Dynamické programování UIN009 Efektivní algoritmy 1
|
|
- Eva Ševčíková
- před 6 lety
- Počet zobrazení:
Transkript
1 Dynamické programování UIN009 Efektivní algoritmy 1
2 Srovnání metody rozděl a panuj a dynamického programování Rozděl a panuj: top-down Dynamické programování: bottom-up Rozděl a panuj: překrývání podproblémů Dynamické programování: opakovaným výpočtům se vyhneme udržováním tabulky již vypočtených hodnot. Protože předem nevíme, které podproblémy budeme potřebovat, vyřešíme všechny. Bellmanův princip optimality: Optimální řešení problému obsahuje optimální řešení podproblému UIN009 Efektivní algoritmy 2
3 Formální popis algoritmu dynamického programování R. Bellman: Dynamic programming (1957) Řízený proces P = (P, {Q(p) p P},T), kde P je množina stavů Q(p) je množina přípustných řízení ze stavu p P T : p Q p je přechodová funkce U p P ({} ( )) P Nechť p 1 P je počáteční stav. Posloupnost (q 1 ) splňující q 1 Q(p 1 ), q 2 Q(T(p 1 )),..., q n Q(T(p n-1,q n-1 )) se nazývá strategie délky n z p 1. Posloupnost (p 1,...,p n+1 ), kde p 2 T(p 1 ),..., p n+1 T(p n,q n ), nazveme průběhem procesu při strategii (q 1 ) z počátečního stavu p UIN009 Efektivní algoritmy 3
4 Problém Mějme účelovou funkci F(p 1,..., p n ). Problém: Nalezení optimální strategie = strategie (q 1 ) délky n ze stavu p 1, která maximalizuje (minimalizuje) F(p 1,..., p n ). Předpoklad: F(p 1,..., p n )= f 1 (p 1 )+...+f n (p n,q n ) UIN009 Efektivní algoritmy 4
5 Bellmanův princip optimality Nechť (q 1 ) je optimální strategie procesu P ze stavu p 1 s účelovou funkcí f 1 (p 1 )+...+f n (p n,q n ). Pak pro libovolné 1< i n je (q i,q i+1 ) optimální strategie procesu P ze stavu p i s účelovou funkcí f i (p i,q i )+...+f n (p n,q n ). optimální strategie q p 1 q 1 p 2 q i-1 q 2 p i q q... i p i+1 n i+1... p n+1 optimální strategie UIN009 Efektivní algoritmy 5
6 Návrh algoritmu Φ k (p) := f n-k+1 (p,q n-k+1 )+...+f n (p n,q n ), kde (q n-k+1 ) je optimální strategie délky k ze stavu p. Rekurentní vztah pro výpočet Φ : Φ 1 (p) = max {f n (p,q) q Q(p)} Φ k+1 (p) = max {f n-k (p,q) + Φ k (T(p,q)) q Q(p)} p optimální strategie délky k UIN009 Efektivní algoritmy 6
7 Algoritmus Postupně počítej Φ 1 (p), ϕ 1 (p), p P Φ 2 (p), ϕ 2 (p), p P... Φ n (p), ϕ n (p), p P kde ϕ i (p) je ta hodnota z Q(p), v níž příslušné maximum nastává. Optimální řízení je (ϕ n (p 1 ), ϕ n-1 (p 2 ),..., ϕ 1 (p n )), kde p 2 =T(p 1, ϕ n (p 1 )),..., p n =T(p n-1, ϕ 2 (p n-1 )). Hodnota účelové funkce při optimální strategii je Φ n (p 1 ) UIN009 Efektivní algoritmy 7
8 Příklady optimální uzávorkování součinu matic minimální triangulace konvexního mnohoúhelníka určení nejdelší společné podposloupnosti optimální vyhledávací stromy P.Töpfer: Algoritmy a programovací techniky. Prometheus, Praha UIN009 Efektivní algoritmy 8
9 Problémy Srovnejte řešení problému batohu algoritmem dynamického programování a hladovým algoritmem. Nalezne hladový algoritmus vždy optimální řešení? Co když jsou předměty dělitelné? Nechť u,v Σ*. Navrhněte algoritmus, který metodou dynamického programování zjistí minimální počet operací, pomocí nichž lze převést u na v. Povoleny jdou operace vymazání znaku vložení znaku změna znaku Analyzujte složitost vašeho algoritmu. Vstupní text, sestávající z n slov o délkách l 1,..,l n znaků je třeba vytisknout na jistý počet řádků, každý o délce M znaků. Pokud řádek obsahuje slova i až j a mezi dvěma sousedními slovy je vždy jedna mezera, pak počet mezer na j konci řádku je M j + i = l. Navrhněte algoritmus dynamického k i k programování, který vytiskne odstavec n slov tak, aby byl minimalizován součet třetích mocnin počtu nadbytečných mezer na konci všech řádků kromě posledního UIN009 Efektivní algoritmy 9
