Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
|
|
- Milada Jarošová
- před 8 lety
- Počet zobrazení:
Transkript
1 BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag) 10. Vlastnosti regulárních jazyků Jan Holub Katedra teoretické informatiky Fakulta informačních technologií ČVUT v Praze Necht automat A čte posloupnost 0 k. Při čtení této posloupnosti je průchod jednotlivými stavy následující: ε p 0 0 p 1 00 p k p k t.j., i < j : p i = p j. Označme takový stav q. c Jan Holub, 2011 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 1/22 Pumping lemma - podstata problému Předpokládejme, že by jazyk L = {0 n 1 n : n >= 1} byl regulární. V takovém případě by jazyk L byl přijímaný konečným automatem A s k stavy. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 3/22 Pumping lemma - problem resolution Předpokládejme dále, že přečtením vstupní posloupnosti 1 i se automat dostane ze stavu q do stavu r. Platí, že: Pokud by stav r byl koncovým stavem, pak by automat přijímal větu 0 j 1 i, což nechceme. Pokud by stav r nebyl koncovým stavem, pak by automat nepřijal větu 0 j 1 i, což také ale nechceme. Proto jazyk L = {0 n 1 n : 1} nemůže být regulární.
2 Pumping lemma formálně BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 6/22 BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 8/22 Necht L je regulární jazyk. Pak pro jazyk L existuje konstanta p 1 taková, že pro každou větu w L platí: Jestliže w p, pak w lze zapsat ve tvaru w = xyz tak, že: y ε (t.j. y 1), xy p, i 0 platí, že xy i z L. Důkaz, že jazyk L = {0 n 1 n : n 1} není regulární Předpokládejme, že L je regulární. Pak pomocí pumping lemmatu musí platit, že existuje konstanta p 1 taková, že pro každou větu w L platí, že: Jestliže w p, pak w lze zapsat ve tvaru w = xyz tak, že: y ε (t.j. y 1), xy p, i 0 platí, že xy i z L. Předpokládejme, že věta w = 0 p 1 p L je delší než p a tudíž musí splňovat požadavky PL. K důkazu, že L není regulární, zkusíme všechna možná rozdělení věty w na xyz. Musíme pak dokázat, že PL neplatí ani pro jedno z nich. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 5/22 Pumping lemma formálně Viz neformální vysvětlení výše. Pro jazyk L existuje konečný automat a v něm je smyčka. Tato smyčka čte neprázdný podřetěz y. Platí, že tato smyčka se může libovolně-krát pumpovat. Pokud je z L, pak i pro každé i-násobné pumpování pro i 0 platí, že věta xy i je z L. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 7/22 Důkaz, že jazyk L = {0 n 1 n : n 1} není regulární Podle prvních dvou podmínek musí platit: xy je neprázdná posloupnost nul, y je neprázdná posloupnost nul, z obsahuje všechny jedničkt. Ale pak xy 0 z (čili odstraníme y z w = xyz) nepatří do L (protože počet nul v xy 0 z je určitě menší něž počet jedniček)! Proto pumping lemma neplatí pro L a L není regulární jazyk.
3 BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 10/22 BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 12/22 Důkaz, že jazyk L = {1 m : m je prvočílo} není regulární Předpokládejme, že L je regulární. Pak pomocí pumping lemmatu musí platit, že existuje konstanta p 1 taková,... (viz Pumping Lemma): Předpokládejme větu w = 1 m pro prvočíslo m p + 2. Nyní předpokládejme rozdělení w = xyz a napumpovanou větu w 1 = xy m y z. Ukážeme, že w 1 nepatří do L, což rozporuje Pumping lemma. Důkaz, že jazyk L = {1 m : m je prvočílo} není regulární (1 + y ) 1, protože y 1. m p + 2, y xy p, proto m y p + 2 p = 2. Pumping Lemma neplatí pro jazyk L, nebot pro libovolné rozdělení w = xyz L podle první ze dvou podmínek PL platí, že xy m y z nepatří do L. Proto, L není regulární. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 9/22 Důkaz, že jazyk L = {1 m : m je prvočílo} není regulární Uvažujme délku věty w 1 = xy m y z. Pak platí, že xy m y z = xz + (m y ) y = (m y ) + (m y ) y = (m y ) (1 + y ). w 1 by bylo pročíslem, pouze kdyby bud to (m y ) nebo (1 + y ) byly rovné jedné. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 11/22 Kontrolní otázka Jak velká je konstanta p v Pumping lemmatu pro konečný jazyk? (Poznámka: Každý konečný jazyk je regulární, a proto pro něj musí platit Pumping Lemma.)
4 Myhill-Nerodova věta: motivace BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 14/22 Pravá kongruence a prefixová ekvivalence BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 16/22 MNv charakterizuje některé zásadní vztahy mezi konečnými automaty nad abecedou Σ a jistými ekvivalenčními relacemi nad řetězci ze Σ, MNv popisuje některé z nutných a postačujících podmínek pro to, aby daný jazyk byl jazykem regulárním (používá se často k důkazu neregularity jazyka), MNv poskytuje formální bázi pro elegantní důkaz existence unikátního (až na isomorfismus) minimálního DKA k danému regulárnímu jazyku. Necht Σ je abeceda a je ekvivalence na Σ. Ekvivalence je pravou kongruencí, jestliže pro každé u, v, w Σ platí, že : u v uw vw Necht L je libovolný (ne nutně regulární) jazyk nad abecedou Σ. Definujeme prefixovou ekvivalenci pro L, jako relaci L na množině Σ následovně: u L v w Σ : uw L vw L BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 13/22 Pravá kongruence a prefixová ekvivalence BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 15/22 Myhill-Nerodova věta Equivalence je binární relace, která je reflexivní, symmetrickí and transitivní. Třída ekvivalence prvku a na množině X je podmnožina X, obsahující prvky ekvivalentní s a. The set of all equivalence classes in X is called the quotient set of X by and is denoted by X/. Index equivalence je počet tříd ekvivalence v Σ/. Jestliže existuje nekonečně mnoho tříd ekvivalence, definujeme index jako. Necht L je jazyk nad Σ. Pak následující tvrzení jsou ekvivalentní: 1. L je jazyk přijímaný deterministickým konečným automatem. 2. L je sjednocením některých tříd rozkladu určeného pravou kongruencí na Σ s konečným indexem. 3. Relace L má konečný index. Dokážeme následující implikace: The theorem is then implied by propositional calculus.
5 Myhill-Nerodova věta: 1 2 BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 18/22 Myhill-Nerodova věta: 2 3 BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 20/22 Je-li L přijímán DKA, pak L je sjednocením některých tříd rozkladu určeného pravou kongruencí na Σ s konečným indexem. Zaved me si pro DKA M = (Q, Σ, δ, q 0, F ) zobecněnou přechodovou funkci ˆδ. ˆδ : Q Σ Q tak, že q 1, q 2 Q, w Σ : ˆδ(q1, w) = q2 (q1, w) M (q2, ε). Existuje-li relace splňující podmínku 2, pak L má konečný index. Pro všechny u, v Σ takové, že u v, platí u L v: Necht u v. Ukážeme, že také u L v, tj. w Σ : uw L vw L. Víme, že uw vw a protože L je sjednocením některých tříd rozkladu Σ /, platí také uw L vw L. Víme tedy, že L (tj. L je největší pravá kongruence s danými vlastnostmi). Každá třída je obsažena v nějaké třídě L. Index L nemůže být větší než index. má konenčý index a tedy i L má konečný index. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 17/22 Myhill-Nerodova věta: 1 2 Pro daný jazky L přijímaný DKA M zkonstruujeme s potřebnými vlastnostmi: Necht M = (Q, Σ, δ, q 0, F ) a δ je úplná. Zvolíme jako binární relaci na Σ takovou, že u v ˆδ(q 0, u) = ˆδ(q 0, v). Ukážeme, že má potřebné vlastnosti: je ekvivalence: je reflexivní, transitivní a symmetrická. má konečný index: třídy rozkladu odpovídají stavům DKA. je pravá kongruence: Necht u v a a Σ. Pak ˆδ(q0, ua) = δ(ˆδ(q0, u), a) = δ(ˆδ(q0, v), a) = ˆδ(q0, va) a tedy ua va. L je sjednocením některých tříd ekvivalence Σ / těch, které odpovídají F. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 19/22 Myhill-Nerodova věta: 3 1 Má-li L konečný index, pak L je přijímán nějakým konečným automatem. Vytvoříme M = (Q, Σ, δ, q 0, F ) přijímající L: Q = Σ / L (stavy jsou třídy rozkladu Σ relací L ), u Σ, a Σ : δ([u], a) = [ua], q 0 = [ε], F = {[x] x L}. Uvedená konstrukce je korektní, tj. L = L(M): Indukcí nad délkou slova v ukážeme, že v Σ : ˆδ([ε], v) = [v]. v L [v] F ˆδ([ε], v) F.
6 Důkaz neregularity pomocí M.-N. věty M.-N. věta a minimalita DKA Dokažte, že jazyk L = {0 n 1 n : n >= 1} není regulární. Žádné řetězce ε, 0, 0 2, 0 3,... nejsou L -equivalentní, protože 0 i 1 i L, ale 0 i 1 j / L pro i j. L má tedy nekonečně mnoho tříd (neboli nekonečný index). Podle Myhill-Nerodovy věty tedy nemůže být jazyk L přijímán žádným konečným automatem. Věta (2. varianta M.-N. věty) Počet stavů libovolného minimálního DKA přijímajícího jazyk L je roven indexu L. (Takový DKA existuje právě tehdy, když je index L konečný.) Každý DKA (můžeme uvažovat DKA bez dosažitelných stavů) určuje jistou pravou kongruenci s konečným indexem a naopak. Je-li L regulární, L je největší pravou kongruencí s konečným indexem takovou, že L je sjednocením některých tříd příslušného rozkladu. Konečný automat, který odpovídá L (viz důkaz 3 1 M.-N. věty), je tedy minimální konečný automat přijímající L. BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 21/22 BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 22/22
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
AUTOMATY A GRAMATIKY
AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Teoretická informatika - Úkol č.1
Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je
Automaty a gramatiky. Na zopakování X*/~ Roman Barták, KTIML. Iterační (pumping) lemma. Pravidelnost regulárních jazyků
2 utomaty a gramatiky Roman Barták, KTML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na zopakování Víme, co je konečný automat = (Q,X,δ,q,F) Umíme konečné automaty charakterizovat (Myhill-)Nerodova
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Základy teoretické informatiky Formální jazyky a automaty
Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Kongruence na množině celých čísel
121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
Minimalizace KA - Úvod
Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
Ekvivalence. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5 Evropský sociální fond.
Projekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27
Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b
ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat
Základy teorie množin
1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé
FI MU. Automaty nad nekonečnými slovy. Fakulta informatiky Masarykova univerzita. Učební text FI MU verze 1.0
Ð Û Å«Æ ±²³ µ ¹º»¼½¾ Ý FI MU Fakulta informatiky Masarykova univerzita Automaty nad nekonečnými slovy Mojmír Křetínský Učební text FI MU verze 1.0 Copyright c 2002, FI MU prosinec 2002 Obsah 1 Büchiho
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy
Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí
Systém přirozené dedukce výrokové logiky
Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Logické programy Deklarativní interpretace
Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
Aplikace: Znalostní báze
Aplikace: Znalostní báze 1 Znalostní báze je systém, který dostává fakta o prostředí a dotazy o něm. Znalostní báze je agentem ve větším systému, který obsahuje prostředí (také agent), správce (agent),
Řešení rekurentních rovnic 2. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 11
Řešení rekurentních rovnic 2 doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce
3. přednáška 15. října 2007
3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Vrcholová barevnost grafu
Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové
FREDHOLMOVA ALTERNATIVA
FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
Matematické důkazy Struktura matematiky a typy důkazů
Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.
15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Univerzální Turingův stroj a Nedeterministický Turingův stroj
27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Úlohy k procvičování textu o univerzální algebře
Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky
Martin Plicka. October 24, 2012
BIK-AAG - Řešené příklady Martin Plicka October 24, 2012 1 Konečné automaty - názorně Mějme následující automat... zkuste si jej nakreslit. a b ɛ 0 {0,1} {0,4} {4} 1 {4,5} {2} {5} 2 {3} {5,6} {6} 3 {3}
α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace
Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme
Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma
10 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Chomského normální forma Podívejme se nyní na derivační stromy. Jak odhadnout výšku stromu podle délky
Relace. R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace
Relace 1. Nechť A = {n N; n < 10}, B = {m N; m 12}, R = {[m, n] A B; m + 1 = n}, S = {[m, n] A B; m 2 = n}. Zapište relace R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace R R, S S,
Cvičení ke kursu Vyčíslitelnost
Cvičení ke kursu Vyčíslitelnost (23. prosince 2017) 1. Odvoďte funkci [x, y, z] x y z ze základních funkcí pomocí operace. 2. Dokažte, že relace nesoudělnosti je 0. Dokažte, že grafy funkcí Mod a Div jsou
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2018/2019 1 / 13 Dokončené tablo Chceme, aby dokončená bezesporná
1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),
Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních
LIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
Matematická indukce. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 3
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 3 Evropský sociální fond.
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
10. Vektorové podprostory
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
Hypergrafové removal lemma a Szemérediho
Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných
Teoretická informatika TIN 2013/2014
Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
Historie matematiky a informatiky Cvičení 1
Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co
Matematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března / 50
Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března 2013 1/ 50 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY. }w!"#$%&'()+,-./012345<ya
MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY }w!"#$%&'()+,-./2345
Přednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.
BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Cvičení z logiky II.
Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat