Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
|
|
- Štěpánka Doležalová
- před 6 lety
- Počet zobrazení:
Transkript
1 Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
2 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3) 4 můžemevteoriiformálníchjazykůpomocíoperátorů+, a vytvářet tzv. regulární výrazy, jako třeba které reprezentují jazyky. (0+1) 0 Jakojehodnotouaritmetickéhovýrazu(5+3) 4číslo32,jehodnotou regulárníhovýrazu(0+1) 0 jazyk ({0} {1}) {0} M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
3 Regulární výrazy Induktivní definice regulárních výrazů nad abecedou Σ:,,a(kdea Σ)jsouregulárnívýrazy:... označujeprázdnýjazyk... označujejazyk {} a... označujejazyk {a} Jestliže α, βjsouregulárnívýrazy,paki(α+β),(α β),(α )jsou regulární výrazy: (α+β)... označujesjednoceníjazykůoznačených αaβ (α β)... označujezřetězeníjazykůoznačených αaβ (α )... označujeiteracijazykaoznačeného α Neexistují žádné další regulární výrazy než ty definované podle předchozích dvou bodů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
4 Regulární výrazy Příklad: Podledefinicejsou0i1regulárnívýrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
5 Regulární výrazy Příklad: Podledefinicejsou0i1regulárnívýrazy. Protože0i1jsouregulárnívýrazy,jei(0+1)regulárnívýraz. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
6 Regulární výrazy Příklad: Podledefinicejsou0i1regulárnívýrazy. Protože0i1jsouregulárnívýrazy,jei(0+1)regulárnívýraz. Protože0jeregulárnívýraz,jei(0 )regulárnívýraz. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
7 Regulární výrazy Příklad: Podledefinicejsou0i1regulárnívýrazy. Protože0i1jsouregulárnívýrazy,jei(0+1)regulárnívýraz. Protože0jeregulárnívýraz,jei(0 )regulárnívýraz. Protože(0+1)i(0 )jsouregulárnívýrazy,jei((0+1) (0 )) regulární výraz. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
8 Regulární výrazy Příklad: Podledefinicejsou0i1regulárnívýrazy. Protože0i1jsouregulárnívýrazy,jei(0+1)regulárnívýraz. Protože0jeregulárnívýraz,jei(0 )regulárnívýraz. Protože(0+1)i(0 )jsouregulárnívýrazy,jei((0+1) (0 )) regulární výraz. Poznámka: Jestliže α je regulární výraz, zápisem[α] označujeme jazyk definovaný regulárním výrazem α. [((0+1) (0 ))]={0,1,00,10,000,100,0000,1000,00000,... } M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
9 Regulární výrazy Aby byl zápis regulárních výrazů přehlednější a stručnější, používáme následují pravidla: Vynecháváme vnější pár závorek. Vynecháváme závorky, které jsou zbytečné vzhledem k asociativitě operací sjednocení(+) a zřetězení( ). Vynecháváme závorky, které jsou zbytečné vzhledem k prioritě operací (nejvyššíprioritumáiterace( ),menšízřetězení( )anejmenší sjednocení(+)). Nepíšeme tečku pro zřetězení. Příklad: Místo obvykle píšeme (((((0 1) ) 1) (1 1))+(((0 0)+1) )) (01) 111+(00+1) M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
10 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem0 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
11 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem jazyktvořenýjedinýmslovem01 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
12 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem jazyktvořenýjedinýmslovem jazyktvořenýdvěmaslovy0a1 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
13 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem jazyktvořenýjedinýmslovem jazyktvořenýdvěmaslovy0a jazyktvořenýslovy,0,00,000,... M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
14 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem jazyktvořenýjedinýmslovem jazyktvořenýdvěmaslovy0a jazyktvořenýslovy,0,00,000,... (01)... jazyktvořenýslovy,01,0101,010101,... M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
15 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem jazyktvořenýjedinýmslovem jazyktvořenýdvěmaslovy0a jazyktvořenýslovy,0,00,000,... (01)... jazyktvořenýslovy,01,0101,010101,... (0+1)... jazyktvořenývšemislovynadabecedou {0,1} M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
16 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem jazyktvořenýjedinýmslovem jazyktvořenýdvěmaslovy0a jazyktvořenýslovy,0,00,000,... (01)... jazyktvořenýslovy,01,0101,010101,... (0+1)... jazyktvořenývšemislovynadabecedou {0,1} (0+1) jazyktvořenývšemislovykončícími00 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
17 Regulární výrazy Příklady:VevšechpřípadechΣ={0,1} jazyktvořenýjedinýmslovem jazyktvořenýjedinýmslovem jazyktvořenýdvěmaslovy0a jazyktvořenýslovy,0,00,000,... (01)... jazyktvořenýslovy,01,0101,010101,... (0+1)... jazyktvořenývšemislovynadabecedou {0,1} (0+1) jazyktvořenývšemislovykončícími00 (01) 111(01)... jazyktvořenývšemislovyobsahujícímipodslovo111 předcházené i následované libovolným počtem slov 01 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
18 Regulární výrazy (0+1) 00+(01) 111(01)... jazyktvořenývšemislovy,kterábuď končí 00 nebo obsahují podslovo 111 předcházené i následované libovolným počtem slov 01 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
19 Regulární výrazy (0+1) 00+(01) 111(01)... jazyktvořenývšemislovy,kterábuď končí 00 nebo obsahují podslovo 111 předcházené i následované libovolným počtem slov 01 (0+1) 1(0+1)...jazyktvořenývšemislovyobsahujícímialespoň jeden symbol 1 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
20 Regulární výrazy (0+1) 00+(01) 111(01)... jazyktvořenývšemislovy,kterábuď končí 00 nebo obsahují podslovo 111 předcházené i následované libovolným počtem slov 01 (0+1) 1(0+1)...jazyktvořenývšemislovyobsahujícímialespoň jeden symbol 1 ( )... jazyktvořenývšemislovyobsahujícímisudýpočet symbolů 1 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
21 Regulární výrazy Strukturu regulárního výrazu si můžeme znázornit jako strom: (((((0 1) ) 1) (1 1))+(((0 0)+1) )) M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
22 Převod regulárního výrazu na konečný automat Tvrzení Každý jazyk, který je možné vyjádřit regulárním výrazem, je regulární (tj. rozpoznávaný nějakým konečným automatem). Důkaz: Stačí ukázat, jak k danému regulárnímu výrazu α zkonstruovat konečný automat, který rozpoznává jazyk[α]. Konstrukce je rekurzivní a postupuje podle struktury výrazu α: Pokud je α elementární výraz(tj., nebo a): Sestrojíme přímo odpovídající automat. Pokudje αtvaru(β+ γ),(β γ)nebo(β ): Rekurzivně sestrojíme automaty rozpoznávající jazyky[β] a[γ]. Z nich sestrojíme automat rozpoznávající jazyk[α]. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
23 Převod regulárního výrazu na konečný automat Automaty pro elementární výrazy: a a M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
24 Převod regulárního výrazu na konečný automat Automaty pro elementární výrazy: a Konstrukce pro sjednocení: a M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
25 Převod regulárního výrazu na konečný automat Automaty pro elementární výrazy: a Konstrukce pro sjednocení: a M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
26 Převod regulárního výrazu na konečný automat Konstrukce pro zřetězení: M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
27 Převod regulárního výrazu na konečný automat Konstrukce pro zřetězení: M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
28 Převod regulárního výrazu na konečný automat Konstrukce pro zřetězení: Konstrukce pro iteraci: M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
29 Převod regulárního výrazu na konečný automat Konstrukce pro zřetězení: Konstrukce pro iteraci: M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
30 Převod regulárního výrazu na konečný automat Příklad:Konstrukceautomatuprovýraz((0+1) 1) : M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
31 Převod regulárního výrazu na konečný automat Příklad:Konstrukceautomatuprovýraz((0+1) 1) : 0 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
32 Převod regulárního výrazu na konečný automat Příklad:Konstrukceautomatuprovýraz((0+1) 1) : 0 1 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
33 Převod regulárního výrazu na konečný automat Příklad:Konstrukceautomatuprovýraz((0+1) 1) : 0 1 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
34 Převod regulárního výrazu na konečný automat Příklad:Konstrukceautomatuprovýraz((0+1) 1) : M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
35 Převod regulárního výrazu na konečný automat Příklad:Konstrukceautomatuprovýraz((0+1) 1) : M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
36 Převod regulárního výrazu na konečný automat Příklad:Konstrukceautomatuprovýraz((0+1) 1) : M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
37 Převod regulárního výrazu na konečný automat Pokud se výraz α skládá z n znaků(nepočítáme-li závorky), má výsledný automat: nejvýše 2n stavů, nejvýše 4n přechodů. Poznámka: Převodem ze zobecněného nedeterministického automatu na deterministický však může počet stavů vzrůst exponenciálně, tj. výsledný automatpakmůžemítaž2 2n =4 n stavů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
38 Převod konečného automatu na regulární výraz Tvrzení Každý regulární jazyk je možné popsat nějakým regulárním výrazem. Důkaz: Stačí ukázat, jak pro libovolný konečný automat A zkonstruovat regulární výraz α takový, že[α] = L(A). A upravíme tak, aby měl právě jeden počáteční a právě jeden koncový stav. Budeme postupně odebírat jednotlivé stavy. Přechody budou označeny regulárními výrazy. Zbude automat se dvěma stavy počátečním a koncovým, a jedním přechodem ohodnoceným výsledným regulárním výrazem. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
39 Převod konečného automatu na regulární výraz Hlavní myšlenka: Při odstraňování stavu q nahradit pro každou dvojici zbylýchstavůq j,q k cestuzq j doq k vedoucípřesq. q j α q k β q γ δ Po odstranění stavu q: q j α+βγ δ q k M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
40 Převod konečného automatu na regulární výraz Příklad: b 1 a a 2 b b a 3 M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
41 Převod konečného automatu na regulární výraz Příklad: b a 1 2 a s b b a 3 f M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
42 Převod konečného automatu na regulární výraz Příklad: b+aa s a ab 2 a+ba f b 3 bb M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
43 Převod konečného automatu na regulární výraz Příklad: s a(b+aa) f b+a(b+aa) ab 3 +(a+ba)(b+aa) bb+(a+ba)(b+aa) ab M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
44 Převod konečného automatu na regulární výraz Příklad: s a(b+aa) + (b+a(b+aa) ab) (bb+(a+ba)(b+aa) ab) (+(a+ba)(b+aa) ) f M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
45 Ekvivalence konečných automatů a regulárních výrazů Věta Jazyk je regulární právě tehdy, když je ho možné popsat regulárním výrazem. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
46 V praxi používané regulární výrazy Regulární výrazy jsou používány v celé řadě různých nástrojů. Příklady: Knihovna regex jazyka C. Package java.util.regex v jazyce Java. Modul re v jazyce Python. Programovací jazyk Perl. Unixové utility pro zpracování textových souborů grep, sed a awk. Generátory lexikálních analyzátorů lex a flex. Textovéeditory(vi,vim,emacs,...). M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
47 V praxi používané regulární výrazy Běžně používaná syntaxe(mezi jednotlivými nástroji jsou však drobné rozdíly):.... zastupujelibovolnýznak αβ... zřetězení αaβ α β... sjednocení αaβ α{m} α{m,n} α*... iterace α α+... totéž,co αα α?... totéž,co α+... totéžcomkrát α... αminimálněmkrát,maximálněnkrát (α)... závorky M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
48 V praxi používané regulární výrazy [xyz]... libovolnýzeznakůx,y,z [^xyz]... libovolnýznak,kroměx,y,z [a-f]... libovolnýzeznakůa,b,c,d,e,f ^... začátekřádku $... konecřádku \c... znakc Příklad: správně vytvořená ová adresa Poznámka: Podrobnější informace najdete například v seriálu Regulární výrazy autorapavlasatrapyna M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32
Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března / 50
Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března 2013 1/ 50 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Základy teoretické informatiky Formální jazyky a automaty
Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
/1: Teoretická informatika(ti) přednáška 4
456-330/1: Teoretická informatika(ti) přednáška 4 prof. RNDr Petr Jančar, CSc. katedra informatiky FI VŠB-TUO www.cs.vsb.cz/jancar LS 2009/2010 Petr Jančar (FI VŠB-TU) Teoretická informatika(ti) LS 2009/2010
Teoretická informatika - Úkol č.1
Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27
Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného
Bezkontextové gramatiky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května / 49
Bezkontextové gramatiky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 6. května 2018 1/ 49 Bezkontextové gramatiky Příklad: Chtěli bychom popsat jazyk aritmetických výrazů obsahující výrazy jako například:
Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39
Bezkontextové jazyky Bezkontextové jazyky 1 p.1/39 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b
ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Konečný automat Teorie programovacích jazyků
Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu
Konečný automat. Jan Kybic.
Konečný automat Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 33 Konečný automat finite state machine Konečný automat = výpočetní model, primitivní počítač Řídící jednotka s
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Jednoznačné a nejednoznačné gramatiky
BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Minimalizace KA - Úvod
Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
AUTOMATY A GRAMATIKY
AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace
/01: Teoretická informatika(ti) přednáška 5
460-4005/01: Teoretická informatika(ti) přednáška 5 prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar LS 2010/2011 Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) LS
2 Formální jazyky a gramatiky
2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně
3. Algebraické systémy
Markl: 3.1. Morfismy a kongruence /ras31.doc/ Strana 1 3. Algebraické systémy Na rozdíl od klasické algebry, jejíž ústředním tématem jsou rovnice a potřebný aparát pro jejich řešení /matice, polynomy,.../,
Univerzální Turingův stroj a Nedeterministický Turingův stroj
27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův
1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),
Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LEXIKÁLNÍ ANALÝZA Kód ve vstupním jazyku Lexikální analyzátor
Automaty a gramatiky
Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Co bylo minule Úvod do formálních gramatik produkční systémy generativní gramatika G=(V N,V T,,P) G =
Teoretická informatika
Teoretická informatika Ladislav Lhotka lhotka@cesnet.cz 2011-12 Zdroje LINZ, P. Formal Languages and Automata, Fourth Edition. Sudbury: Jones and Bartlett, 2006, 415+xiii s. ISBN 07-63-73798-4. CHYTIL,
Martin Plicka. October 24, 2012
BIK-AAG - Řešené příklady Martin Plicka October 24, 2012 1 Konečné automaty - názorně Mějme následující automat... zkuste si jej nakreslit. a b ɛ 0 {0,1} {0,4} {4} 1 {4,5} {2} {5} 2 {3} {5,6} {6} 3 {3}
Numerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
Konstruktory překladačů
Konstruktory překladačů Miroslav Beneš Dušan Kolář Konstruktor Lex generátor lexikálních analyzátorů M. E. Lesk, 1975 - pro OS Unix flex - Vern Paxson, 1990 - GNU verze určeno pro generování výstupu v
Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů
Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ) Připomeňme, že konečná posloupnost u 1, u 2,, u n vektorů z V je
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
Cvičení 5 - Inverzní matice
Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,
Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.
Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má:
1 z 6 14.11.2017 0:03 Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-2 Pokus 1 Jste přihlášeni jako Josef Kolář (Odhlásit se) Náhled testu 1 Je dán regulární výraz. Minimální deterministický
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má:
Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-2 Pokus 1 Jste přihlášeni jako Josef Kolář (Odhlásit se) Info Výsledky Náhled Upravit Náhled testu 1 Je dán regulární výraz. Minimální
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
ZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA VÝPOČETNÍ A DIDAKTICKÉ TECHNIKY PŘÍPRAVA KOMPONENT PRO E-KURZ KONEČNÉ AUTOMATY A FORMÁLNÍ JAZYKY BAKALÁŘSKÁ PRÁCE Luděk Hroch Informatika se zaměřením
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Poslední aktualizace: 14. října 2011
Lexikální analýza Překladače, přednáška č. 2 Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz http://fpf.slu.cz/ vav10ui Poslední aktualizace: 14. října 2011 Symboly Co je to
Teoretická informatika TIN 2013/2014
Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
1-Úvod. Automaty a gramatiky(bi-aag) Plán přednášky. 8. Regulární výrazy - aplikace
BI-AAG (2011/2012) J. Holub: 8. Regulární výrazy - aplikace p. 2/51 BI-AAG (2011/2012) J. Holub: 8. Regulární výrazy - aplikace p. 4/51 1-Úvod Automaty a gramatiky(bi-aag) 8. Regulární výrazy - aplikace
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
Teoretická informatika
Teoretická informatika TIN 2017/2018 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz prof. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba dr. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.
Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi
Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce
METODICKÝ LIST DA34 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník I. obecný trojúhelník Astaloš Dušan Matematika šestý frontální,
Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy
Metody a nástroje syntaktické analýzy Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 14. října 2011 Vlastnosti syntaktické analýzy Úkoly syntaktické
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Úvod do databázových systémů
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů Cvičení 3 Ing. Petr Lukáš petr.lukas@vsb.cz Ostrava, 2014 Opakování 4 fáze vytváření
Lexikální analýza. Rozhraní lexikálního analyzátoru. Miroslav Beneš Dušan Kolář. M. Beneš, D. Kolář: Lexikální analýza 1. Lexikální analýza 2
Lexikální analýza Miroslav Beneš Dušan Kolář Rozhraní lexikálního analyzátoru Lexikální analýza 2 M. Beneš, D. Kolář: Lexikální analýza 1 Úkoly Čtení zdrojového textu Sestavování symbolů Odstranění mezer
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Cvičení ke kursu Vyčíslitelnost
Cvičení ke kursu Vyčíslitelnost (23. prosince 2017) 1. Odvoďte funkci [x, y, z] x y z ze základních funkcí pomocí operace. 2. Dokažte, že relace nesoudělnosti je 0. Dokažte, že grafy funkcí Mod a Div jsou
Lexikální analýza. Miroslav Beneš Dušan Kolář
Lexikální analýza Miroslav Beneš Dušan Kolář Rozhraní lexikálního analyzátoru Lexikální analýza 2 Úkoly Čtení zdrojového textu Sestavování symbolů Odstranění mezer a poznámek Normalizace symbolů (velká/malá
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu
Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Diplomová práce Vedoucí práce: RNDr.
Teoretická informatika průběh výuky v semestru 1
Teoretická informatika průběh výuky v semestru 1 Týden 1 Po přednášce 14.9. bude text asi mírně modifikován, ale příklady na cvičení se nezmění. (Navíc dodám na web slidy.) Přednáška Na začátku jsme si
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TURINGOVY STROJE Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 12 Evropský sociální fond Praha & EU: Investujeme do vaší
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
Lineární algebra Eva Ondráčková
Lineární algebra Eva Ondráčková Vektorové prostory Mnozízvásužsenejspíšsetkalispojmemvektor.Ukážemesi,ževektorynejsoujen množiny orientovaných úseček v rovině či trojrozměrném prostoru, ale něco zajímavějšího,
Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1
Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Výroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být