10 Další problémy Vpůjčovně sportovních potřeb mají m párů lyží, i-té lyže o délce d i, které si chce vypůjčit n lyžařů, i-tý lyžař má výšku v i. Každý lyžař touží po lyžích, jejichž délka je co nejblíže jeho výšce. Navrhněte efektivní algoritmus, který přiřadí lyže lyžařům tak, aby součet absolutních hodnot rozdílů výšky každého lyžaře a délky jeho lyží byl minimalizován. Uvažte 2 varianty: n = m n m Kterou variantu je vhodné řešit algoritmem dynamického programování a kterou hladovým algoritmem? Je dáno n N, konečná abeceda Σ, pro každý znak z Σ jeho pravdě-podobnost p(z) (0,1). Navrhněte algoritmus, který navrhne rozmístění znaků na n tlačítek klávesnice mobilního telefonu tak, aby střední hodno-ta počtu stisků tlačítek při psaní textové zprávy byla minimalizována. Uvažte 2 varianty: Pořadí znaků abecedy je předem dáno Pořadí znaků abecedy lze měnit Kterou variantu je vhodné řešit algoritmem dynamického programování a kterou hladovým algoritmem? UIN009 Efektivní algoritmy 10
Návrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Dynamic programming. Historie. Dynamické programování je obsaženo v těchto programech: Příklad: chceme optimálně přiložit dvě sekvence
Dynamic programming Dynamické programování je obsaženo v těchto programech: BLS FS lustalw HMMER enscan MFold Phylip Historie 9s matematik Richard Bellman při optimalizaci rozhodovacích procesů chtěl zmást
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Katedra počítačů FEL
TIS 311 1. Navrhněte KMP vyhledávací stroj pro vzorek v = kakadu, 2. Pro stejný vzorek navrhněte deterministický konečný automat. 3. Simulujte činnost obou strojů na textu T = dukakakaduka, porovnejte
Programy na PODMÍNĚNÝ příkaz IF a CASE
Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
5. Dynamické programování
5. Dynamické programování BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Dynamické programování
Dynamické programování Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 26 Memoizace Dynamické programování 2 / 26 Memoizace (Memoization/caching) Pro dlouhotrvající funkce f (x) Jednou
POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2
POSLOUPNOSTI 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 n+1n, d) a n = n! n n 2. 2. Najděte předpis pro n-tý člen
Zadání semestrálního projektu Algoritmy II. letní semestr 2017/2018
Zadání semestrálního projektu Algoritmy II. letní semestr 2017/2018 doc. Mgr. Jiří Dvorský, Ph.D. Verze zadání 6. dubna 2018 První verze Obecné pokyny 1. Celkem jsou k dispozici tři zadání příkladů. 2.
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
Dynamické programování. Optimální binární vyhledávací strom
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
R zné algoritmy mají r znou složitost
/ / zné algoritmy mají r znou složitost Dynamické programování / / Definice funkce Otázka Program f(x,y) = (x = ) (y = ) f(x, y-) + f(x-,y) (x > ) && (y > ) f(,) =? int f(int x, int y) { if ( (x == ) (y
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem
ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte
Dynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31
Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu
4. NP-úplné (NPC) a NP-těžké (NPH) problémy
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Rekurentní rovnice, strukturální indukce
Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n
Rekurentní rovnice, strukturální indukce
, strukturální indukce Jiří Velebil: Y01DMA 23. února 2010: Strukturální indukce 1/19 Backusova-Naurova forma Například syntaxe formuĺı výrokové logiky kde a At. Poznámky 1 Relaxace BNF. ϕ ::= a tt (ϕ
6 Simplexová metoda: Principy
6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.
V tomto článku popíšeme zajímavou úlohu (inspirovanou reálnou situací),
L i t e r a t u r a [1] Calábek, P. Švrček, J.: Úvod do řešení funkcionálních rovnic. MFI, roč. 10 (2000/01), č. 3. [2] Engel, A.: Problem-Solving Strategies. Springer-Verlag, New York, Inc., 1998. [3]
57. ročník Matematické olympiády 2007/2008
57. ročník Matematické olympiády 007/008 Úlohy ústředního kola kategorie P. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každého příkladu musí obsahovat: Popis řešení, to znamená slovní
Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,
Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí
63. ročník Matematické olympiády 2013/2014
63. ročník Matematické olympiády 2013/2014 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
4. Kombinatorika a matice
4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel
Teorie rozhodování (decision theory)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie
LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
Dynamické programování
Dynamické programování Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 207 Datové struktury a algoritmy, B6B36DSA 05/207, Lekce 2
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.
Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Numerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
Vytvořující funkce. Zuzka Safernová
Vytvořující funkce Zuzka Safernová Definice Nechť(a 0 a a 2 jeposloupnostreálnýchčíselpotomvytvořující funkcí posloupnosti rozumíme mocninnou řadu a(x= a i x i = a 0 + a x+a 2 x 2 + Operace s posloupnostmi
Sbírka příkladů. verze 1.0 2.1.2005
Sbírka příkladů verze 1.0 2.1.2005 Rudolf Kryl Sbírka má pomoci studentům k přípravě na praktický test. Student, který umí programovat, umí ladit a zvládne algoritmicky úlohy této sbírky by neměl mít s
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
Problém lineární komplementarity a kvadratické programování
Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou
a) b) c) Radek Mařík
2012-03-20 Radek Mařík 1. Čísla ze zadané posloupnosti postupně vkládejte do prázdného binárního vyhledávacího stromu (BVS), který nevyvažujte. Jak bude vypadat takto vytvořený BVS? Poté postupně odstraňte
11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
[1] LU rozklad A = L U
[1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
ANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
Základy algoritmizace. Pattern matching
Základy algoritmizace Pattern matching 1 Pattern matching Úloha nalézt v nějakém textu výskyty zadaných textových vzorků patří v počítačové praxi k nejfrekventovanějším. Algoritmy, které ji řeší se používají
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]
Algoritmy komprese dat
Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Lineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Zdroj: http://www.fit.vutbr.cz
Zdroj: http://www.fit.vutbr.cz Motivace Cílem této úlohy je zopakovat si nebo se naučit vytváření obecných řešení, která na rozdíl od ad hoc řešení umožňují zvládat složitější úlohy bez nadměrného úsilí,
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
1 Duální simplexová metoda
1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.
Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
H {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Micro:bit lekce 3. - Konstrukci If Then a If Then Else najdete v kategorii Logic - Podmínky od If (např. porovnání < >= atd.) najdete taktéž v Logic
Micro:bit lekce 3. Podmínky - Rozvětvení běhu programu podle splnění nějakých podmínek typu pravda / nepravda - splněno / nesplněno (výsledkem podmínky musí být vždy jen dvě možnosti) - Dva typy podmínek:
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Logaritmy a věty o logaritmech
Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice
Maturitní otázky z předmětu PROGRAMOVÁNÍ
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
C2142 Návrh algoritmů pro přírodovědce
C2142 Návrh algoritmů pro přírodovědce 1. Od problému k algoritmu Tomáš Raček Jaro 2014 Organizace předmětu Rozsah: 1/2/0 Přednáška: Po 16:00-16:50 Cvičení: nepovinná, 3 seminární skupiny Ukončení: písemná
Jak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
Kontingenční tabulky v MS Excel 2010
Kontingenční tabulky v MS Excel 2010 Autor: RNDr. Milan Myšák e-mail: milan.mysak@konero.cz Obsah 1 Vytvoření KT... 3 1.1 Data pro KT... 3 1.2 Tvorba KT... 3 2 Tvorba KT z dalších zdrojů dat... 5 2.1 Data
Posloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší