Teoretická informatika - Úkol č.1
|
|
- Žaneta Kateřina Lišková
- před 8 lety
- Počet zobrazení:
Transkript
1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef října 2012
2 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je konečná množina terminálních symbolů Σ = {a, b, c} P je konečná množina přepisovacích pravidel { S AbBC } A aab ɛ P = B bb ɛ C bcc ɛ SɛN je počáteční symbol gramatiky (b) Gramatika G 1 nemůže být podle Chomského chierarchie typu 3, protože obsahuje pravidla ve tvaru A ɛ, tedy generuje prázdný řetězěc. Gramatika je typu 2. Jazyk L 1 nemůže být podle Chomského chierarchie typu 3, protože neexistuje takový konečný automat, který by L 1 přijal. Existuje však zásobníkový automat, který jazyk příjme, a proto je typu 2. Typ gramatiky a jazyku se obecně lišit mohou. Gramatika typu X může generovat jazyky typu X a vyšších. Příklad 2 Část (a): 1. Převod RV RKA M (a) Rozklad zadaného regulárního výrazu vyjádříme stromem: (b) Převod stromu na konečný automat M: i. Regulárnímu výrazu r 7 = b přísluší automat N 1 : 2
3 ii. Regulárnímu výrazu r 6 = b přísluší automat N 2 : iii. Regulárnímu výrazu r 9 = a přísluší automat N 3 : iv. Regulárnímu výrazu r 10 = c přísluší automat N 4 : v. Regulárnímu výrazu r 8 = ac přísluší automat N 5 : vi. Automat pro r 4 je shodný s automatem pro r5, zkonstruujeme proto rovnou automat N 6 = (b + ac): vii. Regulárnímu výrazu r 2 = (b + ac) přísluší automat N 7 : viii. Regulárnímu výrazu r 13 = c přísluší automat N 8 : ix. Regulárnímu výrazu r 12 = a přísluší automat N 9 : x. Regulárnímu výrazu r 11 = c přísluší automat N 10 : xi. Regulárnímu výrazu r 3 = ac přísluší automat N 11 : 3
4 xii. Regulárnímu výrazu r 1 = (b + ac) ac přísluší automat N 12 : 2. Převod RKA M DKA M, podle Algoritmu 3.6 z opory předmětu TIN: A = ɛ-uz({1}) = {1, 2, 3, 6, 7, 9, 10, 11} a b c ɛ-uz({4, 17})={4, 12, 13, 15} = B ɛ-uz({8}) = {2, 3, 6, 7, 8, 9, 10, 11} = C B = {4, 12, 13, 15} ɛ-uz({ }) = D ɛ-uz({ }) = D C = {2, 3, 6, 7, 8, 9, 10, 11} ɛ-uz({4, 12}) = {4, 12, 13, 15} = B ɛ-uz({ }) = D D = = D = D = D E = {2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15} ɛ-uz({4, 12}) = B ɛ-uz({8}) = C F = {13, 14, 15} ɛ-uz({ }) = D ɛ-uz({ }) = D ɛ-uz({ }) = D ɛ-uz({5, 14}) = {2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15} = E ɛ-uz({ }) = D ɛ-uz({14}) = {13, 14, 15} = F ɛ-uz({14}) = {13, 14, 15} = F 4
5 Grafické znázornění DKA M : 3. DKA M redukovaný DKA M, kde L(M ) = L(M ): (a) Automat neobsahuje nedostupné stavy, tudíž není zapotřebí odstraňovat. (b) Automat je úplný, není nutno zůplňovat. (c) Sestrojíme iterativně relaci nerozlišitelnosti stavů: 0 a b c I { BE F E (I) F (I) F (I) II { AC D 5
6 1 a b c { I BF E (III) F (I) II { A III { E F (I) IV { D 2 a b c I { B D (V ) D (V ) E (IV ) II { F D (V ) D (V ) F (II) II { AC IV { E C (III) F (I) V { D D (V ) D (V ) D (V ) 6
7 Redukovaný DKA M v grafické podobě (pro přehlednost jsem přejmenoval stavy do tvaru napravo): 7
8 Část (b): K jednotlivým stavům redukovaného DKA M přiřadíme ekvivalenční třídy. Pro náš automat jich existuje pět: (a) L 1 (A) (b) L 1 (B) (c) L 1 (C) (d) L 1 (D) (e) L 1 (E) Cvičně jsem vytvořil ekvivalenční třídu popsanou RV pro (a) L 1 (A) pomocí rovnic s RV. Výsledek L 1 (A) = (b + (ac) + b) odpovídá příslušnému automatu. 8
