6.2.5 Pokusy vedoucí ke kvantové mechanice IV

Rozměr: px
Začít zobrazení ze stránky:

Download "6.2.5 Pokusy vedoucí ke kvantové mechanice IV"

Transkript

1 65 Pokusy vedoucí ke kvantové echanice IV Předpoklady: : J Franck, G Hertz: Frack-Hertzův pokus Př : Na obrázku je nakresleno schéa Franck-Hertzova pokusu Jaký způsobe se budou v baňce (pokud v ní bude vakuu) pohybovat elektrony uvolněné z katody? Jaký je význa jednotlivých napětí? Co by uselo platit, aby se všechny elektrony uvolněné z katody dostaly k anodě? U ž e anoda katoda U řížka U A Elektron uvolněny z katody je urychlován napětí U k řížce, pokud přes řížku projde je napětí U bržděn (usí napětí U překonat, aby se dostal k anodě) U ž - napětí žhavícího obvodu, rozhoduje o počtu elektronů, které se uvolní z katody U - napětí ezi katodou a řížkou, urychluje elektrony, dodává ji energii U - napětí ezi řížkou a katodou, zpoaluje elektrony, zenšuje jejich energii Nejpoalejší jsou elektrony, které ají při opuštění katody nulovou energii, pokud ají dorazit k anodě, usí platit U > U V uvedené sestavení by pokus sloužil k ěření energie elektronů uvolněných z katody Ve skutečné pokusu nebylo uvnitř baňky vakuu ale odpařené páry rtuti, pokus zkoual srážky uvolněných elektronů s atoy rtuti Př : Necháe srazit pingpongový íček: a) s druhý pingpongový íčke, b) s kuličkou o daleko větší hotnosti Najdi rozdíl v průběhu srážek Pingpongový íček se po srážce hodně zpoalil, íček, do kterého narazil, se začal pohybovat Od těžké kuličky se pingpongový íček odrazil téěř stejnou rychlostí Čí je kulička, se kterou se íček sráží těžší, tí éně se po srážce pohybuje a tí více pohybové energie zůstane íčku

2 Př 3: Jaký způsobe ůže elektron předat atou rtuti při srážce energii? Jak se taková skutečnost projeví? Elektron ůže ato rtuti rozpohybovat, protože je ato rtuti daleko těžší, bude tento efekt veli slabý Uvolněný elektron ůže dodat energii některéu z elektronů, které obíhají jádro rtuťového atou elektron přejde na vyšší dráhu a po určité době energii vyzáří ve forě EM záření elektron usí ít energii, která odpovídá ožnéu přechodu Př 4: Proč nebyly ve Franc-Hertzově pokusu použity ísto atoů rtuti atoy vodíku? Potřebujee, aby elektrony předávaly atoů energii pouze tí, že excitují elektron, ne tí, že celý ato uvedou do pohybu potřebujee co nejtěžší ato, aby se při srážce jeho rychlost nezěnila, srážka byla pružná a elektron neztratil energii, pokud neexistuje elektron (srážka usí připoínat náraz kuličky do zdi, ne do jiné kuličky podobné hotnosti) Př 5: Odhadni průběhu anodového proudu v závislosti na rostoucí napětí U Při nulové napětí U ohou překonat napětí U jen elektrony, které s katody vyleží s dostatečnou energií Nastavíe napětí U tak, aby byl tento proud v podstatě nulový S rostoucí napětí U získávají elektrony v levé části baňky čí dál větší energii, která čí dál většíu počtu elektronů uožňuje překonat napětí U a dojít k anodě Srážky s atoy rtuti elektrony nebrzdí (elektrony se odrážejí se stejnou rychlostí) srážky anodový proud neovlivňují Jakile napětí U vzroste natolik, aby elektrony získali dostatek energie na excitaci atoů, začnou elektrony energii při srážkách ztrácet nebudou ít dostatek energie pro překonání napětí U anodový proud se sníží Ke stejnéu efektu dojde, když napětí U zroste natoli, aby energii dodalo elektronů dvakrát Siulace pokusu (Pozor vyžaduje ShockWave) Př 6: Jak by se energie, kterou atoy rtuti získají od elektronů, ěla projevit? Urči číselnou hodnotu Pokud ato rtuti přije energii E = 4,89eV od elektronu, přejde některý z jeho elektronů z hladiny E na vyšší hladinu E n čase by ěl elektron přejít zpátky na nižší hladinu a energii vyzářit ve forě fotonu rtuť by ěla zářit na vlnové délce dané vztahe E = hf 9 E 4,89,6 0 f = = = 34 h 6, Hz,8 0 Hz 8 34 c c ch 3 0 6, Vlnová délka: λ = = = = =,54 0 = 54 n 9 f E E 4,89,6 0 h Měli bycho pozorovat, že rtuť vyzařuje EM záření o vlnové délce 54 n (UV záření) Význa: Experientální potvrzení kvantování energie v atoech, kvantuje se i energie předávaná echanickýi srážkai

3 Př 7: Na obrázku jsou zachyceny různé průběhy srážek ezi pohybující se a stojící kuličkou Porovnej konečnou energii kuličky, která se původně pohybovala, ezi jednotlivýi případy a) b) c) d) Od bodu a) do bodu d) postupně roste hybnost, kterou zelená kulička přebrala od odré kuličky zvětšuje se energie zelené kuličky kvůli zákonu zachování energie se zenšuje energie odré kuličky Čí více se odrá kulička odchýlí od původního sěru, tí éně á po srážce energie 9: A Copton Coptonův jev Dopad tvrdého rentgenového záření ( λ = 0,07 n, E = 7,8keV ) na uhlíkovou destičku Sledování frekvence záření, které se rozptylovalo do různých sěrů Př 8: Odhadni, jaké frekvence by ěly být pozorovány v různých sěrech Pokud by se světlo chovalo jako vlnění, ělo by svý dopade rozkitat strukturu uhlíku ve své původní frekvenci Rozkitané částice uhlíku by pak ěly opět na stejné frekvenci vyzařovat světlo do různých sěrů Výsledek: Čí je odchylka rozptýleného záření od původního sěru větší, tí nižší energii rozptýlené záření á (tí více energie rozptyle ztratilo) RTG záření se chová jako odré kuličky v příkladu 9 Dodatek: Interpretace Coptonova rozptylu je zde čistě kvalitativní, Copton saozřejě věděl, jak se á frekvence záření s úhle ěnit Příý důkaz částicového chování světla Světlo se chová jako proud částic, nazývaných fotony Tyto částice se neustále pohybují rychlostí světla, ají nulovou klidovou hotnost a jejich energie a hybnost jsou dány vztahy E hf h E = hf, p = = = (přesně jak předpokládat už Einstein při interpretaci vnějšího c c λ fotoefektu) 3

4 Př 9: Kolik fotonů vylétá každou sekundu z červené LED diody o vlnové délce 660 n a zářivé výkonu W? Energie fotonů = energie vyzářená diodou En = Pt Pt Pt n = E = hf Dosadíe: c c λ = ct = f = f λ 7 Pt Pt Pt λ 6,6 0 8 n = = = = = 6, hf c h hc 6, λ 8 Z LED diody každou sekundu vylétá 6,6 0 fotonů 8 Př 0: Lidské oko vníá žluté světlo (600 n) již při výkonu,7 0 W Kolik fotonů za této situace dopadá do oka každou sekundu? 8 7 Pt λ, Použijee vzorec z předchozího příkladu: n = = = hc 6, Lidské oko vníá žluté světlo již při dopadu 5 fotonů za sekundu Př : Proč bylo při pokusu použito tvrdé rentgenové záření? Vysoká frekvence záření: zvýrazňuje částicové vlastnosti, struktura uhlíku se neůže rozkitat s tak velkou frekvencí Příý důkaz existence fotonů hledání "nové fyziky pro ikrosvět" 94: L de Broglie Světlo jse považovali za vlnění, ale ono se chová i jako částice částice by se neusely h h chovat pouze jako částice, ale zároveň jako vlny vlnová délka částic λ = p = v (pro h h h v relativistické částice λ = = = p v v c v c Př : Urči vlnovou délku elektronu o energii 3,6 ev Relativistické efekty zanedbej Porovnej získanou hodnotu s Bohrový poloěre 9 E = 3,6eV = 3,6,6 0 J Do vztahu pro vlnovou délku potřebujee získat rychlost elektronu Energie elektronu je kinetická: E = v ) E v = 4

5 Dosadíe: 34 h h h h 6,6 0 0 λ = = = = = 3,3 0 v 3 9 E E E 9, 0 3,6,6 0 Zkusíe "rozprostřít elektron" okolo jádra tak, aby vlnová délka odpovídala obvodu kruhu s 0 o 3,3 0 Bohrový poloěre: o = π r r = = = 5,3 0 (hodnota Bohrova π π poloěru vypočtená v inulé hodině) 0 Vlnová délka elektronu o energii 3,6 ev je 3,3 0 (přibližně tisíckrát enší než vlnová délka viditelného světla) Pedagogická poznáka: Předchozí odvození není úplně korektní a pokud si toho někdo všine, zaslouží pochvalu, přesto jde o zajíavou shodu, která pozornější žáky zauje Vlnová hypotéza o elektronech konečně: vysvětlila kvantování v Bohrově odelu atou Bohrova kvantovací podínka odpovídá tou, že elektrony se ohou nacházet jeno v takových stavech, ve kterých se rozprostřou na násobek své vlnové délky, vyřešila problé s tí, jak se nepředstavitelně alé částice vůbec ohou najít, aby spolu interagovaly 95: Heisenbergova forulace kvantové echaniky poocí atic 96: Schrödingerova rovnice forulace kvantové echaniky poocí vlnové funkce popisující chování částic, úspěšný popis atou vodíku 96: Pravděpodobnostní interpretace vlnové funkce 97: Rozptyl elektronů na krystalu (příý důkaz vlnových vlastností části) 97: Heisenbergova relace neurčitosti Shrnutí: Světlo (vlnění) á částicové vlastnosti, částice (například elektron) ají vlnové vlastnosti 5

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

16. Franck Hertzův experiment

16. Franck Hertzův experiment 16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených

Více

Newtonův zákon I

Newtonův zákon I 14 Newtonův zákon I Předpoklady: 104 Začnee opakování z inulé hodiny Pedaoická poznáka: Nejdříve nechá studenty vypracovat oba následující příklady, pak si zkontrolujee první příklad a studenti dostanou

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn?

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn? Kvantová a statistická fyzika (erodynaika a statistická fyzika) 1 Poznáka k terodynaice: Jednoatoový či dvouatoový plyn? Jeden ol jednoatoového plynu o teplotě zaujíá obje V. Plyn však ůže projít cheickou

Více

Pedagogická poznámka: Cílem hodiny je zopakování vztahu pro hustotu, ale zejména nácvik základní práce se vzorci a jejich interpretace.

Pedagogická poznámka: Cílem hodiny je zopakování vztahu pro hustotu, ale zejména nácvik základní práce se vzorci a jejich interpretace. 1.1.5 Hustota Předpoklady: 010104 Poůcky: voda, olej, váhy, dvojice kuliček, dvě stejné kádinky, dva oděrné válce. Pedagogická poznáka: Cíle hodiny je zopakování vztahu pro hustotu, ale zejéna nácvik základní

Více

3.1.2 Harmonický pohyb

3.1.2 Harmonický pohyb 3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických

Více

1.2.5 2. Newtonův zákon I

1.2.5 2. Newtonův zákon I 15 Newtonův zákon I Předpoklady: 104 Z inulé hodiny víe, že neexistuje příý vztah (typu příé nebo nepříé úěrnosti) ezi rychlostí a silou hledáe jinou veličinu popisující pohyb, která je navázána na sílu

Více

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera Srovnání klasického a kvantového oscilátoru Ondřej Kučera Seestrální projekt 010 Obsah 1. Úvod... 3. Teorie k probleatice... 4.1. Mechanika... 4.1.1. Klasická echanika... 4.1.1.1. Klasický oscilátor...

Více

Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.

Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena. Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav

Více

Počátky kvantové mechaniky. Petr Beneš ÚTEF

Počátky kvantové mechaniky. Petr Beneš ÚTEF Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: A 16 Název: Měření resonančního a ionizačního potenciálu rtuti, Franckův-Hertzův pokus Vypracoval: Martin Dlask

Více

Studium fotoelektrického jevu

Studium fotoelektrického jevu Studium fotoelektrického jevu Úkol : 1. Změřte voltampérovou charakteristiku přiložené fotonky 2. Zpracováním výsledků měření určete hodnotu Planckovy konstanty Pomůcky : - Ampérmetr TESLA BM 518 - Školní

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017 Střední průmyslová škola sdělovací techniky Panská Praha 1 Jaroslav Reichl, 017 určená studentům 4. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl Obsah 1. SPECIÁLNÍ TEORIE RELATIVITY....

Více

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření. KVANTOVÁ FYZIKA 1. Záření tělesa Částice (molekuly, ionty) pevných a kapalných látek, které jsou zahřáté na určitou teplotu, kmitají kolem rovnovážných poloh. Při tomto pohybu kolem nich vzniká proměnné

Více

ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron

ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ATOMOVÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Kvantování nrgi lktroagntického zářní opakování téa Elktroagntické zářní Planck (1900): Enrgi lktroagntického zářní ůž být vyzářna

Více

( ) ( ) Newtonův zákon II. Předpoklady:

( ) ( ) Newtonův zákon II. Předpoklady: 6 Newtonův zákon II Předpoklady: 0005 Př : Autoobil zrychlí z 0 k/h na 00 k/h za 8 s Urči velikost síly, která auto uvádí do pohybu, pokud autoobil váží,6 tuny Předpokládej rovnoěrně zrychlený pohybu auta

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Balmerova série vodíku

Balmerova série vodíku Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány

Více

Pár zajímavých nápadů

Pár zajímavých nápadů Pár zajíavých nápadů Václav Pazdera Gynáziu, Oloouc, Čajkovského 9 Abstrakt Příspěvek je věnován tře jednoduchý poůcká, které si ůže každý učitel fyziky sá vyrobit: "Tlak plynu v balónku", "Zpívající trubky"

Více

Jméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta

Jméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25. 3. 2013 8.4.2013 Příprava Opravy Učitel

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

3.1.8 Přeměny energie v mechanickém oscilátoru

3.1.8 Přeměny energie v mechanickém oscilátoru 3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci

Více

1. Zadání Pracovní úkol

1. Zadání Pracovní úkol 1. 1. Pracovní úkol 1. Zadání 1. Změřte charakteristiky Franck-Hertzovy trubice s parami rtuti při pokojové teplotě a při dvou vyšších teplotách baňky t 1, t 2. Při nejvyšší teplotě a při teplotě pokojové

Více

r(t) =0 t = a3 0 4cre

r(t) =0 t = a3 0 4cre Řešením této rovnice (integrací) dostaneme r(t) 3 = C(t =0) 4cr 2 et, (1.40) kde C(t =0)je třetí mocnina poloměru dráhy v čase t =0s, ale to je zadaný poloměr a 0 =52,9 pm. Doba života atomu v Rutherfordově

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Elektrický proud v elektrolytech

Elektrický proud v elektrolytech Elektrolytický vodič Elektrický proud v elektrolytech Vezěe nádobu s destilovanou vodou (ta nevede el. proud) a vlože do ní dvě elektrody, které připojíe do zdroje stejnosěrného napětí. Do vody nasypee

Více

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.

Více

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek).

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek). Soustava SI SI - zkratka francouzského názvu Systèe International d'unités (ezinárodní soustava jednotek). Vznikla v roce 1960 z důvodu zajištění jednotnosti a přehlednosti vztahů ezi fyzikálníi veličinai

Více

Elektromagnetické vlnění, vlny a částice

Elektromagnetické vlnění, vlny a částice Elektromagnetické vlnění, vlny a částice Vznik elektromagnetického záření Elektromagnetické vlnění vzniká, když částice s elektrickým nábojem se pohybuje se zrychlením. Příklady: - Střídavé napětí v anténě:

Více

Badmintonový nastřelovací stroj a vybrané parametry letu badmintonového míčku

Badmintonový nastřelovací stroj a vybrané parametry letu badmintonového míčku Badintonový nastřelovací stroj a vybrané paraetry letu badintonového Jan Vorlík 1.* Vedoucí práce: prof. Ing. Pavel Šafařík, CSc. 1 ČVUT v Praze, Fakulta strojní, Ústav echaniky tekutin a terodynaiky,

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. E = h f, f je frekvence záření, h je Planckova

ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. E = h f, f je frekvence záření, h je Planckova ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. KVANTOVÁ FYZIKA: Koncem 19. století byly zkoumány optické jevy, které nelze vysvětlit jen vlnovými vlastnostmi světla > vznikly nové fyzikální teorie,

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY HISTORIE ATOMU M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Historie atomu (modely) Mgr. Robert Pecko Období bez modelu pojetí hmoty

Více

4. STANOVENÍ PLANCKOVY KONSTANTY

4. STANOVENÍ PLANCKOVY KONSTANTY 4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa

Více

MĚŘENÍ PLANCKOVY KONSTANTY

MĚŘENÍ PLANCKOVY KONSTANTY Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.7/1.5./34.82 Zkvalitnění výuky prostřednitvím ICT III/2 Inovae a zkvalitnění výuky prostřednitvím ICT

Více

4 SÁLÁNÍ TEPLA RADIACE

4 SÁLÁNÍ TEPLA RADIACE SÁLÁNÍ TEPLA RADIACE Vyzařovaná energie tělese se přenáší elektroagnetický vlnění o různé délce vlny. Podle toho se rozlišuje záření rentgenové, ultrafialové, světelné, infračervené a elektroagnetické

Více

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory Datum (období) vytvoření:

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Charakteristika a mrtvá doba Geiger-Müllerova počítače

Charakteristika a mrtvá doba Geiger-Müllerova počítače Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

1. Pohyby nabitých částic

1. Pohyby nabitých částic 1. Pohyby nabitých částic 16 Pohyby nabitých částic V celé první kapitole budee počítat pohyby částic ve vnějších přede znáých (zadaných) polích. Předpokládáe že 1. částice vzájeně neinteragují. vlastní

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

Fyzika pro chemiky II

Fyzika pro chemiky II Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná

Více

E e = hf -W. Kvantové vysvětlení fotoelektrického jevu. Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové

E e = hf -W. Kvantové vysvětlení fotoelektrického jevu. Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové Kvantové vysvětlení fotoelektrického jevu Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové hypotézy Fotoelektrický jev : Světlo vyráží z povrchu kovů elektrony. Jedno kvantum světla může

Více

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

9. Fyzika mikrosvěta

9. Fyzika mikrosvěta Elektromagnetické spektrum 9.1.1 Druy elektromagnetickéo záření 9. Fyzika mikrosvěta Vlnění různýc vlnovýc délek mají velmi odlišné fyzikální vlastnosti. Různé druy elektromagnetickéo záření se liší zejména

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla

- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla VLNOVÁ OPTIKA - studium jevů založených na vlnové povaze světla: - interference (jev podmíněný skládáním vlnění) - polarizace - difrakce (ohyb) - disperze (jev související se závislostí n n ) - studium

Více

Návod k úloze Studium Rutherfordova rozptylu na zlaté a hliníkové fólii

Návod k úloze Studium Rutherfordova rozptylu na zlaté a hliníkové fólii Návod k úloze Studiu Rutherfordova rozptylu na zlaté a hliníkové fólii Úvod V této úloze provedee dnes již klasický experient, na jehož základě bylo objeveno atoové jádro. Rutherford navrhl pokus, v něž

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

2.1.6 Relativní atomová a relativní molekulová hmotnost

2.1.6 Relativní atomová a relativní molekulová hmotnost .1. Relativní atoová a elativní oleklová hotnost Předpoklady: Pedagogická poznáka: Tato a následjící dvě hodiny jso pokse a toch jiné podání pobleatiky. Standadní přístp znaená několik ne zcela půhledných

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

Měření šířky zakázaného pásu polovodičů

Měření šířky zakázaného pásu polovodičů Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet

Více

08 - Optika a Akustika

08 - Optika a Akustika 08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány

Více