jedna hrana pro každou možnou hodnotu tohoto atributu; listy jsou označeny předpokládanou hodnotou cílového atributu Atribut Outlook

Rozměr: px
Začít zobrazení ze stránky:

Download "jedna hrana pro každou možnou hodnotu tohoto atributu; listy jsou označeny předpokládanou hodnotou cílového atributu Atribut Outlook"

Transkript

1 Rozhodovací stromy

2 Outlook Sunny Overcast Rain Humidity Yes Wind High Normal Strong Weak Atribut hodnota cílového atributu Hodnota atributu No Yes No Yes Rozhodovací strom pro daný cílový atribut G je kořenový strom tvořený z kořene a vnitřních uzlů označených atributem; ze kterého vede jedna hrana pro každou možnou hodnotu tohoto atributu; listy jsou označeny předpokládanou hodnotou cílového atributu G za předpokladu, že ostatní atributy nabývají hodnot na cestě od kořene do listu. Pokud se některé atributy na cestě nevyskytují, na jejich hodnotě nezáleží.

3 Základ algoritmu tvorby rozhodovacího stromu z dat je následující: 1. vyber atribut; vytvoř z něj uzel a rozděl data podle hodnoty tohoto atributu 2. pro každou hodnotu atributu vytvoř podstrom z dat s odpovídající hodnotou 3. pokud data obsahují jen jednu hodnotu cílové třídy či pokud došly atributy k dělení, vytvoř list s hodnotou nejčetnější cílové třídy. Otázkou je, jak vybírat atribut k dělení.

4 Entropie Po míře entropie rozdělení hodnot daného atributu A (tj. míře nejistoty, negativní míře informace) chceme, aby: byla nula, pokud jsou všechny hodnoty cílové třídy stejné byla největší, pokud je stejně hodnot všech cílových tříd (tj. nevíme nic) aby rozhodnutí ve dvou krocích vedlo ke stejnému výsledku jako rozhodnutí naráz, tj. E([2, 3, 4]) = E([2, 7]) E([3, 4]) Toto splňuje pouze entropie E([p 1,..., p n ]) = n i=1 p i log p i, logaritmus se bere většinou dvojkový. Pozn. nemusíme normalizovat, pak dostaneme entropii násobenou součetem všech p i.

5 Pokud chceme uvést, přes který atribut entropii počítáme, používáme dolní index, např. E Xj, resp. E G pro cílový atribut.

6 Entropie pro dvouhodnotový atribut Entropie vodorovná osa: p i, svislá: entropie.

7 ID3 algorithmus Uzel, který dáme do kořene (pod)stromu, vybíráme podle maximálního informačního zisku (information gain), definovaného pro množinu dat data a atribut X j jako: data Xj=x Gain(data, X j ) = E G (data) j E G (data Xj =x x j X j data j ) kde data Xj =x j je podmnožina data, kde atribut X j má hodnotu x j, entropie je definovaná E G (data) = data G=g g G data log 2 data G=g data = G p i log 2 p i i=1 kde p i je počet dat v data patřící do třídy g i dělený celkovým počtem dat v data.

8 Algoritmus ID3 algorithm(data, G cíl, Attributes vstup. atributy) Vytvoř kořen root Pokud mají všechna data stejné g, označ kořen g a konec, Pokud došly Attributes, označ root nejčastější hodnotou g v data a konec jinak X j = atribut z Attributes s maximálním Gain(data, X j ) označ root atributem X j pro každou hodnotu x j atributu X j, přidej větev pod root, odpovídající testu X j = x j data Xj =x j = podmnožina data, kde X j = x j Je li data Xj =x j prázdné, přidej list označený nejčastější hodnotou g v data a konec jinak přidej podstrom ID3(data Xj =x j, G, Attributes \ {X j }) vrať root

9 Chyba predikce na trénovacích datech na nových datech (při nasazení v reálu) Occamova břitva preferujeme jednodušší model (jsou li srovnatelně dobré) penalizujeme složité modely Snažím se strom zmenšit (prořezat) bez velkého zhoršení chyby.

10 Prořezávání postprunning nejdřív vytvoříme strom, pak ho prořezáváme; preprunning ukončit tvoření stromu dříve, než dojdeme na konec. I když pre prunning vypadá lákavěji (než zbytečně tvořit dál a prořezávat), častěji se používá postprunning, protože nezamítne kombinaci atributů, z nichž žádný jednotlivec není užitečný, ale jako celek užiteční jsou. Není jasné, jestli lze nalézt preprunning strategii, která by byla stejně dobrá, jako postprunning.

11 Odhad chyby reduced error prunning nechám trochu dat na prořezávání, ale bohužel učím strom na méně datech. odhadovat chybu na základě trénovacích dat použito v C4.5, motivováno statistikou. optimalizovat penalizovanou míru chyby (CART).

12 Odhad chyby z trénovacích dat Uvažujme list l, v něm je N l příkladů, v datech je Err l příkladů chybných (tj. různých od nejčetnější třídy) ˆf l = Err l N l je pozorovaná frekvence chyby, předpokládáme, že N l instancí bylo generováno Bernoulliho procesem s parametrem q l (=správná (true) pravděpodobnost chyby), vzhledem k tomu, že odhad je založen na trénovacích datech, děláme pesimistický odhad a místo výpočtu konfidenčního intervalu bereme jako odhad horní hranici tohoto intervalu.

13 V C4.5 je default hladina významnosti (confidence level) α = 0.25 hledáme z tak, aby: err ˆ l = P q l ˆf l ql (1 q l ) N l > z = α Pro α = 0.25 je z = 0.69, nižší α vede k drastičtějšímu prořezání. z použijeme pro výpočet pesimistického odhadu frekvence chyby err ˆ l ˆf l + z2 ˆf 2N l + z l N l ˆf l 2 N l + z2 4Nl 2 Nebo přibližně: 1 + z2 N l ˆfl (1 ˆf l ) err ˆ l ˆf l + zσ l ˆf l + z N l

14 Prořezávání Postprunning uvažuje dvě operace, subtree replacement vyberu podstrom a nahradím ho listem; to určitě sníží přesnost na trénovacích datech, ale může to zlepšit predikci na nezávislých testovacích datech. Postupujeme od listů ke kořeni, v každém uzlu buď podstrom nahradíme, nebo necháme. subtree raising komplexnější a je otázkou, je li třeba. Ale je použité v C4.5. Jde o vynechání jednoho uzlu, nahrazení ho jeho podstromem a překlasifikováním příkladů, které patřily do zbylých podstromů. V praxi se to zkouší jen pro nejnavštěvovanější větev.

15 Numerické atributy yes no yes yes yes no no,yes yes,yes no yes yes no U tohoto atributu připadá v úvahu 11 dělicích bodů, ale pokud neuvažujeme dělení mezi dvěma stejnými hodnotami cílového atributu, tak jen 9. Pro každý řez zvlášť můžeme zjistit informační zisk, např. pro řez v 71.5 dostaneme E([9, 5]) E([4, 2], [5, 3]) = E([9, 5]) ( 6 14 = bitů. E([4, 2]) E([5, 3])) Testů podle numerického atributu může být na cestě z kořene do listu víc narozdíl od diskrétního atributu, kde rovnou dělíme podle všech možných hodnot.

16 Penalizace mnohahodnotových atributů Dělení dle identifikačního kódu záznamu vede k nulové entropii, ale nezobecňuje. Pro výběr dělení užijeme Gain ratio= Gain(data,X j) E(X j ) tj. penalizujeme započítáním informace obsažené v samotném dělení podle atributu, bez ohledu na cílovou třídu. Např. ID kód pro N příkladů bude mít informaci obsaženou v atributu: E([1, 1,..., 1]) = ( 1 log 1 ) N = log N. N N Nebo jednoduše dovolíme jen binární dělení(cart); připouští li atribut další dělení, pokračuje do podstomů. V praxi se navíc přidávají at toc testy na vyhození ID, i když vyjde nejlepší, a na omezení přílišné závislosti na entropii atributu tím, že vyberu maxmální gain ratio jen tehdy, pokud je i information gain aspoň tak dobrý jako průměrný information gain přes všechny testované atributy. C4.5 navíc nevybere atribut, který má skoro jen jednu hodnotu vyžaduje aspoň dvě hodnoty s aspoň dvěma příklady s tím, že ta druhá dvojka se dá nastavit a měla by se zvětšit, máme li hodně dat s velkým šumem.

17 Binární řez pro kategoriální atributy Pro q hodnot 2 q 1 možných dělení, ALE pro 0 1 výstup stačí setřídit hodnoty atributu dle klesající proporce těch s cílem 1 vyzkoušet všechny řezy, tj. q 1. Pro kvantitativní výstup setřídit kategorie dle klesajícího průměru cíle a totéž.

18 Chybějící hodnoty Ignorovat celou instanci často nemůžeme, protože by nám nezbyla žádná data. Navíc, pokud chybějící atribut nenese informaci pro rozhodování, tak je tahle instance stejně dobrá jako všechny ostatní. Pokud fakt, že údaj chybí, není náhodný, pak je vhodné chybění hodnoty považovat za další možnou hodnotu atributu.např. plat neuvedou ti, kdo ho mají hodně malý či hodně velký. Pokud ale samotný fakt chybění nenese informaci (např. neměřil porouchaný teploměr), pak je lépe nakládat jinak. Možné řešení je rozdělení instance na kousky (numericky vážit podle počtu trénovacích instancí jdoucích jedotlivými větvemi), dojít k listům, a váženě zkombinovat predikce na listech. Podobně používáme váhy pro výpočet informačního zisku a informač. poměru a pro dělení instancí podle chybějícího att.

19 Různé míry pro větvení stromu entropie K k=1 ˆp m,k log ˆp m,k chyba predikce 1 N m i Rm I(y i = k(m)) = 1 ˆp m,km Gini k =k ˆp m,k ˆp m,k = K k=1 ˆp m,k(1 ˆp m,k ) Interpretace Gini: předpovídám pravděpodobnosti, pak je trénovací chyba Gini Gini je součet rozptylů jednotlivých tříd k při 0 1 kódování Příklad: Je dělení (300,100) a (100,300) lepší či horší než (200,400) a (200,0)?

20 Miry pro vyber vetveni stromu misclas. error entropie GINI

21 Různá cena chyby Raději predikuji infarkt i tomu, kdo ho nedostane, než nevarovat toho, kdo ho dostane. L kk matice ceny za chybnou klasifikaci k jakožto k pro vícekategoriální klasifikaci modifikujeme Gini = k =k L kk ˆp mk ˆp mk pro dvouhodnotovou vážíme prvky třídy k L kk krát v listu pak klasifikujeme k(m) = argmin k l L lk ˆp ml.

22 Cena za pozorování Gain 2 (S, X j ) Cost(X j ) učení robota, nakolik objekty mohou být uchopeny Schlimmer 1990, Tan 1993 nebo 2 Gain(S,X j) 1 (Cost(X j ) + 1) w Nunez 1988 medicínská diagnostika. Nunez 1991 srovnává oba přístupy na různých příkladech.

23 Složitost algoritmu Mějme N instancí o p atributech. Předpokládejme hloubku stromu O(logN), tj. že zůstává rozumně hustý. Vytvoření stromu potřebuje O(p N logn) času. (Na každé hloubce se každá instance vyskytne právě jednou, je logn hloubek, v každém uzlu zkoušíme p atributů. Složitost subtree replacement je O(N), složitost subtree raising je O(N(logN) 2 ). Celková složitost tvorby stromů je O(pNlogN) + O(N(logN) 2 ).

24 Pravidla ze stromů Ze stromu můžeme vytvořit pravidla napsáním pravidla pro každý list. Ta pravidla ale můžeme ještě zlepšit tím, že uvažujeme každý atribut v každém pravidle a zjistíme, jestli jeho vynecháním pravidlo nezlepšíme (tj. nezlepšíme chybu na validačních datech resp. pesimistický odhad chyby na trénovacích datech). To funguje celkem dobře, ale dlouho, protože pro každý atribut musíme projít všechny trénovací příklady. Algoritmy tvořící pravidla přímo bývají rychlejší. Výsledná pravidla setřídíme podle klesající úspěšnosti.

25 Stromy pro numerickou predikci Listy stromů obsahují numerické hodnoty, rovné průměru trénovacích příkladů v listu. pro výběr atributu k dělení zkoušíme všechny řezy, vybíráme maximální zlepšení střední kvadratické chyby. Tyto stromy se nazývají také regresní stromy, protože statistici nazývají regrese proces pro predikci numerických hodnot. Můžeme i kombinovat regresní přímku a rozhodovací strom tím, že v každém uzlu bude regresní přímka takový strom se nazývá model tree.

26 CART Hledá proměnnou j a bod řezu s na oblasti R 1 ( j, s) = {X X j s} a R 2 ( j, s) = {X X j > s} takové, aby minimalizovaly [ min j,s = min c1 ] (y i c 1 ) 2 + min c2 (y i c 2 ) 2 x i R 1 ( j,s) x i R 2 ( j,s) vnitřní minima jsou průměry, tj. ĉ 1 = avg(y i x i R 1 ( j, s)).

27 Prořezávání v CART Naučme strom T 0 až k listům s málo (5 ti) záznamy. Vytvoříme hierarchii podstromů T T 0 postupným sléváním listů dohromady. Listy stromu T o velikosti T indexujeme m, list m pokrývá oblast R m, definujeme: ĉ m = 1 N m Q m (T) = 1 N m x i R m y i, x i R m (y i ĉ m ) 2.

28 Definujeme kriterium k optimalizaci: C α (T) = T m=1 N m Q m (T) + α T. Vyjdeme z T 0, postupně slijeme vždy dva listy, které způsobí nejmenší nárůst m N m Q m (T), až nám zbyde jen kořen. Dá se ukázat, že tato posloupnost obsahuje T α optimální stromy pro daná α. α = 0 neprořezáváme, necháme T 0, pro α = necháme jen kořen, vhodné α zvolíme na základě krosvalidace, ˆα minimalizuje krosvalidační chybu RSS, vydáme model Tˆα.

DATA MINING KLASIFIKACE DMINA LS 2009/2010

DATA MINING KLASIFIKACE DMINA LS 2009/2010 DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

Instance based learning

Instance based learning Učení založené na instancích Instance based learning Charakteristika IBL (nejbližších sousedů) Tyto metody nepředpokládají určitý model nejsou strukturované a typicky nejsou příliš užitečné pro porozumění

Více

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci

Více

Návrh Designu: Radek Mařík

Návrh Designu: Radek Mařík 1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1

Více

Rozhodovací stromy a lesy

Rozhodovací stromy a lesy Rozhodovací stromy a lesy Klára Komprdová Leden 2012 Příprava a vydání této publikace byly podporovány projektem ESF č. CZ.1.07/2.2.00/07.0318 Víceoborová inovace studia Matematické biologie a státním

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Pokročilé neparametrické metody. Klára Kubošová

Pokročilé neparametrické metody. Klára Kubošová Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti

Více

Obsah přednášky Jaká asi bude chyba modelu na nových datech?

Obsah přednášky Jaká asi bude chyba modelu na nových datech? Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich

Více

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít

Více

Předzpracování dat. Lenka Vysloužilová

Předzpracování dat. Lenka Vysloužilová Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání

Více

NPRG030 Programování I, 2018/19 1 / :03:07

NPRG030 Programování I, 2018/19 1 / :03:07 NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování

Více

Základy navrhování průmyslových experimentů DOE

Základy navrhování průmyslových experimentů DOE Základy navrhování průmyslových experimentů DOE cílová hodnota V. Vícefaktoriální experimenty Gejza Dohnal střední hodnota cílová hodnota Vícefaktoriální návrhy experimentů počet faktorů: počet úrovní:

Více

Změkčování hranic v klasifikačních stromech

Změkčování hranic v klasifikačních stromech Změkčování hranic v klasifikačních stromech Jakub Dvořák Seminář strojového učení a modelování 24.5.2012 Obsah Klasifikační stromy Změkčování hran Ranking, ROC křivka a AUC Metody změkčování Experiment

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Velmi stručný úvod do použití systému WEKA pro Data Mining (Jan Žižka, ÚI PEF)

Velmi stručný úvod do použití systému WEKA pro Data Mining (Jan Žižka, ÚI PEF) Velmi stručný úvod do použití systému WEKA pro Data Mining (Jan Žižka, ÚI PEF) Systém WEKA, implementovaný v jazyce Java, lze získat nejlépe z následující URL: . Dále

Více

Odhady Parametrů Lineární Regrese

Odhady Parametrů Lineární Regrese Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,

Více

Intervalová data a výpočet některých statistik

Intervalová data a výpočet některých statistik Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a

Více

Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?

Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili? Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Asociační i jiná. Pravidla. (Ch )

Asociační i jiná. Pravidla. (Ch ) Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

Připomeň: Shluková analýza

Připomeň: Shluková analýza Připomeň: Shluková analýza Data Návrh kategorií X Y= 1, 2,..., K resp. i jejich počet K = co je s čím blízké + jak moc Neposkytne pravidlo pro zařazování Připomeň: Klasifikace Data (X,Y) X... prediktory

Více

Hodnocení klasifikátoru Test nezávislosti. 14. prosinec Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/

Hodnocení klasifikátoru Test nezávislosti. 14. prosinec Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/ Čtyřpolní tabulky Čtyřpolní tabulky 14. prosinec 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 O čem se bude mluvit? Čtyřpolní tabulky Osnova prezentace Čtyřpolní tabulky 1. přístupy

Více

Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?

Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili? Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? 2 Osnova Úvod různé klasifikační modely a jejich kvalita Hodnotící míry (kriteria kvality) pro zvolený model. Postup vyhodnocování

Více

Testování modelů a jejich výsledků. tomu, co jsme se naučili?

Testování modelů a jejich výsledků. tomu, co jsme se naučili? Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

MÍRY ZÁVISLOSTI (KORELACE A REGRESE)

MÍRY ZÁVISLOSTI (KORELACE A REGRESE) zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky

Více

8 Coxův model proporcionálních rizik I

8 Coxův model proporcionálních rizik I 8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Jana Vránová, 3. lékařská fakulta, UK Praha

Jana Vránová, 3. lékařská fakulta, UK Praha Jana Vránová, 3. lékařská fakulta, UK Praha Byla navržena v 60tých letech jako alternativa k metodě nejmenších čtverců pro případ, že vysvětlovaná proměnná je binární Byla především používaná v medicíně

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme - FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen

Více

Rozhodovací stromy a jejich konstrukce z dat

Rozhodovací stromy a jejich konstrukce z dat Rozhodovací stromy a jejich konstrukce z dat Příklad počítačová hra. Můžeme počítač naučit rozlišovat přátelské a nepřátelské roboty? Učení s učitelem: u některých už víme, jakou mají povahu (klasifikace)

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných

Více

Rozhodovací stromy a jejich konstrukce z dat

Rozhodovací stromy a jejich konstrukce z dat Příklad počítačová hra. Můžeme počítač naučit rozlišovat přátelské a přátelské roboty? Rozhodovací stromy a jejich konstruk z dat Učení s učitelem: u některých už víme, jakou mají povahu (klasifika) Neparametrická

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:

Více

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Tvorba asociačních pravidel a hledání. položek

Tvorba asociačních pravidel a hledání. položek Tvorba asociačních pravidel a hledání častých skupin položek 1 Osnova Asociace Transakce Časté skupiny položek Apriori vlastnost podmnožin Asociační pravidla Aplikace 2 Asociace Nechť I je množina položek.

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Aleh Masaila. Regresní stromy

Aleh Masaila. Regresní stromy Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Aleh Masaila Regresní stromy Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce: Studijní program: Studijní

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0. 11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Pokročilé neparametrické metody. Klára Kubošová

Pokročilé neparametrické metody. Klára Kubošová Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

Cvičení 11. Klasifikace. Jan Přikryl. 14. března 2018 ČVUT FD

Cvičení 11. Klasifikace. Jan Přikryl. 14. března 2018 ČVUT FD Cvičení 11 Klasifikace Jan Přikryl ČVUT FD 14. března 2018 Příklad 1 Data z akciového trhu Nejprve prozkoumáme data z akciových trhů, konkrétně denní vývoj indexu S&P v letech 2001 2005. Načteme a zobrazíme

Více

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti. Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

3. Vícevrstvé dopředné sítě

3. Vícevrstvé dopředné sítě 3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,

Více

Kapitola 1. Logistická regrese. 1.1 Model

Kapitola 1. Logistická regrese. 1.1 Model Kapitola Logistická regrese Předpokládám, že už jsme zavedli základní pojmy jako rysy a že už máme nějaké značení Velkost trenovacich dat a pocet parametru Motivační povídání... jeden z nejpoužívanějších

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více