Metabolismus lipidů - SOUHRN -
|
|
- Zdeněk Šimek
- před 8 lety
- Počet zobrazení:
Transkript
1 Metabolismus lipidů - SOUHRN - Vladimíra Kvasnicová doporučené animace: - Exercise 19 / Chapter
2 37 kj/g
3 Výskyt a funkce lipidů v lidském těle v potravě převážně ve formě triacylglycerolů (TAG), také fosfolipidy, cholesterol a jeho estery k trávení tuků je nezbytná žluč vstřebávají se hlavně volné mastné kyseliny (FFA), 2-monoacylglyceroly (MAG) a cholesterol (CHOL) TAG jsou hlavní zásobní formou energie (zásobní tuk v tukových buňkách), FFA jsou zdrojem energie pro buňky fosfolipidy a cholesterol jsou součástí membrán z cholesterolu vznikají steroidní hormony a žlučové kyseliny z esenciálních mastných kyselin vznikají eikosanoidy
4 Chemická povaha, vlastnosti a reakce lipidů strukturně velmi rozmanitá skupina látek hydrolyzovatelné / nehydrolyzovatelné špatně rozpustné ve vodě - nepolární nebo amfipatický charakter (polární + nepolární část molekuly) pro transport krví potřebují přenašeč izolační vlastnosti (mechanické, tepelné) typickou reakcí je esterifikace (alkohol + kyselina) vícenásobně nenasycené mastné kyseliny jsou náchylné k neenzymatické oxidaci (lipoperoxidace) metabolicky se k lipidům řadí ketolátky (polární)
5 Klasifikace lipidů 1. podle složení jednoduché lipidy složené lipidy (lipid + další látka) 2. podle struktury hydrolyzovatelné lipidy nehydrolyzovatelné lipidy
6 HYDROLYZOVATELNÉ LIPIDY NEHYDROLYZOVATELNÉ LIPIDY Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
7 Strukturní složky lipidů alkoholy glycerol (a) sfingosin (b) cholesterol (c) inositol (d) a) b) c) d) karboxylové kyseliny s dlouhým řetězcem (= mastné kyseliny) The figures are adopted from (April 2007)
8 Kyselina: mravenčí octová propionová máselná valerová kapronová kaprylová kaprinová laurová myristová palmitová stearová olejová linolová linolenová arachidová arachidonová behenová eruková lignocerová nervonová Převzato z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
9 Volné mastné kyseliny (FFA) Esterifikované mastné kyseliny ω-9 = triacylglycerol (TAG) nebo triglycerid ω-6 ω-3
10 Mastné kyseliny (FA) saturovaný tuk obsahuje více saturovaných (nasycených) FA (více energie: -CH 2 -CH 2 -) desaturovaný tuk: monoenové / polyenové mastné kyseliny (méně energie částečně oxidovaný řetězec: -CH=CH-) FA s krátkým řetězcem (SCFA): méně než 6 uhlíků FA se středně dlouhým řetězcem (MCFA): 6 12 uhlíků FA s dlouhým řetězcem (LCFA): více než 12 uhlíků FA s velmi dlouhým řetězcem (VLCFA): více než 22 uhlíků sudý počet uhlíků v molekule (syntetizovány z C-2 prekurzoru) oddělené cis dvojné vazby: -CH=CH-CH 2 -CH=CH- Doporučený článek: náchylné k neenzymatické oxidaci = lipoperoxidaci
11 lipoperoxidace
12 Mastné kyseliny (FA) v buňkách jsou vázány na Koenzym A acyl-coa vazebné místo redukovanější uhlíkatý řetězec než sacharidy: -CH 2 - FA tvoří složky triacylglycerolů a fosfolipidů, jsou součástí esterů cholesterolu (= hydrolyzovatelné tuky) FA slouží jako zdroj energie (β-oxidace) nebo tvoří zásobu energie ve formě triacylglycerolů = neutrální tuk FA mohou být přeměněny na ketolátky a eikosanoidy
13 Struktura lipidů Obrázek převzat z (leden 2007)
14 animace: Obrázek převzat z 2/ch11_cholesterol.jpg (leden 2007)
15 Cesta z trávicího traktu do tukové tkáně do krve se vstřebávají jen kratší mastné kyseliny (FA), krví putují vázané na albuminu dlouhé FA se v enterocytech reesterifikují (na TAG a fosfolipidy) a krví putují jako součást lipoproteinů po jídle jsou lipidy v krvi přítomny ve formě chylomikronů (vznikají v enterocytech, odkud se dostávají nejprve do lymfy) a VLDL (vznikají v játrech) na endotelu cév je přítomna lipoproteinová lipáza, která z TAG v lipoproteinech vyštěpuje FA, které se pak usnadněným transportem dostávají do buněk v tukové buňce: reesterifikace FA na TAG (tuk. kapénky); při hladovění jsou TAG štěpeny hormonsenzitivní lipázou při hladovění jsou FA přenášeny krví vázané na albuminu
16 animace: Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
17 Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
18 Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
19 Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
20 animace: Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
21 Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
22 Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
23 Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing, New York, 1990.
24 Lipoproteiny druh zdroj nejčetnější složka významné apoproteiny transportují hlavně chylomikróny střevo TAG B-48, C-II, E TAG z potravy do extrahepat. tkání CHM zbytky chylomikróny cholesterol, TAG, fosfolipidy B-48, E zbytky chylomikrónů do jater VLDL játra TAG C-II, B-100 nově syntetizované TAG do tkání IDL VLDL cholesterol, TAG, fosfolipidy B-100 zbytky VLDL do tkání LDL VLDL cholesterol B-100 cholesterol do tkání HDL játra cholesterol, fosfolipidy, zásoba apoproteinů A-I, E, C-II cholesterol z tkání zpět do jater
25 TEST: Vyberte správná tvrzení o transportu lipidů v krvi a) triacylglyceroly jsou přenášeny hlavně v chylomikrónech a VLDL b) volné mastné kyseliny jsou vázány na albuminu c) cholesterol je přenášen hlavně v HDL a LDL d) ketolátky nepotřebují transportní protein
26 Vyberte správná tvrzení o transportu lipidů v krvi a) triacylglyceroly jsou přenášeny hlavně v chylomikrónech a VLDL b) volné mastné kyseliny jsou vázány na albuminu c) cholesterol je přenášen hlavně v HDL a LDL d) ketolátky nepotřebují transportní protein
27 TEST: Lipoproteiny obsahují a) na povrchu fosfolipidovou dvouvrstvu b) ve svém jádře neesterifikovaný cholesterol c) ve svém jádře triacylglyceroly d) na povrchu proteiny, které se váží na receptory cílových buněk
28 Lipoproteiny obsahují a) na povrchu fosfolipidovou dvouvrstvu b) ve svém jádře neesterifikovaný cholesterol c) ve svém jádře triacylglyceroly d) na povrchu proteiny, které se váží na receptory cílových buněk
29 TEST: Vyberte správná tvrzení o vlastnostech lipoproteinů a) chylomikróny vznikají v enterocytech b) VLDL částice obsahují apoc-ii, který aktivuje lipoproteinovou lipázu c) pro LDL jsou typické apoproteiny A (apoa) d) HDL přenáší cholesterol z jater do extrahepatálních tkání
30 Vyberte správná tvrzení o vlastnostech lipoproteinů a) chylomikróny vznikají v enterocytech b) VLDL částice obsahují apoc-ii, který aktivuje lipoproteinovou lipázu c) pro LDL jsou typické apoproteiny A (apoa) d) HDL přenáší cholesterol z jater do extrahepatálních tkání
31 TEST: Lipázy a) se podílejí na štěpení mastných kyselin b) štěpí estery cholesterolu c) se nacházejí vázané na endotelu kapilár d) se nacházejí v tukových buňkách
32 Lipázy a) se podílejí na štěpení mastných kyselin b) štěpí estery cholesterolu c) se nacházejí vázané na endotelu kapilár = lipoproteinová lipáza d) se nacházejí v tukových buňkách = hormonsenzitivní lipáza
33 Lipázy lipáza původ místo působení funkce vlastnosti žaludeční žaludek žaludek trávení TAG, které obsahují mastné kyseliny s krátkým řetězcem stabilní v kyselém ph pankreatická pankreas tenké střevo trávení TAG, produktem jsou 2- monoacylglyceroly vyžaduje pankreatickou kolipázu lipoproteinová extrahepatální tkáně povrch endotelu krevních kapilár štěpí TAG ve VLDL a chylomikrónech aktivována pomocí apoc-ii hormon senzitivní adipocyty adipocyty - cytoplazma štěpí zásobní triacylglyceroly (TAG) aktivována fosforylací kyselá různé tkáně lyzosomy štěpí fagocytované TAG kyselé phoptimum
34 katabolické dráhy Přehled metabolismu lipidů lipolýza: TAG mastné kyseliny + glycerol beta-oxidace: mastná kyselina acetyl-coa Krebs.cyk. (játra: acetyl-coa syntéza ketolátek transport do jiné tkáně: ketolátky acetyl-coa Krebsův cyklus CO 2 ) odbourávání cholesterolu: cholesterol žlučové kyseliny anabolické dráhy syntéza mastných kyselin: acetyl-coa mastná kyselina esterifikace: syntéza TAG, fosfolipidů, esterů cholesterolu syntéza signálních molekul: esenciální mastné kyseliny eikosanoidy (C 20 ) cholesterol steroidní hormony
35 Regulace lipolýzy regulační enzym hormon-senzitivní lipáza (v adipocytech) lipoproteinová lipáza (na endoteliích kapilár) aktivace katecholaminy, glukagon (fosforylace) inzulin apolipoprotein C-II (apoc-ii) inhibice inzulin prostaglandiny
36 animace: e/pratt/ /stude nt/animations/fatty_acid/in dex.html Převzato z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
37 Uvolnění mastných kyselin z TAG tukové tkáně a jejich následný transport k cílovým buňkám Obrázek převzat z verheads-3/ch17_lipid-adipocytes.jpg (leden 2007)
38 Transport mastných kyselin do mitochondrie cytoplazma KARNITINOVÝ PŘENAŠEČ karnitin (Lys + Met) matrix mitochondrie Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, ISBN
39 Odbourávání mastných kyselin (FA) souhrn I FA jsou odbourávány v mitochondrii (do C 18 ), peroxizomech (FA nad C 18 nebo větvené-methylované FA) a hl. ER (minoritní ω-oxidace) pro zisk energie je nejvýznamnější β-oxidace v mitochondrii (produkuje FADH 2 a NADH) oxiduje se β-uhlík (třetí C): postupně z -CH 2 - na CO- z FA o C n se sudým počtem uhlíků vzniká: n/2 molekul acetyl-koenzymu A, (n/2)-1 FADH 2 a (n/2)-1 NADH při oxidaci v peroxizomech se elektrony přenáší přímo na O 2 za vzniku H 2 O 2 (ten je dále využíván k oxidacím nebo degradován katalázou) FA C 12 -C 18 do mitochondrie vstupují karnitinovým přenašečem, kratší FA pomocí monokarboxylátového transportéru karnitinový přenašeč je inhibován pokud v cytoplazmě běží syntéza FA na β-oxidaci nenasycených mastných kyselin se účastní navíc izomeráza (cis trans) a enzym s NADPH, redukující některé dvojné vazby z FA o lichém počtu uhlíků vzniká místo posledního acetyl-koenzymu A propionyl-coa přeměněn na sukcinyl-coa vstupuje do Krebsova cyklu enzymy β-oxidace jsou specifické pro různě dlouhé FA (tj. zkrácenou FA oxiduje jiný izoenzym než původní dlouhou FA) při enzymovém defektu se pak hromadí jen FA o určité délce
40 Odbourávání mastných kyselin (FA) souhrn II FA se v buňkách odbourávají po jídle (zdroj energie; v krvi jsou součástí TAG transportovaných v lipoproteinech), nicméně významným zdrojem energie pro buňku jsou při hladovění: v krvi stoupá koncentrace volných FA (transportované albuminem) uvolněných z tukových zásob (hormonsenzitivní lipáza tukové tkáně je aktivována stresovými hormony např. glukagonem a adrenalinem tj. obecně i při fyzické námaze, cvičení) acetyl-coa produkovaný β-oxidací je dále oxidován v Krebsově cyklu při dostatku oxalacetátu (vzniká převážně z pyruvátu, tj. z glukózy); je-li acetyl-coa nadbytek (více než dostupného oxalacetátu), syntetizují se z něj v játrech ketolátky (acetoacetát a β-hydroxybutyrát) ketolátky pak slouží jako alternativní zdroj energie pro extrahepatální tkáně (tj. v játrech vznikají, ale nejsou tam odbourávány); na rozdíl od FA mohou být z krve vychytány i nervovou tkání (významný zdroj energie pro mozek při hladovění: prochází hematoencefalickou bariérou; FA neprochází!) z acetyl-coa vzniká také cholesterol z acetyl-coa NEMŮŽE vzniknout glukóza, tj. FA se na Glc nepřeměňují animace:
41 β-oxidace mastných kyselin (1 cyklus) dehydrogenation Obrázek převzat z (leden 2007)
42 Odbourávání FA s lichým počtem uhlíků biotin B 12 Převzato z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
43 Odbourávání nenasycených FA izomerace z cis na trans přesun dvojné vazby do polohy C 2 =C 3 případně redukce dvojné vazby pomocí NADPH Převzato z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
44 Metabolismus mastných kyselin v novorozeneckém screeningu deficit acyl-coa dehydrogenázy mastných kyselin se středně dlouhým řetězcem - MCAD = nejčastější defekt mtb FA deficit 3-hydroxyacyl-CoA dehydrogenázy mastných kyselin s dlouhým řetězcem - LCHAD deficit acyl-coa dehydrogenázy mastných kyselin s velmi dlouhým řetězcem - VLCAD deficit karnitinpalmitoyltransferázy I - CPT I deficit karnitinpalmitoyltransferázy II - CPT II deficit karnitinacylkarnitintranslokázy - CACT více informací na:
45 Karnitin-acyltransferáza reguluje β-oxidaci regulační enzym karnitin palmitoyltransferáza I (karnitin-acyltransferáza) aktivace inhibice malonyl-coa (= meziprodukt syntézy FA)
46 Omega-oxidace mastných kyselin cyt P450 (O 2, NADPH) alkoholdehydrogenáza (NAD + ) aldehyddehydrogenáza (NAD + ) (endoplazmatické retikulum, minoritní dráha) Obrázek převzat z (leden 2007)
47 Odbourávání větvených (metylovaných) FA α-oxidací α-oxidace = zkrácení FA o C 1 vyžaduje O 2 probíhá v peroxizómech produkt α-oxidace vstupuje do peroxizomální β-oxidace (vznikají acetyl-coa a propionyl-coa, elektrony se přenášejí na kyslík mimo dýchací řetězec) (duben 2013)
48 TEST: β-oxidace mastných kyselin a) probíhá pouze v játrech b) produkuje NADPH+H + c) je lokalizována v mitochondrii d) je aktivována malonyl-coa
49 β-oxidace mastných kyselin a) probíhá pouze v játrech b) produkuje NADPH+H + c) je lokalizována v mitochondrii d) je aktivována malonyl-coa
50 Syntéza ketolátek (= ketogeneze) probíhá při β-oxidaci pouze v játrech: v mitochondrii HMG-CoA vzniká také v cytoplazmě při syntéze cholesterolu! Acetyl-CoA OH Obrázek převzat z (leden 2007)
51 Regulace ketogeneze regulační enzym aktivace inhibice hormon-senzitivní lipáza (lipolýza v tukové tkáni) karnitinacyltransferáza I (přenos mastných kyselin do mitochondrie) poměr glukagon / inzulin katecholaminy poměr inzulin / glukagon malonyl-co A poměr inzulin / glukagon
52 Oxidace ketolátek (odbourávání) je při hladovění alternativním zdrojem energie pro extrahepatální tkáně (také pro mozek!) Citrátový cyklus Obrázek převzat z (leden 2007)
53 TEST: Ketolátky a) jsou syntetizovány z acetyl-coa b) jsou produkovány svalovou tkání jako následek zvýšené oxidace mastných kyselin c) slouží jako energetický substrát pro erytrocyty d) mohou být vylučovány močí
54 Ketolátky a) jsou syntetizovány z acetyl-coa b) jsou produkovány svalovou tkání jako následek zvýšené oxidace mastných kyselin c) slouží jako energetický substrát pro erytrocyty d) mohou být vylučovány močí
55 Syntéza mastných kyselin (FA) souhrn probíhá hlavně v játrech a tukové tkáni zdrojem uhlíků pro syntézu FA je nadbytek živin přijatých potravou (glukóza, aminokyseliny z proteinů), tj. syntézu aktivuje inzulin a citrát (hromadí se při inhibici Krebsova cyklu z nadbytu ATP/ADP a NADH/NAD + v buňce) syntéza probíhá v cytoplazmě (do C 16 ), prodlužování (elongace) a vytváření dvojných vazeb (desaturace) probíhá v hladkém ER acetyl-coa vzniká v mitochondrii: do cytoplazmy je přenášen jako citrát (acetyl-coa + oxalacetát citrát) při syntéze je významným meziproduktem malonyl-coa: jeho zvýšené množství v cytoplazmě inhibuje přenos FA k odbourání do mitochondrie malonyl-coa vzniká karboxylací z acetyl-coa (regulační reakce) osud FA: syntéza zásobního tuku (TAG) z jater je pomocí VLDL transportován do tukové tkáně; syntéza fosfolipidů a esterů cholesterolu vícenásobně nenasycené FA o C 20 slouží jako substráty pro syntézu eikosanoidů (tkáňové hormony); ω-3 a ω-6 PUFA (polynenasycené FA) jsou esenciální: musí být dodávány potravou jejich prodloužení a další desaturace (vnášení dalších dvojných vazeb mez C 1 až C 9 ) probíhá v ER animace:
56 Syntéza mastných kyselin (1 cyklus) redoxní reakce jsou stejné jako při β-oxidaci: při syntéze jde o redukci, při odbourávání o oxidaci animace: quiz19/19-22.html Obrázek převzat z (leden 2007)
57 aktivovaný uhlík ACP = vazebné místo enzymu
58 Transport acetyl-coa z mitochondrie do cytoplazmy syntéza MK NADPH z pentózového cyklu Obrázek převzat z (leden 2007)
59 Regulace syntézy MK regulační enzym acetyl-coa karboxyláza (hlavní regulační enzym) syntáza mastných kyselin aktivace citrát inzulin nízkotučná, energeticky bohatá vysokosacharidová dieta (indukce) fosforylované sacharidy nízkotučná, energeticky bohatá vysokosacharidová dieta (indukce) inhibice acyl-coa (C 16 - C 18 ) glukagon (fosforylace, represe) strava bohatá na lipidy, hladovění (represe) glukagon (fosforylace, represe) strava bohatá na lipidy, hladovění (represe)
60 TEST: Metabolická dráha syntetizující MK a) produkuje NADPH+H + b) začíná karboxylací acetyl-coa: produktem je malonyl-coa c) je lokalizována v mitochondrii d) zahrnuje redukční reakce
61 Metabolická dráha syntetizující MK a) produkuje NADPH+H + b) začíná karboxylací acetyl-coa: produktem je malonyl-coa c) je lokalizována v mitochondrii d) zahrnuje redukční reakce
62 Srovnání syntézy a odbourávání MK nejvyšší zapojení poměr inzulín/glukagon tkáň s nejvyšší aktivitou lokalizace v buňce přenos přes mitoch. membránu acyl vázán na: koenzymy oxidoreduktáz C 2 donor/produkt aktivátor inhibitor produkt vysoký játra cytoplazma citrát (acetyl do cytoplazmy) ACP-doménu, CoA NADPH malonyl-coa = donor acetylu citrát acyl-coa syntéza při vysokém příjmu sacharidů kyselina palmitová při hladovění nízký svaly, játra mitochondrie acyl-karnitin (do matrix) CoA β - oxidace NAD +, FAD + acetyl-coa = produkt - malonyl-coa acetyl-coa animace:
63 Biosyntéza triacylglycerolů substráty: aktivovaná FA (acyl-coa), aktivovaný glycerol (glycerol-3-fosfát) Obrázek převzat z (leden 2007)
64 stereospecific numbering MAG DAG (meziprodukt syntézy TAG, substrát pro syntézu některých glycerolfosfolipidů) TAG = TGL Tuk Kyselina fosfatidová (meziprodukt syntézy TAG, substrát pro syntézu některých glycerolfosfolipidů) Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
65 Regulace metabolismu TAG regulační enzym fosfatáza kyseliny fosfatidové lipoproteinová lipáza (významná pro skladování TAG v adipocytech) aktivace steroidní hormony (indukce) inzulin apolipoprotein C-II inhibice
66 Glycerolfosfolipidy fosfatidylcholin = lecitin Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
67 Biosyntéza glycerolfosfolipidů substráty: aktivovaná polární hlava nebo aktivovaný DAG (CDP-deriváty) CDP-cholin / CDP-etanolamin + DAG CDP-DAG + inositol Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
68
69 Sfingofosfolipidy glycerolfosfolipid sfingofosfolipid sfingozin (C18) * nenasycený aminoalkohol (2 -OH sk.) * je syntetizován z palmitoyl-coa a serinu Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
70 Glykolipidy FA je na sfingozin vázána přes -NH 2 ceramid je prekurzorem všech sfingolipidů (fosfo- i glyko-sfingolipidů) cerebrosidy: 1 monosacharid gangliosidy: oligosacharid sulfatidy: cerebrosidy se sulfátem vázaným na monosacharid Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
71 Biosyntéza sfingolipidů substráty: ceramid, aktivované monosacharidy nebo CDP-cholin ( sfingomyelin) acyl-coa Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
72
73 Cholesterol živočišný steroidní alkohol patří mezi izoprenoidy (derivát triterpenů) málo rozpustný ve vodě (C 27, jedna OH skupina) celková koncentrace cholesterolu v krvi: 2,9 5,0 mm v krvi je transportován v lipoproteinech: hlavně v LDL a HDL (jako tzv. LDL-cholesterol a HDL-cholesterol - poměr v krvi: 2,5/1) LDL vzniká v oběhu z VLDL, který obsahuje tuky syntetizované v játrech, tj. LDL transportuje cholesterol směrem z jater k periferním tkáním HDL přenáší cholesterol z periferie do jater, podílí se na esterifikaci cholesterolu (enzym: LCAT) a jeho přenosu do jiných lipoproteinů estery cholesterolu jsou hydrofóbnější než volný cholesterol jsou uloženy v jádře lipoproteinů, zatímco volný cholesterol se nachází v jejich povrchové vrstvě cholesterol je součástí membrán všech buněk je substrátem pro syntézu steroidních hormonů (glukokortikoidů, mineralokortikoidů, androgenů, estrogenů, progesteronu, kalcitriolu v buňkách je skladován ve formě esterů v tukových kapénkách) a žlučových kyselin (v této formě je cholesterol částěčně z těla vylučován)
74 Metabolismus cholesterolu syntetizován je převážně v játrech, při zvýšeném příjmu potravou endogenní syntéza klesá lokalizace syntézy v buňce: hladké endoplazmatické retikulum (hl.er) substrátem je acetyl-coa (3x), začátek syntézy až po HMG-CoA probíhá stejně jako syntéza ketolátek v dalším kroku je HMG-CoA redukován na mevalonát (C6), který je následně převeden na aktivovanou izoprenovou jednotku (2 izomery: izopentenyldifosfát a dimethylalydifosfát) aktivovaný izopren (C5) slouží jako monomerní jednotka, z které je postupně syntetizován lineární triterpen skvalen (C30) cyklizací skvalenu a odštěpením části řetězce vzniká cholesterol (C27) syntetická dráha spotřebovává ATP a NADPH regulačním enzymem je HMG-CoA reduktáza, která je zpětnovazebně inhibována cholesterolem syntéza cholesterolu je aktivována inzulinem a tyroxinem
75
76 syntéza cholesterolu ketolátky Obrázek převzat z (leden 2007)
77 Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
78 Biosyntéza cholesterolu spotřebovává ATP Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
79 2 formy aktivovaného izoprenu: izopentenyldifosfát a dimethylallyldifosfát Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
80 Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
81 Regulace syntézy cholesterolu regulační enzym HMG-CoA reduktáza aktivace inzulin, tyroxin (indukce) inhibice cholesterol glukagon (represe) oxosteroly (represe)
82 TEST: Cholesterol a) je syntetizován v mitochondrii b) vzniká v metabolické dráze, která má společný meziprodukt s ketogenezí: aceton c) může být odbourán na acetyl-coa d) je syntetizován, pokud je poměr inzulin/glukagon
83 Cholesterol a) je syntetizován v mitochondrii b) vzniká v metabolické dráze, která má společný meziprodukt s ketogenezí: aceton c) může být odbourán na acetyl-coa d) je syntetizován, pokud je poměr inzulin/glukagon
84 ŽLUČOVÉ KYSELINY polární části molekuly značeny modře Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
85 Žlučové kyseliny karboxylové kyseliny (C 24 ) steroidní povahy vznikající v játrech (hl.er) syntetizují se z cholesterolu (C 27 ) zkrácením postranního řetězce, vytvořením karboxylové skupiny na 24. uhlíku a hydroxylací na C7 a C12 (kys. cholová) nebo jen na C7 (kys. chenodeoxycholová) = tzv. primární žlučové kyseliny (mnoho reakcí katalyzují enzymy cytochromu P450) jejich amfipatický charakter je dále zvýšen konjugací s glycinem nebo taurinem tzv. žlučové soli (glykocholát, taurocholát, glykochenodeoxycholát, taurochenodeoxycholát) z jater se spolu s malým množstvím cholesterolu vylučují do žluče = jediná cesta odstranění cholesterolu z těla; poměr žlučových solí, fosfolipidů a chol. ve žluči je daný pokud je tento poměr jiný než fyziologický, mohou se tvořit žlučové kameny (chol., Ca 2+ -soli, žl.barviva) žlučové kys. slouží ve střevě k emulgaci tuků (z velkých tukových kapének udělají malé zvětší tak jejich povrch) a napomáhají tak jejich trávení ve střevě jsou žlučové soli střevními bakteriemi dekonjugovány a přeměněny na sekundární žlučové kyseliny (cholová deoxycholová, chenodeoxycholová litocholová); enterohepatálním oběhem se většina vrací zpět do jater, jen malá část je vyloučena stolicí
86 Žlučové kyseliny Obrázek převzat z (květen 2007)
87 žlučové soli = konjugované žlučové kyseliny Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005
88 sekundární žlučové kyseliny vznikají z primárních odštěpením OH skupiny z C7 Obrázek převzat z: Color Atlas of Biochemistry / J. Koolman, K.H.Röhm. Thieme ISBN
89 Klinické souvislosti porucha trávení lipidů - při uzávěru žlučových cest (chybí žluč, která je nezbytná pro emulgaci tuků) ketoacidóza - následek zvýšené plazmatické koncentrace FFA (v játrech se tvoří více ketolátek než je tělo schopno využít) familiární hypercholesterolémie - genetický defekt LDL-receptorů (hromadí se LDL v plazmě; incidence u nás: 1:500) ateroskleróza - souvisí s vysokou koncentrací LDL-cholesterolu (náchylný k lipoperoxidaci i glykaci, ve stěně cév je pak vychytáván makrofágy - vytváří se tak pěnové buňky plné cholesterolu) lipoprotein (a) = Lp(a) - podle hustoty se řadí mezi LDL, ale obsahuje navíc plazminogenu podobný apoprotein (a), který je kovalentně navázaný na apob-100; není rozpoznáván LDL-receptory (zvýšená koncentrace je dána geneticky, je vysoce proaterogenní) HDL brání oxidaci LDL, přebírají a odstraňují oxidované složky z LDL (enzym paraoxonáza; HDL také chelatují přechodné kovy)
Metabolismus lipidů. Vladimíra Kvasnicová. doporučené animace:
Metabolismus lipidů Vladimíra Kvasnicová doporučené animace: http://www.wiley.com/college/fob/anim/ - Chapter 19 http://ull.chemistry.uakron.edu/pathways/index.html http://www.wiley.com/legacy/college/boyer/0470003790/animations/animations.htm
Metabolismus lipoproteinů. Vladimíra Kvasnicová
Metabolismus lipoproteinů Vladimíra Kvasnicová animace: http://www.wiley.com/college/fob/quiz/quiz19/19-5.html Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing,
Struktura lipidů. - testík na procvičení. Vladimíra Kvasnicová
Struktura lipidů - testík na procvičení Vladimíra Kvasnicová Od glycerolu jsou odvozené a) neutrální tuky b) některé fosfolipidy c) triacylglyceroly d) estery cholesterolu Od glycerolu jsou odvozené a)
Základní stavební kameny buňky Kurz 1 Struktura -7
Základní stavební kameny buňky Kurz 1 Struktura -7 vladimira.kvasnicova@lf3.cuni.cz Oddělení biochemie - 4. patro pracovna 411 Doporučená literatura kapitoly z biochemie http://neoluxor.cz (10% sleva přes
Lékařská chemie -přednáška č. 8
Lékařská chemie -přednáška č. 8 Lipidy, izoprenoidya steroidy Václav Babuška Vaclav.Babuska@lfp.cuni.cz Lipidy heterogenní skupina látek špatně rozpustné ve vodě, dobře rozpustné v organických rozpouštědlech
Intermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
Přehled energetického metabolismu
Přehled energetického metabolismu Josef Fontana EB 40 Obsah přednášky Důležité termíny energetického metabolismu Základní schéma energetického metabolismu Hlavní metabolické dráhy energetického metabolismu
Regulace metabolizmu lipidů
Regulace metabolizmu lipidů Principy regulace A) krátkodobé (odpověď s - min): Dostupnost substrátu Alosterické interakce Kovalentní modifikace (fosforylace/defosforylace) B) Dlouhodobé (odpověď hod -
Metabolismus lipidů a lipoproteinů. trávení a absorpce tuků
Metabolismus lipidů a lipoproteinů lipidy ~ 98-99% - triacylglyceroly zbytek cholesterol (fytosteroly, ergosterol,..) fosfolipidy DAG, MAG, vitamíny rozp. v tucích, steroidy, terpeny, volné mastné kyseliny
Metabolismus lipidů. (pozn. o nerozpustnosti)
Metabolismus lipidů (pozn. o nerozpustnosti) Trávení lipidů Lipidy v potravě - většinou v hydrolyzovatelné podobě, především jako triacylglayceroly (TAG), fosfatidáty a sfingolipidy. V trávicím traktu
Složky stravy - lipidy. Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové
Složky stravy - lipidy Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové Lipidy 1 = organické látky orgány těla využívají jako zdroj energie pro svoji činnost. Sloučenina glycerolu a mastných kyselin (MK)
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Biochemie jater. Vladimíra Kvasnicová
Biochemie jater Vladimíra Kvasnicová Obrázek převzat z http://faculty.washington.edu/kepeter/119/images/liver_lobule_figure.jpg (duben 2007) Obrázek převzat z http://connection.lww.com/products/porth7e/documents/ch40/jpg/40_003.jpg
Štěpení lipidů. - potravou přijaté lipidy štěpí lipázy gastrointestinálního traktu
METABOLISMUS LIPIDŮ ODBOURÁVÁNÍ LIPIDŮ - z potravy nebo z tukových rezerv - hydrolytické štěpení esterových vazeb - vznik glycerolu a mastných kyselin - hydrolytické štěpení LIPÁZY (karboxylesterázy) -
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus lipidů - odbourávání. VY_32_INOVACE_Ch0212
Vzdělávací materiál vytvořený v projektu P VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová
Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba
Metabolismus lipidů. lipoproteiny. Josef Tomandl, 2013
Metabolismus lipidů Mastné kyseliny, cholesterol, lipoproteiny Josef Tomandl, 2013 1 Typy lipidů triacylglyceroly fosfolipidy steroidy prostanoidy leukotrieny glycerofosfolipidy sfingofosfolipidy 2 Lipidy
Metabolismus krok za krokem - volitelný předmět -
Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus
Metabolismus lipidů. Mastné kyseliny, cholesterol, lipoproteiny. Josef Tomandl
Metabolismus lipidů Mastné kyseliny, cholesterol, lipoproteiny Josef Tomandl 1 Hlavní typy lipidů Lipidy Mastné kyseliny Steroidy Cholesterol Žlučové kyseliny Steroidní hormony Estery / amidy 2 Typy lipidů
Chemie živin. Vladimíra Kvasnicová
Chemie živin Vladimíra Kvasnicová Energie v potravě SACHARIDY / LIPIDY / PROTEINY 60 : 30 : 10 17 kj/g 37 kj/g 17 kj/g 4 kcal/g 9 kcal/g 4 kcal/g -CH(OH)- -CH 2 - -CH(NH 2 )- CO 2, H 2 O CO 2, H 2 O CO
Cholesterol a jeho transport. Alice Skoumalová
Cholesterol a jeho transport Alice Skoumalová Struktura cholesterolu a cholesterol esteru Význam cholesterolu Důležitá stavební složka biologických membrán Tvorba žlučových kyselin Biosyntéza steroidních
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - katabolismus Trávení, aktivace a transport tuků Oxidace mastných kyselin Ketonové látky Úvod Oxidace MK je centrální
Propojení metabolických drah. Alice Skoumalová
Propojení metabolických drah Alice Skoumalová Metabolické stavy 1. Resorpční fáze po dobu vstřebávání živin z GIT (~ 2 h) glukóza je hlavní energetický zdroj 2. Postresorpční fáze mezi jídly (~ 2 h po
Intermediární metabolismus CYKLUS SYTOST-HLAD. Vladimíra Kvasnicová
Intermediární metabolismus CYKLUS SYTOST-HLAD Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP
Metabolismus aminokyselin 2. Vladimíra Kvasnicová
Metabolismus aminokyselin 2 Vladimíra Kvasnicová Odbourávání AMK 1) odstranění aminodusíku z molekuly AMK 2) detoxikace uvolněné aminoskupiny 3) metabolismus uhlíkaté kostry AMK 7 produktů 7 degradačních
Syntéza a degradace mastných kyselin. Martina Srbová
Syntéza a degradace mastných kyselin Martina Srbová Mastné kyseliny (fatty acids, FA) většinou sudý počet atomů uhlíku a lineární řetězec v esterifikované formě jako součást lipidů v neesterifikované formě
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,
Metabolismus cholesterolu a lipoproteinů. EB Josef Fontana
Metabolismus cholesterolu a lipoproteinů EB Josef Fontana bsah přednášky 1) Význam cholesterolu pro lidské tělo 2) Tvorba a degradace cholesterolu 3) Transport lipidů v plazmě - metabolismus lipoproteinů
Lipidy. Nesourodá skupina látek Látky nerozpustné v polárních rozpouštědlech Složky: MK, alkoholy, N látky, sacharidy, kyselina fosforečná
Lipidy Nesourodá skupina látek Látky nerozpustné v polárních rozpouštědlech Složky: MK, alkoholy, N látky, sacharidy, kyselina fosforečná Rozdělení: 1. neutrální lipidy (tuky, triacylglyceroly) 2. Vosky
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
Cholesterol Fosfolipidy Triacylglyceroly Mastné kyseliny
Lipoproteiny 3 Tenzidy struktura, přirozené tenzidy. Lipidy krevní plazmy vztah struktury k polaritě molekuly. Lipoproteiny (LP) struktura, klasifikace, složení, metabolismus, lipasy. Apoproteiny. Enterohepatální
Lipidy. RNDr. Bohuslava Trnková ÚKBLD 1.LF UK. ls 1
Lipidy RNDr. Bohuslava Trnková ÚKBLD 1.LF UK ls 1 Lipidy estery vyšších mastných kyselin a alkoholů (příp. jejich derivátů) lipidy jednoduché = acylglyceroly (tuky a vosky) lipidy složené = fosfoacylglyceroly,
Odbourávání a syntéza glukózy
Odbourávání a syntéza glukózy Josef Fontana EB - 54 Obsah přednášky Glukóza význam glukózy pro buňku, glykémie role glukózy v metabolismu transport glukózy přes buněčné membrány enzymy fosforylující a
Metabolismus lipidů. Biochemický ústav LF MU (J.S.) 2016
Metabolismus lipidů Biochemický ústav LF MU (J.S.) 2016 1 Charakteristické vlastnosti hydrofobní (nepolární, lipofilní) charakter nerozpustné ve vodě rozpustné v nepolárních rozpouštědlech (např. chloroform,
Odbourávání lipidů, ketolátky
dbourávání lipidů, ketolátky Josef Fontana EB - 56 bsah přednášky Energetický význam TAG Jednotlivé dráhy metabolismu lipidů lipidy jako zdroj energie degradace TAG v buňkách, β-oxidace MK tvorba a využití
Dýchací řetězec (DŘ)
Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html
LIPIDY. tuky = estery glycerolu + vyšší karboxylové kyseliny. vosky = estery vyšších jednoduchých alkoholů + vyšších karboxyl.
LIPIDY 1. Rozdělení lipidů jednoduché (estery) lipidy tuky = estery glycerolu + vyšší karboxylové kyseliny vosky = estery vyšších jednoduchých alkoholů + vyšších karboxyl. kyselin složené fosfolipidy (lipid
12. Metabolismus lipidů a glycerolu. funkce karnitinu a β-oxidace
12. Metabolismus lipidů a glycerolu funkce karnitinu a β-oxidace LIPOPROTEINY Řadí se mezi složené lipidy Vznikají spojením (hydrofobními interakcemi nepolárních oblastí obou složek) lipidů se specifickými
Lipidy a biologické membrány
Lipidy a biologické membrány Rozdělení a struktura lipidů Biologické membrány - lipidové složení Membránové proteiny Transport látek přes membrány Přenos informace přes membrány Lipidy Nesourodá skupina
Regulace metabolických drah na úrovni buňky. SBT 116 Josef Fontana
Regulace metabolických drah na úrovni buňky SBT 116 Josef Fontana Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky Regulace zajištěná kompartmentací metabolických dějů Změna
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
Lipidy, Izoprenoidy, polyketidy a jejich metabolismus
Lipidy, Izoprenoidy, polyketidy a jejich metabolismus Lipidy = estery alkoholů + karboxylových kyselin Jsou nerozpustné v H 2 O, ale rozpustné v organických rozpouštědlech Nejčastější alkoholy v lipidech:
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve
11. Metabolismus lipidů
11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)
Metabolismus aminokyselin. Vladimíra Kvasnicová
Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších
Integrace metabolických drah v organismu. Zdeňka Klusáčková
Integrace metabolických drah v organismu Zdeňka Klusáčková Hydrolýza a resorpce základních složek potravy Přehled hlavních metabolických drah Biochemie výživy A) resorpční fáze (přísun živin) glukóza hlavní
Metabolismus acylglycerolů a sfingolipidů. Martina Srbová
Metabolismus acylglycerolů a sfingolipidů Martina Srbová 1. Triacylglyceroly zásoba energie tukové zásoby, lipoproteiny Lipogeneze - syntéza TG z glukózy Glyceraldehyd 3 - fosfát Klinická korelace Pacient
Lipidy Lipoproteiny Apolipoproteiny Petr Breinek
Lipidy Lipoproteiny Apolipoproteiny Petr Breinek Lipidy_2014 1 Lipos = tuk Lipidy Význam lipidů v organismu 1) Zdroj energie (tukové buňky) + zdroj esenciálních mastných kyselin 2) Strukturní funkce (součást
METABOLISMUS LIPIDU. triacylglycerol. pankreatická lipasa. 2-monoacylglycerol. mastné kyseliny COOH CH 2 CH O O C O COOH
METABLISMUS LIPIDU Syntéza a odbourání mastných kyselin, ketogeneze. Syntéza triacylglycerolů. Přehled metabolismu fosfolipidů, glykolipidů. Ikosanoidy. Syntéza a přeměny Lipoproteiny a jejich přeměny.
LIPIDY Michaela Jurčáková & Radek Durna
LIPIDY Michaela Jurčáková & Radek Durna Fyziologie živočichů cvičení, katedra biologie, PedF MU 1 LIPIDY Přírodní organické látky rostlinného, živočišného i mikrobiálního původu nerozpustné ve vodě, ale
Diabetes mellitus. úplavice cukrová - heterogenní onemocnění působení inzulínu. Metabolismus glukosy. Insulin (5733 kda)
Diabetes mellitus úplavice cukrová - heterogenní onemocnění působení inzulínu ~ nedostatečná sekrece ~ chybějící odpověď buněk periferních tkání Metabolismus glukosy ze střeva jako játra 50 % glykogen
Biochemie jater. Eva Samcová
Biochemie jater Eva Samcová Orgánová specializace Hlavní metabolické dráhy pro glukosu, mastné kyseliny a aminokyseliny jsou soustředěné okolo pyruvátu a acetyl-coa. Glukosa je primárním palivem pro mozek
Metabolismus steroidů. Petr Tůma
Metabolismus steroidů Petr Tůma Steroidy lipidy hydrofóbní charakter syntetizovány z acetyl-coa izoprenoidy během syntézy izopren Co patří mezi steroidy? cholesterol a jeho estery pohlavní hormony hormony
Metabolismus pentóz, glykogenu, fruktózy a galaktózy. Alice Skoumalová
Metabolismus pentóz, glykogenu, fruktózy a galaktózy Alice Skoumalová 1. Pentóza fosfátová dráha Přehledné schéma: Pentóza fosfátová dráha (PPP): Probíhá v cytozolu Všechny buňky Dvě části: 1) Oxidační
Chemické složení buňky
Chemické složení buňky Chemie života: založena především na sloučeninách uhlíku téměř výlučně chemické reakce probíhají v roztoku nesmírně složitá ovládána a řízena obrovskými polymerními molekulami -chemickými
Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie
Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje
Metabolismus acylglycerolů a sfingolipidů. Martina Srbová
Metabolismus acylglycerolů a sfingolipidů Martina Srbová 1. Triacylglyceroly zásoba energie tukové zásoby, lipoproteiny Lipogeneze - syntéza TG z glukózy Glyceraldehyd 3 - fosfát MK (potrava, syntéza)
Glykolýza Glukoneogeneze Regulace. Alice Skoumalová
Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza
Struktura a funkce lipidů
Struktura a funkce lipidů Lipidy přítomnost mastných kyselin a alkoholů (estery) hydrofóbnost = nerozpustnost v H 2 O syntéza acetyl-coa glukosa 1100mg/ml vody kys. laurová C12:0 0,063 mg/ml vody palivo
TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý
TUKY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s lipidy. V rámci tohoto
Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech
Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.
Metabolismus xenobiotik. Vladimíra Kvasnicová
Metabolismus xenobiotik Vladimíra Kvasnicová XENOBIOTIKA = sloučeniny, které jsou pro tělo cizí 1. VSTUP DO ORGANISMU trávicí trakt krev JÁTRA plíce krev kůže krev Metabolismus xenobiotik probíhá nejvíce
Enzymy. Vladimíra Kvasnicová
Enzymy Vladimíra Kvasnicová METABOLISMUS soubor enzymových reakcí, při nichž dochází k přeměně látek a energií v živém organismu, látková přeměna Enzymy jsou biokatalyzátory snižují aktivační energii reakce
glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*
Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická
Charakteristika analýzy: Identifikace: APOLIPOPROTEIN A-I (APO-AI) Využití: negativní rizikový faktor aterosklerózy Referenční mez : g/l
Charakteristika analýzy: Identifikace: APOLIPOPROTEIN A-I (APO-AI) Využití: negativní rizikový faktor aterosklerózy Referenční mez : g/l Pohlaví Věk od Mez spodní Mez horní M 4 let 1,110 1,900 Z 50 let
Mastné kyseliny, lipidy
Mastné kyseliny, lipidy 7. cvičení z Biochemie Luboš Paznocht Mastné kyseliny monokarboxylové alifatické kyseliny (jedna -COOH sk., nearomatické) počínaje butanovou k. (4C) výše (většinou sudý počet C)
Kardiovaskulární systém
Kardiovaskulární systém Arterio-nebo ateroskleróza (askl.) pomalu postupující onemocnění tepen, při němž je ztluštělá intima fibrózními uloženinami, které postupně zužují lumen a současně jsou místem vzniku
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/CHPB2 Chemie pro biology 2 Lipidy Lucie Szüčová Osnova: vosky, tuky, mastné kyseliny,mýdla Klíčová slova: lipidy,vosky,
Struktura sacharidů. - testík na procvičení. Vladimíra Kvasnicová
Struktura sacharidů - testík na procvičení Vladimíra Kvasnicová Mezi monosacharidy patří a) ribóza b) laktóza c) manóza d) amylóza Mezi monosacharidy patří a) ribóza b) laktóza disacharid (galaktóza +
Ukládání energie v buňkách
Ukládání energie v buňkách Josef Fontana EB - 58 Obsah přednášky Úvod do problematiky zásobních látek lidského organismu Přehled zásobních látek v těle Metabolismus glykogenu Struktura glykogenu Syntéza
Klinický detektivní příběh Glykémie
Klinický detektivní příběh Glykémie Glukóza Glukóza 6 P ústřední postavení v metabol. cestách výchozí pro syntézu glykogenu glykolýza vstup do pentózafosfátového cyklu meziprodukt při reakcích glukoneogeneze
METABOLISMUS TUKŮ VĚČNĚ DISKUTOVANÉ TÉMA
METABOLISMUS TUKŮ VĚČNĚ DISKUTOVANÉ TÉMA Ing. Vladimír Jelínek V dnešním kongresovém příspěvku budeme hledat odpovědi na následující otázky: Co jsou to tuky Na co jsou organismu prospěšné a při stavbě
Lipidy - složení vyšší mastné kyseliny + alkohol nepolární sloučeniny
LIPIDY Lipidy - složení vyšší mastné kyseliny + alkohol fyz. chem. vlastnosti nepolární sloučeniny nerozpustnost ve vodě ve vodném prostředí nutná aktivace Mastné kyseliny nasycené palmitová 16 stearová
Biochemicky významné sloučeniny a reakce - testík na procvičení
Biochemicky významné sloučeniny a reakce - testík na procvičení Vladimíra Kvasnicová Vyberte pravdivé(á) tvrzení o heterocyklech: a) pyrrol je součástí struktury hemu b) indol je součástí struktury histidinu
1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu
Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza
1 Intermediární metabolizmus a energetická homeostáza Biologické oxidace Dýchací řetězec a oxidativní fosforylace Krebsův cyklus Přehled intermediárního metabolizmu studuje změny energie provázející chemické
Steroidy. Biochemický ústav (E.T.) 2013
Steroidy Biochemický ústav (E.T.) 2013 1 Steroidy 2 Steroidy Biosyntetickým původem patří mezi isoprenoidy. Prekursorem je triterpen skvalen. Ze skvalenu je komplexním systémem mnoha reakcí syntetizován
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - anabolismus LIPIDY Zásobárna energie Hlavní složka buněčných membrán Pigmenty (retinal, karoten), kofaktory (vitamin
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
Tuky. Tuky a jejich složky Tuky s upraveným složením MK, mastné kyseliny
Tuky Tuky a jejich složky Tuky s upraveným složením MK, mastné kyseliny TUKY A JEJICH SLOŽKY Fosfolipidy Parciální estery Zvláštní tuky, PUFA (Lipofilní vitaminy, fytosteroly) - ne Fosfolipidy R2 O C O
Metabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze
AMPK (KINASA AKTIVOVANÁ AMP) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK PROTEINKINASA AKTIVOVANÁ AMP přítomna ve všech eukaryotních
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Lipidy. Lipids. Tisková verze Print version Prezentace Presentation
Lipidy Lipids Tomáš Kučera 2011 Tisková verze Print version Prezentace Presentation Lipidy Slide 1a Lipidy Lipidy Slide 1b Lipidy nepolární (hydrofobní) látky biologického původu, rozpustné v organických
Metabolismus sacharidů
Metabolismus sacharidů Glukosa obsažená v celulose, škrobu a oligosacharidech nebo volná je nejrozšířenější organickou sloučeninou v přírodě. Pro chemotrofní organismy jsou sacharidy hlavní živinou, přičemž
Energetika a metabolismus buňky
Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,
Efektivní adaptace začínajících učitelů na požadavky školské praxe
Mezipředmětová integrace tělesná výchova biologie chemie Biochemie pro učitele tělesné výchovy IV.: metabolismus tuků a bílkovin (průvodce studiem) Filip Neuls, Ph.D. Průvodce studiem Pohybový výkon má
fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)
JÁTRA ústřední orgán intermed. metabolismu, vysoká schopnost regenerace krevní oběh játry: (protéká 20% veškeré krve, 10-30% okysl.tep.krve, která zajišťuje výživu buněk, zbytek-portální krev) 1. funkční
sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty
sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie
vysoká schopnost regenerace (ze zachovalých buněk)
JÁTRA Jaterní buňky vysoká schopnost regenerace (ze zachovalých buněk) po resekci 50 60 % jaterní tkáně dorostou lidská játra do předoperační velikosti během několika měsíců (přesný mechanismus neznáme)
Buněčné membránové struktury. Buněčná (cytoplazmatická) membrána. Jádro; Drsné endoplazmatické retikulum. Katedra zoologie PřF UP Olomouc
Buněčné membránové struktury Katedra zoologie PřF UP Olomouc Většina buněčných membránových struktur jsou vzájemně propojeny (neustálá komunikace, transport materiálu) Zásobní Zásobní Endocytóza Endocytóza
Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K
Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy
Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD
Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,
ANABOLISMUS SACHARIDŮ
zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE
Tuky. Autorem přednášky je Mgr. Lucie Mandelová, Ph.D. Přednáška se prochází klikáním nebo klávesou Enter.
Tuky Tato přednáška pochází z informačního systému Masarykovy univerzity v Brně, kde byla zveřejněna jako studijní materiál pro studenty předmětu Výživa ve sportu. Autorem přednášky je Mgr. Lucie Mandelová,