9 Příklad 3 Zadaný KA M 3, který má být převeden na ekvivalentní RV, s pojmenovanými stavy: Soustava rovnic pro M 3 : (1) X = ax + ay (2) Y = bz + cx (3) Z = bx + ɛ Víme, že X = px + q nad RV je X = p q Řešení soustavy: 1. Dosazení Y do (1): X = ax + a(bz + cx) X = ax + abz + acx (distributivita) 2. Dosazení Z do předchozího výrazu: X = ax + acx + ab(bx + ɛ) X = ax + acx + abbx + abɛ (distributivita) X = ax + acx + abbx + ab (identita ɛ) X = (a + ac + abb)x + ab (Částečné vytknutí X) 3. Použijeme výše uvedenou rovnici z rámečku a tím získáme výsledný RV ekvivalentní s M 3 : X = (a + ac + abb) ab 9
10 Příklad 4 Vstupní automaty: KA M 1 = (Q 1, Σ 1, δ 1, q 1, F 1 ) KA M 2 = (Q 2, Σ 2, δ 2, q 2, F 2 ) Požadovaný výstup: KA M 3 takový, že L(M 3 ) = {w w L(M 1 ) w L(M 2 ) : w = w } Definice: M 3 = (Q 3, Σ 3, δ 3, q 3, F 3 ) kde: Q 3 = Q 1 Q 2 Σ 3 = Σ 1 δ 3 : q 1 1, q 2 1 Q 1, q 1 2, q 2 2 Q 2, a Σ 1 : (q 2 1, q 2 2) δ 3 ((q 1 1, q 1 2), a) b Σ 2 : q 2 1 δ 1 (q 1 1, a) q 2 2 δ 2 (q 1 2, b) q 3 = (q 1, q 2 ) F 3 = F 1 F 2 Příklad 5 Zadaný jazyk: L = {w w {a, b, c} # a (w) > # b (w) > # c (w)}, kde # x (w) je počet symbolů x ve slově w. Důkaz sporem: Předpokládejme, že L L 3 : Pak dle silnější PL platí: k > 0 : w L : w k x, y, z Σ : w = xyz 0 < y xy k i 0 : xy i z L Uvážíme libovolné k > 0 takové, že: w L : w k x, y, z Σ : w = xyz 0 < y xy k i 0 : xy i z L Zvolme w = c k b k+1 a k+2 L : w = 3k + 3 k Z výše uvedeného plyne: x, y, z Σ : c k b k+1 a k+2 = xyz 0 < y xy k i 0 : xy i z L Uvažme libovolné x, y, z Σ takové, že: c k b k+1 a k+2 = xyz 0 < y xy k i 0 : xy i z L Z výše uvedeného plyne, že: xy {c l 0 < l k} a současně z = c k l b k+1 a k+2 Ovšem zvolíme-li libovolné i > 2k, pak xy i z nebude mít počet symbolů b větší než počet symbolů c. Tedy xy i z / L, je SPOR. Jazyk L není regulární. 10
11 Příklad 6 Relace je ekvivalencí, pokud je zároveň reflexivní, symetrická a tranzitivní. Pokud pro relaci nerozlišitelnosti dokážeme 3 tyto vlastnosti, můžeme o ní prohlásit, že jde o ekvivalenci. Definice nerozlišitelnosti: Nechť M = (Q, Σ, δ, q 0, F ) je úplný deterministický KA. Říkame, že řetězec w Σ nerozlišuje stavy q 1, q 2 Q, když (q 1, w) M (q 3, ɛ) (q 2, w) M (q 4, ɛ) (q 3 F q 4 F ). Důkaz ekvivalence nerozlišitelnosti: reflexivní - q q: q q : (q, w) M (q 3, ɛ) (q, w) M (q 4, ɛ) (q 3 F q 4 F ) Pro DKA platí, že se z jednoho stavu dá s jedním konkrétním rětězcem dostat pouze do jednoho stejného stavu. Proto platí: q 3 = q 4 = q 1 a tedy: (q 1 F q 1 F ), což je vždy platná formule a relace je proto reflexivní. symetrická - q 1 q 2 q 2 q 1 : Předpoklad q 1 q 2 : Využijeme zde komutativity konjunkce a symetrie ekvivalence: (q 1, w) M (q 3, ɛ) (q 2, w) M (q 4, ɛ) (q 3 F q 4 F ) což lze přepsat do tvaru: (q 2, w) M (q 4, ɛ) (q 1, w) M (q 3, ɛ) (q 4 F q 3 F ) z čehož plyne: q 2 q 1 Relace je tedy symetrická. tranzitivní - q 1 q 3 q 3 q 5 q 1 q 5 což odpovídá výrazu: (q 1, w) M (q 2, ɛ) (q 3, w) M (q 4, ɛ) (q 2 F q 4 F ) (q 3, w) M (q 4, ɛ) (q 5, w) M (q 6, ɛ) (q 4 F q 6 F ) Díky definici tranzitivity ekvivalence platí: (q 2 F q 4 F ) (q 4 F q 6 F ) (q 2 F q 6 F ) Protože musí být všechny části konjunkce platné, musí být platné i výrazy: (q 1, w) M (q 2, ɛ) (q 5, w) M (q 6, ɛ) Složením 2 výše zmíněných výrazů dostáváme výraz : (q 1, w) M (q 2, ɛ) (q 5, w) M (q 6, ɛ) (q 2 F q 6 F ) z čehož plyne: q 1 q 5 Relace je tedy tranzitivní. Jelikož je relace nerozlišitelnosti stavu zároveň reflexivní, symetrická a tranzitivní, je to relace ekvivalence. 11
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39
Bezkontextové jazyky Bezkontextové jazyky 1 p.1/39 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma
Základy teoretické informatiky Formální jazyky a automaty
Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to
Jednoznačné a nejednoznačné gramatiky
BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.
Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27
Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného
AUTOMATY A GRAMATIKY
AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky
UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky Tato skripta jsou určena pro kurs Základy matematické informatiky
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Teoretická informatika TIN 2013/2014
Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
Fakulta informačních technologií. Teoretická informatika
Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme
Teoretická informatika
Teoretická informatika TIN 2017/2018 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz prof. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba dr. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Kongruence na množině celých čísel
121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem
Konečný automat Teorie programovacích jazyků
Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27
Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta
Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20
Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný
Vysoké učení technické v Brně Fakulta informačních technologií Gramatiky nad volnými grupami 2005 Petr Blatný Abstrakt Tento dokument zavádí pojmy bezkontextové gramatiky nad volnou grupou a E0L gramatiky
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
Bezkontextové gramatiky nad volnými grupami
Vysoké učení technické v Brně Fakulta informačních technologií Bezkontextové gramatiky nad volnými grupami 2004 Radek Bidlo Abstrakt Tento dokument zavádí pojem bezkontextové gramatiky nad volnou grupou
Teoretická informatika TIN
Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh
Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1
Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)
Minimalizace KA - Úvod
Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat
Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Princip rozšíření a operace s fuzzy čísly
Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Lineární algebra : Lineární zobrazení
Lineární algebra : Lineární zobrazení (6. přednáška František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 20. května 2014, 22:40 1 2 6.1 Lineární zobrazení Definice 1. Buďte P a Q dva lineární prostory
Martin Plicka. October 24, 2012
BIK-AAG - Řešené příklady Martin Plicka October 24, 2012 1 Konečné automaty - názorně Mějme následující automat... zkuste si jej nakreslit. a b ɛ 0 {0,1} {0,4} {4} 1 {4,5} {2} {5} 2 {3} {5,6} {6} 3 {3}
4 Počítání modulo polynom
8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li
Teoretická informatika
Teoretická informatika Ladislav Lhotka lhotka@cesnet.cz 2011-12 Zdroje LINZ, P. Formal Languages and Automata, Fourth Edition. Sudbury: Jones and Bartlett, 2006, 415+xiii s. ISBN 07-63-73798-4. CHYTIL,
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
/1: Teoretická informatika(ti) přednáška 4
456-330/1: Teoretická informatika(ti) přednáška 4 prof. RNDr Petr Jančar, CSc. katedra informatiky FI VŠB-TUO www.cs.vsb.cz/jancar LS 2009/2010 Petr Jančar (FI VŠB-TU) Teoretická informatika(ti) LS 2009/2010
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/31
Bezkontextové jazyky Bezkontextové jazyky 1 p.1/31 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Ekvivalence. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5 Evropský sociální fond.
Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.
Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1
Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno
Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Matematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Olomouc
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
2 Formální jazyky a gramatiky
2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně
Úlohy krajského kola kategorie A
62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,
Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0.
Kapitola 4 Booleovy algebry 4.1 Definice Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí x y = 1, x y = 0. Představu o
Úvod do lineární algebry
Úvod do lineární algebry Tomáš Matoušek Tělesa, vektorové prostory Definice. Tělesem nazveme množinu M, na které jsou definována zobrazení, : M M M(binární operace) splňující následující axiomy: (1) (
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Překladač sestrojující k regulárnímu výrazu ekvivalentní konečný automat Připomeňme si jednoznačnou gramatiku G pro jazyk RV({a, b})
Teoretická informatika průběh výuky v semestru 1 Týden 4 Přednáška Ukázali jsme jednoduchý převod konečného automatu na bezkontextovou gramatiku, čímž jsme prokázali, že každý regulární jazyk je bezkontextovým
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Syntaxí řízený překlad
Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky.
Relace. Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Definice. Mějme množiny A a B. Binární relace R z množiny A do množiny B je každá množina uspořádaných dvojic (a, b), kde
Jan Pavĺık. FSI VUT v Brně 14.5.2010
Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice
Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace
Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
Booleovy algebry. Irina Perfilieva. logo
Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
Základy teorie množin
1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé
3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům
RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Číslo a proměnná Gradovaný řetězec úloh Téma: soustava rovnic, parametry Autor: Stanislav Trávníček
Automaty a gramatiky
Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Co bylo minule Úvod do formálních gramatik produkční systémy generativní gramatika G=(V N,V T,,P) G =
Matematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
1. Jordanův kanonický tvar
. Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními