmy vyhledávací.
Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární
Na rozšiřující přednášce minulý týden jsme se věnovali zejména. algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární výraz
Teoretická informatika průběh výuky v semestru 1 Týden 5 Přednáška Na rozšiřující přednášce minulý týden jsme se věnovali zejména algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární
Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.
Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Pod slovem automat si většina lidí představí automat na kávu. Jiným toto slovo
J. Hora, P. Jedlička ÚVODNÍ PŘÍKLDY Úvodní příklady Pod slovem automat si většina lidí představí automat na kávu. Jiným toto slovo může navodit představu nonstop herny a automatů, na kterých se točí tři
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 66 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 66 sekvencí pokud biologové objeví nový gen, většinou se nezná jeho funkce zkouší se zjistit, kterým