jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
|
|
- Božena Benešová
- před 8 lety
- Počet zobrazení:
Transkript
1 Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment ideálně a nelze přitom využít cenzorování časem nebo poruchou, ale je potřeba vyjít z tzv provozních dat Podobně je tomu při sledování životnosti jedinců dané populace Protože jedinci často migrují, mohou se dostat mimo naši kontrolu dříve, než zjistíme, zda ke sledovanému rizikovému jevu došlo či nikoliv Např sledujeme-li soubor pacientů, kteří jsou po závažném onemocnění v septickém stavu a sledování provádíme s ohledem na jejich přežití, nemusíme přesně znát dobu trvání septického stavu Pacient může být během septického stavu převezen do jiného zařízení, kde již není pod naší kontrolou, případně dlouhodobé sledování pacienta pro potřeby dané studie musíme z časových důvodů předčasně ukončit apod V takových případech uvažujeme n statistických jednotek a u každé z nich pozorujeme bud náhodnou veličinu X, která udává dobu čekání na rizikový jev nebo náhodnou veličinu T, která udává dobu sledování pacienta Náhodná veličina T se nazývá časový cenzor Lze tedy každé statistické jednotce přiřadit hodnotu X nebo T podle toho, která z těchto hodnot je menší Formálně zapsáno může být výsledek sledování n dvojic (W 1, I 1 ), (W 2, I 2 ),, (W n, I n ), kde W j = min(x j, T j ), I j = 1, jestliže W j = X j, a tedy, j-té pozorování X je necenzorované a rizikový jev u j-té jednotky byl pozorován v čase X j, I j = 0, jestliže W j = T j, to znamená, že j-té pozorování X je cenzorováno v čase T = T j, tedy statistická jednotka j byla vyjmuta ze sledování dříve, než došlo k nastoupení rizikového jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina Při náhodném cenzorování předpokládáme, že doba čekání na rizikový jev X a časový cenzor T jsou nezávislé náhodné veličiny Rozdělení X popíšeme stejně jako dříve hustotou f(x) nebo distribuční funkcí F (x) a rozdělení časového cenzoru T popíšeme hustotou g(t) nebo distribuční funkcí G(t), přičemž obě tato rozdělení mohou záviset na neznámých parametrech, tedy F (x) = F (x, θ 1 ) a G(x) = G(x, θ 2 ) Vektor θ = (θ 1, θ 2 ) je pak vektor všech neznámých parametrů a pro jednoduchost budeme předpokládat, že vektory θ 1, θ 2 neobsahují společné parametry Za uvedených předpokladů je potom výsledkem pozorování n nezávislých dvojic (W j, I j ), j = 1, 2,, n Dříve než uvedeme věrohodnostní funkci, která odpovídá náhodnému cenzorování, zavedeme funkci H(w, i) pro w > 0 a i {0, 1} vztahem H(w, i) = P (W w, I = i) Z uvedených předpokladů pak plyne, že Odtud derivováním dostaneme funkci H(w, 1) = P (W j < w, I j = 1) = F (w) ah(w, 0) = P (W j w, I j = 0) = G(w) w 0 w 0 f(x)g(x)dx F (x)g(x)dx dh(w, 1) h(w, 1) = = f(w) f(w)g(w) = f(w) ( 1 G(w) ), w > 0 dw dh(w, 0) h(w, 0) = = g(w) F (w)g(w) = g(w) ( 1 F (w) ), w > 0 dw (1) Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ107/2200/ PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
2 Zřejmě funkce h(w, i) odpovídá sdružené hustotě náhodných veličin W a I Odtud plyne, že věrohodnostní funkce výsledku experimentu (W 1, I 1 ),, (W n, I n ) při náhodném cenzorování je rovna n L(θ) = h(w j, I j ) (2) j=1 Poznamenejme ještě pro úplnost, že pro stručnost zápisu jsme v hustotách f, g, h a distribučních funkcích F, G, H explicitně nevyjádřili závislosti na parametrech θ 1, θ 2, θ Odhad parametru θ potom získáme maximalizací věrohodnostní funkce (2) nebo jednodušeji maximalizací logaritmické věrohodnostní funkce n l(θ) = lnl(θ) = ln h(w j, I j ) Protože na pořadí sčítanců ve vyjádření logaritmické věrohodnostní funkce l(θ) nezáleží, lze l(θ) zapsat ve tvaru l(θ) = j J 1 ln h(w j, 1) + j J 0 ln h(w j, 0), (3) kde J 1 {1, 2,, n} je množina statistických jednotek j, pro které je I j = 1, tj J 1 = {j : I j = 1} a J 0 {1, 2,, n} je množina statistických jednotek {j : I j = 0} Tedy J 1 odpovídá statistickým jednotkám, u nichž byl rizikový jev pozorován a J 0 odpovídá statistickým jednotkám, které byly cenzorovány a rizikový jev nebyl pozorován Když dosadíme za h(w j, 0) a h(w j, 1) ve vzorci (3) ze vzorce (1), dostaneme logaritmickou věrohodnostní funkci l(θ) ve tvaru l(θ) = ( ln f(w j ) ( 1 G(W j ) )) + ( ln g(w j ) ( 1 F (W j ) )) = j J 1 j J 0 = ( ln f(x (j) ) ( 1 G(X (j) ) )) + ( ln g(t j ) ( 1 F (T j ) )) = j J 1 j J 0 j=1 = j J 1 ln f(x (j) ) + j J 0 ln ( 1 F (T (j) ) ) + j J 0 ln g(t j ) + j J 1 ln ( 1 G(X (j) ) ) Dále vzhledem k předpokladu, že f a F závisí pouze na parametru θ 1 = (θ 11,, θ 1r1 ) a g a G pouze na parametru θ 2 = (θ 21,, θ 2r2 ), dostaneme logaritmicko věrohodnostní funkci l(θ) jako součet kde l(θ) = l 1 (θ 1 ) + l 2 (θ 2 ), l 1 (θ 1 ) = j J 1 ln f(x (j) ) + j J 0 ln ( 1 F (T j ) ), l 2 (θ 2 ) = j J 0 ln g(t j ) + j J 1 ln ( 1 G(X (j) ) ) Věrohodnostní rovnice pro odhad parametru θ 1 jsou l 1 θ 1i = 0, i = 1,, r 1 a věrohodnostní rovnice pro odhad θ 2 jsou l 2 θ 2i = 0, i = 1,, r 2 Jejich řešením dostaneme maximálně věrohodné odhady parametrů θ 1, θ 2 při náhodném cenzorování 2
3 12 Testovací statistiky v cenzorovaných výběrech Budeme vycházet z cenzorovaného náhodného výběru, který byl pořízen z pozorování n statistických jednotek Označíme J 0 množinu cenzorovaných jednotek a množinu J 1 množinu necenzorovaných statistických jednotek Ve speciálním případě, kdy pozorování nejsou cenzorována, je množina J 0 prázdná a jedná se o speciální případ modelu s cenzorováním Hustotu doby čekání na rizikový jev opět označíme f(x, θ), kde θ = (θ 1, θ r ) je r-rozměrný parametr V aplikacích je častá situace, kdy se zajímáme pouze o některé složky vektoru θ, budeme předpokládat, že jsou to parametry θ 1,, θ k, k r, a budeme je nazývat cílové parametry Ostatní parametry θ k+1,, θ r nejsou předmětem našeho zájmu, netýká se jich testovaná hypotéza a nazývají se rušivé parametry Například když pracujeme s normálním rozdělením N(µ, σ 2 ), je r = 2, θ = (µ, σ) a testovaná hypotéza se často týká jenom parametru θ 1 = µ (k = 1) a druhý parametr θ 2 = σ je rušivým parametrem Dále označíme θ C = (θ 1,, θ k ) vektor cílových parametrů a θ R = (θ k+1,, θ r ) vektor rušivých parametrů (rušivý vektorový parametr) Budeme uvažovat nulovou hypotézu H 0 : θ C = θ 0, kde θ 0 = (θ 01,, θ 0k ) je daný známý vektor V tomto označení lze psát θ = (θ C, θ R ) a při platnosti nulové hypotézy je θ = (θ 0, θ R ) Logaritmickou věrohodnostní funkci l(θ) pak můžeme po dosazení za θ psát ve tvaru l(θ) = l(θ C, θ R ) a za platnosti H 0 je l(θ) = l(θ 0, θ R ) (LR) Věrohodnostní poměr (z anglického likelihood ratio) ( LR = 2 l( θ C, θ R ) l(θ 0, θ ) R ), kde θ = ( θ C, θ R ) je maximálně věrohodný odhad parametru θ = (θ C, θ R ) a θ R je maximálně věrohodný odhad parametru θ R za platnosti nulové hypotézy θ C = θ 0 Tedy platí pro něj, že l(θ 0, θ R ) = max l(θ 0, θ R ) θ R a lze jej získat řešením věrohodnostních rovnic (W) Waldova statistika l(θ 0, θ R ) θ j = 0, j = k + 1,, r W = ( θ C θ 0 ) J 11 2 ( θ C, θ R )( θ C θ 0 ), kde matice J 11 2 (θ C, θ R ) závislá na parametru θ = (θ C, θ R ) se vypočte podle vzorce J 11 2 (θ C, θ R ) = J 11 J 12 J 1 22 J 21, přičemž matice J 11, J 12, J 21 jsou bloky tzv Fisherovy informační matice J = J(θ) = J(θ C, θ R ) definované pomocí logaritmické věrohodnostní funkce l(θ) = l(θ C, θ R ) vztahem ( ) ( ) J(θ) = J(θ C, θ R ) = E 2 l(θ) J11 (θ C, θ R ) J 12 (θ C, θ R ) θ i θ j J 21 (θ C, θ R ) J 22 (θ C, θ R ) = i=1,,r j=1,,r V uvedeném vztahu značí E střední hodnotu (logaritmická věrohodnostní funkce l(θ) závisí na náhodném výběru ) a bloky J 11, J 12, J 21 a J 22 matice J jsou postupně typu k k, k (r k), (r k) k a (r k) (r k) (LM) Skórová funkce (odpovídající test je založený na Lagrangeových multiplikátorech, nazývá se též Raův test) [ LM = U C (θ 0, θ ] [ R ) J 11 2 (θ 0, θ 1 R )] UC (θ 0, θ R ), kde U C (θ) = U C (θ C, θ R ) je prvních k složek tzv skórového vektoru U = U(θ C, θ R ) = l(θ) θ 1 l(θ) θ r = ( UC (θ C, θ R ) U R (θ C, θ R ) ) 3
4 Tedy vektor U C (θ C, θ R ) je k-rozměrný a vektor U R (θ C, θ R ) je (r k)-rozměrný Když jsou splněny podmínky regularity, mají všechny tři uvedené statistiky za platnosti nulové hypotézy H 0 asymptoticky Pearsonovo χ 2 rozdělení o k stupních volnosti H 0 pak zamítáme na hladině významnosti, když daná statistika překročí (1 α)-kvantil Pearsonovo rozdělení χ 2 (k) Příklady k procvičení 1 Je dán náhodný výběr X 1, X 2,, X n rozsahu n z exponenciální rozdělení Ex(λ) Stanovte testovací statistiky: 2 Je dán náhodný výběr X 1, X 2,, X n rozsahu n z exponenciální rozdělení Ex(λ) Za předpokladu, že tento náhodný výběr je cenzorovaný časem s časovým cenzorem T stanovte testovací statistiky: 3 Je dán náhodný výběr X 1, X 2,, X n rozsahu n z exponenciální rozdělení Ex(λ) Za předpokladu, že tento náhodný výběr je cenzorovaný poruchou počtem cenzorovaných jednotek m < n stanovte testovací statistiky: 4 Je dán náhodný výběr X 1, X 2,, X n rozsahu n z exponenciální rozdělení Ex(λ) Za předpokladu, že tento náhodný výběr je náhodně cenzorovaný a časový cenzor T má exponenciální rozdělení Ex(δ), stanovte testovací statistiky: 4
5 5 Řešte úlohy z příkladů 1 4, za předpokladu, že výběry jsou cenzorované zleva 5
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
8 Coxův model proporcionálních rizik I
8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Přijímací zkouška na navazující magisterské studium 2017
Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Spolehlivost soustav
1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
Markovské metody pro modelování pravděpodobnosti
Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
KVADRATICKÁ KALIBRACE
Petra Širůčková, prof. RNDr. Gejza Wimmer, DrSc. Finanční matematika v praxi III. a Matematické modely a aplikace 4. 9. 2013 Osnova Kalibrace 1 Kalibrace Pojem kalibrace Cíle kalibrace Předpoklady 2 3
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Bodové a intervalové odhady parametrů v regresním modelu
Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Pravděpodobnost a statistika
Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
5. B o d o v é o d h a d y p a r a m e t r ů
5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme
Ekonometrie. Jiří Neubauer, Jaroslav Michálek
Ekonometrie Jiří Neubauer, Jaroslav Michálek Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Zobecněný lineární
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské stuium 05 Stuijní program: Stuijní obor: Řešení příklaů pečlivě oůvoněte. Příkla (5 boů) Spočtěte ke M {(y, x) R ; x 0, x + y a}. Příkla (5 boů) Nalezněte supremum
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Regrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly:
Regrese 28. listopadu 2013 Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly: 1. Ukázat, že data jsou opravdu závislá. 2. Provést regresi. 3. Ukázat, že zvolená křivka
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Apriorní rozdělení. Jan Kracík.
Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
LINEÁRNÍ MODELY. Zdeňka Veselá
LINEÁRNÍ MODELY Zdeňka Veselá vesela.zdenka@vuzv.cz Genetika kvantitativních vlastností Jednotlivé geny nejsou zjistitelné ani měřitelné Efekty většího počtu genů poskytují variabilitu, kterou lze většinou
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ. Michal Friesl
NEPARAMETRICKÉ BAYESOVSKÉ ODHADY V KOZIOLOVĚ-GREENOVĚ MODELU NÁHODNÉHO CENZOROVÁNÍ Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Princip Příklady V K.-G. modelu
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
4 Parametrické odhady
4 Parametrické odhady Předpokládané výstupy z výuky: 1. Student zná základní rozdělení pravděpodobnosti dat přežití 2. Student rozumí principu odhadu funkce přežití a rizikové funkce s využitím metody
STATISTICKÁ VAZBA. 1.1 Statistická vazba Charakteristiky statistické vazby dvou náhodných veličin Literatura 9
STATISTICKÁ VAZBA Obsah 1 Korelační analýza 1 1.1 Statistická vazba.................................... 1 1.2 Motivační příklady................................... 1 1.3 Sdružená distribuční funkce a nezávislost
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.
ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu