Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Rozměr: px
Začít zobrazení ze stránky:

Download "Turingovy stroje. Teoretická informatika Tomáš Foltýnek"

Transkript

1 Turingovy stroje Teoretická informatika Tomáš Foltýnek

2 Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh, obor integrity, těleso? Co je to homomorfismus, vnoření a izomorfismus? Co je to polynom? Nad jakou algebraickou strukturou se tvoří? Co nám říká základní věta algebry?

3 Teoretická informatika 3 Osnova dnešní a zítřejší přednášky Opakování Definice jazyka a gramatiky Chomského hierarchie jazyků Regulární jazyky a konečné automaty Bezkontextové jazyky a zásobníkové automaty Popis Turingova stroje Definice, konfigurace, krok výpočtu Jazyky a problémy Rekursivní a rekursivně spočetné jazyky Rozhodnutelnost problémů Výpočet funkcí pomocí TS Varianty TS Vícepáskový TS Nedeterministický TS Konstrukce TS Uzávěrové vlastnosti rekursivních a rekursivně spočetných jazyků

4 Teoretická informatika 4 Opakování: Abeceda a jazyk Abecedou rozumíme libovolnou konečnou množinu Σ, jejíž prvky nazýváme znaky Slovo (řetězec) nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy Délku slova w značíme w Prázdné slovo značíme ε Množinu všech slov nad abecedou Σ značíme Σ * Na množině všech slov zavádíme asociativní operaci (zřetězení) Na základě zřetězení definujeme i-tou mocninu slova w takto: w 0 = ε w i+1 = w w i Jazyk je libovolná podmnožina Σ * tedy libovolná množina slov nad abecedou Σ

5 Teoretická informatika strana 5 Opakování: Operace nad jazyky Nechť L 1, L 2 jsou jazyky nad abecedou Σ. Sjednocením jazyků L 1 L 2 = {w w L 1 w L 2 } Totéž jako množinové sjednocení Obsahuje slova z prvního i druhého jazyka L 1 L 2 = {w w L 1 w L 2 } Totéž jako množinový průnik Obsahuje slova patřící do obou jazyků současně L 1 L 2 = {w w = uv, u L 1 v L 2 } Obsahuje slova tvořící zřetězení slov z prvního jazyka se slovy z druhého jazyka Analogicky jako u slov definujeme i-tou mocninu jazyka L 1 * = {w w = u*, u L 1 } Doplněk jazyka L1: co-l 1 = Σ * L 1

6 Teoretická informatika 6 Opakování: Gramatika Gramatika G je čtveřice (N, Σ, P, S), kde N je konečná neprázdná množina neterminálních symbolů Σ je konečná množina terminálních symbolů disjunktní s množinou N P (N Σ)*N(N Σ)* (N Σ)* je konečná množina přepisovacích pravidel přepisovací pravidla obvykle zapisujeme ve tvaru α β, kde α musí obsahovat alespoň jeden neterminál. S N je počáteční symbol (též kořen gramatiky) Na množině (N Σ)* definujeme relaci odvození G a její reflexivní a tranzitivní uzávěr G * Pak definujeme jazyk generovaný gramatikou G jako množinu všech slov odvoditelných z počátečního symbolu Tedy L(G) = {w w Σ *, S G * w}

7 Teoretická informatika 7 Opakování: Chomského hierarchie gramatik a jazyků Typ 0: Na tvar pravidel nejsou kladeny žádné omezující požadavky Frázové gramatiky Typ 1: Pro každé pravidlo α β platí, že α β s eventuelní výjimkou pravidla S ε, pokud se S nevyskytuje na pravé straně žádného pravidla Kontextové gramatiky Typ 2: Každé pravidlo je tvaru A α, kde α 1 s eventuelní výjimkou pravidla S ε, pokud se S nevyskytuje na pravé straně žádného pravidla Bezkontextové gramatiky Typ3: Každé pravidlo je tvaru A ab nebo A a s eventuelní výjimkou pravidla S ε, pokud se S nevyskytuje na pravé straně žádného pravidla Regulární gramatiky

8 Teoretická informatika 8 Opakování: Konečné automaty Konečný automat je pětice M = (Q, Σ, δ, q 0, F), kde Q je neprázdná množina vnitřních stavů Σ je konečná množina vstupních symbolů nazývaná též abeceda δ: Q Σ Q je přechodová funkce F Q je neprázdná množina koncových stavů Jazyk akceptovaný KA M je množina všech slov, pod kterými automat přejde do některého z koncových stavů L(M) = {w δ^(q 0,w) F} δ^ je rozšířená přechodová funkce definovaná induktivně vzhledem k délce slova Nedeterministický konečný automat Automat s ε-kroky

9 Teoretická informatika 9 Opakování: Regulární výrazy Třída regulárních jazyků nad abecedou Σ, označovaná jako R(Σ) je definována induktivně:, {ε}, {a} pro každé a Σ je regulární jazyk nad Σ Jsou-li K, L regulární jazyky nad Σ, pak i K L, K L a K* jsou regulární jazyky nad Σ Nic jiného není regulární jazyk nad Σ Kleeneho věta: Libovolný jazyk je regulární právě tehdy, když je rozpoznatelný konečným automatem

10 Teoretická informatika 10 Opakování: Bezkontextové jazyky Nechť G = (N, Σ, P, S) je CFG. Pak pro každé slovo z L(G) existuje derivační strom v gramatice G takový, že: S je kořen derivačního stromu Každý uzel má návěští, které je symbolem z N Σ {ε} Návěští následníků každého uzlu odpovídají symbolům z použitého přepisovacího pravidla Zřetězením návěští listů dostaneme odvozené slovo

11 Teoretická informatika 11 Opakování: Zásobníkové automaty I. Nedeterministický zásobníkový automat (PDA) je sedmice M = (Q, Σ, Γ, δ, q 0, Z 0, F), kde Q je konečná množina vnitřních stavů Σ je konečná množina vstupních symbolů Γ je konečná množina zásobníkových symbolů δ: Q (Σ ε) Γ P fin (Q Γ * ) je přechodová funkce q 0 Q je počáteční stav Z 0 Γ je počáteční symbol v zásobníku F Q je množina koncových stavů

12 Teoretická informatika strana 12 Opakování: Zásobníkové automaty II. Konfigurace PDA M je libovolný prvek (q, w, γ) Q Γ * q je momentální stav w je dosud nepřečtená část vstupního slova γ je obsah zásobníku Počáteční konfigurace PDA M je (q 0, w, Z 0 ) Krok výpočtu je relace na množině všech konfigurací označovaná symbolem M a definovaná (p, aw, Zα) M (q, w, γα) (q,γ) δ(p,a,z) pro a Σ {ε} Reflexivní a tranzitivní uzávěr relace M značíme symbolem M *

13 Teoretická informatika 13 Opakování: Zásobníkové automaty III. Jazyk rozpoznávaný konečným stavem PDA M L(M) = {w (q 0, w, Z 0 ) M (q f, ε, α) } Jazyk rozpoznávaný prázdným zásobníkem PAD M L(M) = {w (q 0, w, Z 0 ) M (q, ε, ε) } Oba způsoby akceptování jsou ekvivalentní

14 Teoretická informatika 14 Syntaktická analýza Ke každé CFG G lze sestrojit PDA M takový, že L(G) = L(M) Ke každému PDA M existuje CFG G taková, že L(M) = L(G) Nedeterministická syntaktická analýza shora dolů simulace odvozovacích pravidel Nedeterministická syntaktická analýza zdola nahoru budování pravé větné formy jako zřetězení obsahu zásobníku a dosud nepřečteného vstupu

15 Teoretická informatika 15 Definice Turingova stroje Turingův stroj je devítice M = (Q, Σ, Γ,,, δ, q 0, q A, q R ), kde Q je konečná množina vnitřních stavů Σ je konečná množina vstupních symbolů Σ, Σ Γ je konečná množina páskových symbolů Σ Γ, Γ, Γ (Γ Σ) je počáteční symbol pásky (Γ Σ) je prázdný symbol δ: (Q {q A, q R }) Γ Q Γ {L,R} je přechodová funkce q 0 Q je počáteční stav q A Q je koncový akceptující stav q R Q je koncový zamítající stav

16 Teoretická informatika 16 Výpočet Turingova stroje I. Turingův stroj čte symboly ze vstupní pásky Na základě vnitřního stavu a čteného symbolu TS podle přechodové funkce změní svůj vnitřní stav zapíše na pásku nový symbol posune čtecí hlavu doleva, nebo doprava Vstupní páska je jednosměrně nekonečná Zaplněno je vždy jen konečně mnoho políček Ostatní políčka obsahují prázdný symbol Výpočet TS končí, jestliže se stroj dostane do některého ze stavů q A, q R.

17 Teoretická informatika 17 Konfigurace Turingova stroje Konfigurace je jednoznačně určena vnitřním stavem obsahem pásky pozicí čtecí hlavy Konfiguraci tedy lze popsat trojicí K = (δ Q, γ Γ *, n) Q Γ * N 0 Počáteční konfigurace počáteční stav na pásce je vstupní slovo čtecí hlava se nachází na počátečním políčku pásky

18 Teoretická informatika 18 Akceptující a zamítající konfigurace Výpočet TS končí, dostane-li se do některého ze stavů q A, q R. Akceptující konfigurace je tedy konfigurace tvaru (q A, γ, n) Zamítající konfigurace je pak konfigurace tvaru (q R, γ, n)

19 Teoretická informatika 19 Krok výpočtu TS Na množině všech konfigurací TS definujeme binární relaci krok výpočtu označovanou M (p, γ, n) M { (q, s n b (γ), n+1) pro δ(p,γ n ) = (q,b,r) (q, s n b (γ), n-1) pro δ(p,γ n ) = (q,b,l) Reflexivní a tranzitivní uzávěr relace M značíme M * a definujeme jako k-násobný součin relace M pro všechna k N 0

20 Teoretická informatika 20 Výpočet Turingova stroje II. Výpočet TS je posloupnost konfigurací K 0, K 1, K 2, K 0 je počáteční konfigurace TS K i M K i+1 i 0 Výpočet může být buď konečný, nebo nekonečný. Je-li konečný, pak poslední konfigurací ve výpočtu je akceptující, nebo zamítající konfigurace.

21 Teoretická informatika 21 Akceptuje, zamítá, cyklí Řekneme, že TS M daný vstupní řetězec w Σ * akceptuje, jestliže výpočet M je konečný a poslední konfigurace je akceptující, tedy (q 0, w *, 0) M * (q A, z, n) zamítá, jestliže výpočet M je konečný a poslední konfigurace je zamítající, tedy (q 0, w *, 0) M * (q R, z, n) Řekneme, že TS M pro daný vstupní řetězec w Σ * cyklí, jestliže výpočet TS M na slově w je nekonečný. Jestliže TS M dané slovo w akceptuje, nebo zamítá, pak říkáme, že nad daným slovem zastaví. TS, který zastaví pro každý vstup, se nazývá úplný.

22 Teoretická informatika 22 Jazyk akceptovaný a rozhodovaný TS Jazyk akceptovaný TS M označujeme L(M) a definujeme jako množinu slov, které TS M akceptuje: L(M) = {w Σ * M akceptuje w} Je-li M navíc úplný TS, říkáme, že M rozhoduje jazyk L.

23 Teoretická informatika 23 Příklad Navrhněte TS rozhodující jazyk L = {a n b n c n n >= 0}

24 Teoretická informatika 24 Rekursivní a rekursivně spočetné jazyky Jazyk L Σ * nazýváme rekursivně spočetný právě tehdy, když L = L(M) pro nějaký TS M rekursivní právě tehdy, když L = L(M) pro nějaký úplný TS M Tedy Ke každému rekursivnímu jazyku existuje TS, který jej rozhoduje, tj. jeho výpočet je konečný Ke každému rekursivně spočetnému jazyku musí existovat TS, který akceptuje každé slovo w L, ale pro slova nepatřící do L buď zamítá, nebo cyklí.

25 Teoretická informatika 25 Rozhodnutelnost problémů Problém určit, zda řetězec w má vlastnost P, nazýváme rozhodnutelný právě tehdy, když množina všech řetězců majících vlastnost P je rekursivní tj. existuje TS akceptující každé slovo mající vlastnost P a zamítající každé slovo nemající vlastnost P částečně rozhodnutelný právě tehdy, když množina řetězců majících vlastnost P je rekursivně spočetná tj. existuje TS akceptující každé slovo mající vlastnost P a zamítající nebo cyklící nad každým slovem, které vlastnost P nemá nerozhodnutelný právě tehdy, když není rozhodnutelný, ani částečně rozhodnutelný

26 Teoretická informatika 26 Ekvivalence jazyků a problémů Problém určit, zda řetězec w má vlastnost P je rozhodnutelný Vlastnost P je rozhodnutelná Problém P je rozhodnutelný P je rozhodnutelný jazyk {w w má vlastnost P} je rekursivní L je rekursivní problém w L je rozhodnutelný P je částečně rozhodnutelný jazyk {w w má vlastnost P} je rekursivně spočetný L je rekursivně spočetný problém w L je částečně rozhodnutelný

27 Teoretická informatika strana 27 Výpočet funkcí pomocí TS Doposud jsme se zabývali pouze tím, v jakém stavu TS skončí (skončí-li) bez ohledu na stav pásky v koncové konfiguraci Řekneme, že TS M počítá funkci f:n 0 k N 0 právě tehdy, když akceptuje každé vstupní slovo tvaru vstupní páska na konci výpočtu obsahuje řetězec Funkce f:n 0 k N 0 se nazývá částečně rekursivní právě tehdy, když existuje TS M počítající funkci f rekursivní právě tehdy, když existuje úplný TS M počítající funkci f

28 Teoretická informatika 28 Příklad Navrhněte TS počítající součet a součin dvou čísel zapsaných v unární soustavě

29 Teoretická informatika 29 Vícepáskový TS Uvažujme TS, který má namísto jedné pásky k pásek, k N na každé pásce je samostatná čtecí hlava. Otázka: Existují jazyky akceptované/ rozhodované tímto strojem, které nejsou akceptované/rozhodované jednopáskovým TS? Jinými slovy: Je vícepáskový TS mocnější než jednopáskový TS? Příklad: Navrhněte TS rozhodující, zda dané číslo, napsané na vstupní pásce v binární soustavě, je prvočíslo či nikoliv.

30 Teoretická informatika 30 Nedeterministický TS I. Nedeterministický Turingův stroj je devítice M = (Q, Σ, Γ,,, δ, q 0, q A, q R ), kde Q je konečná množina vnitřních stavů Σ je konečná množina vstupních symbolů Σ, Σ Γ je konečná množina páskových symbolů Σ Γ, Γ, Γ (Γ Σ) je počáteční symbol pásky (Γ Σ) je prázdný symbol δ: (Q {q A, q R }) Γ 2 Q Γ {L,R} je přechodová funkce q 0 Q je počáteční stav q A Q je koncový akceptující stav q R Q je koncový zamítající stav

31 Teoretická informatika 31 Nedeterministický TS II. Nedeterministický TS může mít v každém kroku na výběr několik možností Podobně jako u DTS definujeme i u NTS relaci krok výpočtu předpisem (p, γ, n) M * { (q, s n b (γ), n+1) pokud (q,b,r) δ(p,γ n ) (q, s n b (γ), n-1) pokud (q,b,l) δ(p,γ n ) Všechny možnosti výpočtu TS lze popsat stromem (tzv. výpočtový strom), jehož uzly jsou konfigurace, kořen je počáteční konfigurace a listy jsou koncové konfigurace.

32 Teoretická informatika 32 Simulace NTS pomocí DTS Pro každý NTS N existuje DTS D takový, že L(N) = L(D) Stroj D, který bude simulovat výpočet stroje N, musí prozkoumat všechny možné výpočty stroje N Musí tedy prohledat výpočtový strom stroje N Stroj D bude mít 3 pásky 1. bude obsahovat vstupní slovo a její obsah se nebude v průběhu výpočtu měnit 2. bude sloužit k simulaci aktuálního výpočtu stroje N 3. bude obsahovat informace o dosud prozkoumaných možnostech výpočtu stroje N posloupnost přirozených čísel; pro každý stav určují, kolikátý následník byl zvolen Narazí-li D v průběhu výpočtu na akceptující/zamítající konfiguraci stroje N, pak akceptuje/zamítá Pokud stroj N při všech výpočtech cyklí, bude cyklit i stroj D.

33 Teoretická informatika 33 Stroj se dvěma zásobníky Představme si TS, který má namísto vstupní pásky dva zásobníky Zásobník S 1 obsahuje vše, co je od čtecí hlavy nalevo Zásobník S 2 obsahuje vše, co je od čtecí hlavy napravo a na vrcholu má právě čtený symbol Počáteční konfigurace: S 1 je prázdný S 2 obsahuje vstupní řetězec Krok výpočtu Posun hlavy doleva: push(s 2, pop(s 1 )) Posun hlavy doprava: push (S 1, pop(s 2 )) Výpočetně ekvivalentní Používá se při implementaci TS

34 Teoretická informatika 34 Připomenutí: Souvislosti Konečný automat nemá žádnou paměť rozpoznává regulární jazyky Zásobníkový automat má jeden zásobník rozpoznává bezkontextové jazyky Turingův stroj má dva zásobníky rozpoznává jazyky typu 0

35 Teoretická informatika 35 Metody konstrukce TS Zapamatování v řídicí jednotce Navrhněte TS rozhodující jazyk L = {xux x {a,b}, u {a,b} * } {a,b} Tedy jazyk všech slov, které začínají a končí stejným symbolem Označování symbolů Navrhněte TS rozhodující jazyk L = {w w \in {a} *, w = 2 n, n 1} Tedy jazyk všech slov nad jednoprvkovou abecedou, jejichž délka je mocninou dvojky Používání více pásek

36 Teoretická informatika 36 Vlastnosti rekursivních a rekursivně spočetných jazyků I. Třídy rekursivních a rekurzivně spočetných jazyků jsou uzavřeny vzhledem k operacím,,, * Jinými slovy sjednocení rekursivních / rekursivně spočetných jazyků je opět rekursivní / rekursivně spočetný jazyk totéž platí pro průnik, zřetězení a iteraci Jak zkonstruovat TS akceptující / rozhodující zmíněné jazyky?

37 Teoretická informatika 37 Vlastnosti rekursivních a rekursivně spočetných jazyků II. Třída rekursivních jazyků je uzavřená vzhledem k operaci komplementu Nechť jazyk L i jeho komplement co-l jsou rekursivně spočetné. Pak jsou jazyky L i co-l rekursivní. Třída rekursivně spočetných jazyků není uzavřena vzhledem k operaci komplementu.

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

Formální jazyky a automaty Petr Šimeček

Formální jazyky a automaty Petr Šimeček Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Univerzální Turingův stroj a Nedeterministický Turingův stroj 27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův

Více

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43 Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným

Více

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem 11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva: 1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y

Více

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39 Bezkontextové jazyky Bezkontextové jazyky 1 p.1/39 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma

Více

Třída PTIME a třída NPTIME. NP-úplnost.

Třída PTIME a třída NPTIME. NP-úplnost. VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat

Více

Základy teoretické informatiky Formální jazyky a automaty

Základy teoretické informatiky Formální jazyky a automaty Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

Fakulta informačních technologií. Teoretická informatika

Fakulta informačních technologií. Teoretická informatika Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE.

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE. PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNAKICKÁ ANALÝZA DOKONČENÍ, IMPLEMENACE. VLASNOSI LL GRAMAIK A JAZYKŮ. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Gramatika

Více

/1: Teoretická informatika(ti) přednáška 4

/1: Teoretická informatika(ti) přednáška 4 456-330/1: Teoretická informatika(ti) přednáška 4 prof. RNDr Petr Jančar, CSc. katedra informatiky FI VŠB-TUO www.cs.vsb.cz/jancar LS 2009/2010 Petr Jančar (FI VŠB-TU) Teoretická informatika(ti) LS 2009/2010

Více

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31 Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu

Více

Složitost Filip Hlásek

Složitost Filip Hlásek Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

Automaty a gramatiky

Automaty a gramatiky Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Co bylo minule Úvod do formálních gramatik produkční systémy generativní gramatika G=(V N,V T,,P) G =

Více

ZÁKLADY TEORETICKÉ INFORMATIKY

ZÁKLADY TEORETICKÉ INFORMATIKY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ZÁKLADY TEORETICKÉ INFORMATIKY PAVEL MARTINEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

2 Formální jazyky a gramatiky

2 Formální jazyky a gramatiky 2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně

Více

Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy

Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy Metody a nástroje syntaktické analýzy Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 14. října 2011 Vlastnosti syntaktické analýzy Úkoly syntaktické

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/31

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/31 Bezkontextové jazyky Bezkontextové jazyky 1 p.1/31 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma

Více

TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze TURINGOVY STROJE Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 12 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Jednoznačné a nejednoznačné gramatiky

Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,

Více

Teoretická informatika TIN 2013/2014

Teoretická informatika TIN 2013/2014 Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Turingovy stroje. Turingovy stroje 1 p.1/28

Turingovy stroje. Turingovy stroje 1 p.1/28 Turingovy stroje Turingovy stroje 1 p.1/28 Churchova teze Churchova (Church-Turingova) teze: Turingovy stroje (a jim ekvivalentní systémy) definují svou výpočetní silou to, co intuitivně považujeme za

Více

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20 Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)

Více

Teoretická informatika - Úkol č.1

Teoretická informatika - Úkol č.1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH

Více

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky. Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při

Více

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky študenti MFF 15. augusta 2008 1 1 Základy teoretické informatiky Požadavky Logika - jazyk, formule, sémantika, tautologie

Více

Co je to univerzální algebra?

Co je to univerzální algebra? Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé

Více

Automaty a gramatiky. Roman Barták, KTIML. Separované gramatiky. Kontextové gramatiky. Chomského hierarchie

Automaty a gramatiky. Roman Barták, KTIML. Separované gramatiky. Kontextové gramatiky. Chomského hierarchie Chomského hierarchie Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak gramatiky typu 0 (rekurzivně spočetné jazyky L 0 ) pravidla v obecné formě gramatiky

Více

Teoretická informatika

Teoretická informatika Teoretická informatika TIN 2017/2018 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz prof. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba dr. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný

Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný Vysoké učení technické v Brně Fakulta informačních technologií Gramatiky nad volnými grupami 2005 Petr Blatný Abstrakt Tento dokument zavádí pojmy bezkontextové gramatiky nad volnou grupou a E0L gramatiky

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu.

(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Teoretická informatika průběh výuky v semestru 1 Týden 8 Přednáška- první část (viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Turingovy stroje,(výpočetní)

Více

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat

Více

Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}.

Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}. 2 Množiny a intervaly lgebraické výrazy 2.1 Množiny Chápání množiny lze shrnout takto: Množinou rozumíme každé shrnutí určitých a navzájem různých předmětů m našeho nazírání nebo myšlení (které nazýváme

Více

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)

Více

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27

Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27 Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného

Více

Bezkontextové gramatiky nad volnými grupami

Bezkontextové gramatiky nad volnými grupami Vysoké učení technické v Brně Fakulta informačních technologií Bezkontextové gramatiky nad volnými grupami 2004 Radek Bidlo Abstrakt Tento dokument zavádí pojem bezkontextové gramatiky nad volnou grupou

Více

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená

Více

Úlohy k procvičování textu o svazech

Úlohy k procvičování textu o svazech Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

Teoretická informatika TIN

Teoretická informatika TIN Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh

Více

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky Tato skripta jsou určena pro kurs Základy matematické informatiky

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Teoretická informatika průběh výuky v semestru 1

Teoretická informatika průběh výuky v semestru 1 Teoretická informatika průběh výuky v semestru 1 Týden 8 Přednáška Model RAM Ve studijním textu je detailně popsán model RAM, který je novějším výpočetním modelem než Turingův stroj a vychází z architektury

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde

Více

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Diplomová práce Vedoucí práce: RNDr.

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA VÝPOČETNÍ A DIDAKTICKÉ TECHNIKY PŘÍPRAVA KOMPONENT PRO E-KURZ KONEČNÉ AUTOMATY A FORMÁLNÍ JAZYKY BAKALÁŘSKÁ PRÁCE Luděk Hroch Informatika se zaměřením

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

Teoretická informatika průběh výuky v semestru 1

Teoretická informatika průběh výuky v semestru 1 Teoretická informatika průběh výuky v semestru 1 Týden 7 Přednáška (Výpočetní) problémy, rozhodovací(ano/ne) problémy,... Připomněli jsme si obecné definice a konkrétní problémy, jako např. SAT[problém

Více

Bezkontextové gramatiky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května / 49

Bezkontextové gramatiky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května / 49 Bezkontextové gramatiky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května 2018 1/ 49 Bezkontextové gramatiky Příklad: Chtěli bychom popsat jazyk aritmetických výrazů obsahující výrazy jako například:

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

Množiny, základní číselné množiny, množinové operace

Množiny, základní číselné množiny, množinové operace 2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

SYNTAKTICKÁ ANALÝZA ZALOŽENÁ NA GRAMATICKÝCH A AUTOMATOVÝCH SYSTÉMECH PARSING BASED ON GRAMMAR AND AUTOMATA SYSTEMS

SYNTAKTICKÁ ANALÝZA ZALOŽENÁ NA GRAMATICKÝCH A AUTOMATOVÝCH SYSTÉMECH PARSING BASED ON GRAMMAR AND AUTOMATA SYSTEMS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS SYNTAKTICKÁ ANALÝZA

Více

Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů

Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ) Připomeňme, že konečná posloupnost u 1, u 2,, u n vektorů z V je

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Z. Sawa (VŠB-TUO) Teoretická informatika 11. prosince / 63

Z. Sawa (VŠB-TUO) Teoretická informatika 11. prosince / 63 Výpočetní modely Z. Sawa (VŠB-TUO) Teoretická informatika 11. prosince 2018 1/ 63 Nutnost upřesnění pojmu algoritmus Dosavadní definice pojmu algoritmus byla poněkud vágní. Pokud bychom pro nějaký problém

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

/01: Teoretická informatika(ti) přednáška 5

/01: Teoretická informatika(ti) přednáška 5 460-4005/01: Teoretická informatika(ti) přednáška 5 prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar LS 2010/2011 Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) LS

Více

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více