Termika. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na

Rozměr: px
Začít zobrazení ze stránky:

Download "Termika. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz."

Transkript

1 Variace 1 Termika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na

2 1. Termika - nauka o tepelných jevech Vnitřní energie tělesa Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou energii. Částice pevných látek jsou uspořádány v pevné krystalické mřížce, kde zaujímají svou polohu, kolem které kmitají. Abychom částice z těchto míst posunuli, musíme působit určitou silou na těleso, vykonat určitou práci. Částice v pevném tělese mají i svou potenciální energii. Důkazem toho je, že přestane-li na těleso působit síla, částice se vracejí na své místo. Každá částice má tedy svou kinetickou i potenciální energii. Součet kinetické a potenciální energie všech částic tělesa budeme nazývat vnitřní energií tělesa. Platí tedy: E = E k + E p Ve vnitřní energii pevných těles převažuje energie potenciální, naopak vnitřní energie plynných těles je především kinetickou energií neuspořádaného pohybu molekul. Teplota Teplota tělesa souvisí s pohybovou energií neuspořádaného pohybu částic tělesa. Čím je těleso teplejší, tím rychleji se jeho částice pohybují. Značka teploty je... t Jednotkou teploty v Celsiově teplotní stupnici je Celsiův stupeň [ C]. Lidské tělo má normální teplotu asi 37 C. Teplota slunečního povrchu je asi C. Teplota není nijak omezena shora, nelze ji však libovolně snižovat. V laboratořích se blížíme k nejnižší možné teplotě, a tou je -273,16 C. Tato teplota se nazývá absolutní nula. Na základě tohoto poznatku se ve fyzice teplota měří od absolutní nuly. Potom jsou všechny teplotní údaje kladné. Tato stupnice se nazývá termodynamická teplotní stupnice nebo také stupnice Kelvinova. Značka teploty je v tomto případě... T Základní jednotka teploty je kelvin [K]. Platí tedy: 0 C = 273,16 K V anglosaských zemích se dosud užívá stupnice Fahrenheitova, která má 0 C označen jako 32 F a teplotní interval mezi bodem mrazu a varu 180 F. Platí tedy převodní vztah: Měření teploty K měření teploty se používají teploměry. Mohou být kapalinové (rtuťové, lihové) nebo bimetalové. Kapalinové jsou založeny na teplotní roztažnosti kapalin, bimetalové obsahují stočený pásek, který je ze dvou spojených kovů, z nichž každý má jinou délkovou roztažnost. Pásek je spojen s ručičkou, která na stupnici ukazuje teplotu. V dnešní době se používají zejména teploměry elektronické, které pracují na principu termočlánku (teplotně proměnlivého odporu). Teplotní roztažnost látek Všechna tělesa při zahřívání mění svůj objem. Největší teplotní roztažnost mají plyny, nejmenší pevné látky. Teplotní roztažnost pevných látek 2

3 U pevných látek má velký význam délková roztažnost dlouhých tyčí a trubek. Prodloužení tyče je přímo úměrné zvýšení teploty. Označíme-li délku tyče při 0 C l 0, pak při teplotě t platí pro délku tyče l t : l t = l 0. (1 + t) Říkáme, že délka tyče je lineární funkcí teploty. Veličina se nazývá teplotní součinitel délkové roztažnosti a závisí na látce. Význam má i objemová roztažnost pevných látek. Platí: V t = V 0. (1 + t) Veličina se nazývá teplotní součinitel objemové roztažnosti. Má-li určitá látka teplotní součinitel délkové roztažnosti pak platí přibližně = 3. Praktické důsledky teplotní roztažnosti pevných těles: dilatace mostů ohyby v dálkovém teplovodním potrubí průhyb elektrického vedení mezery mezi kolejnicemi prasknutí skleničky po nalití horkého čaje do ní Teplotní objemová roztažnost kapalin U kapalin uvádíme pouze objemovou roztažnost a platí pro ni stejný vzorec jako pro látky pevné, tedy: V t = V 0. (1 + t) U kapalin je objemová roztažnost desetkrát až stokrát větší než u látek pevných. Nejpravidelněji se roztahuje rtuť, proto se používá v teploměrech. Velký význam v přírodě má tzv. anomálie vody. Je to jev, kdy voda má nejmenší objem při 3,98 C. Tento jev je velmi důležitý k tomu, aby mohli přežít živočichové u dna zamrzlého rybníka nebo jezera. Teplotní roztažnost plynů Zahříváme-li plyn tak, že se nemění jeho tlak, platí pro změnu objemu vztah: V t = V 0. (1 + t) Tento vztah vyjadřuje zákon, kterému se říká zákon Gay-Lussacův. Teplotní součinitel má pro všechny plyny téměř stejnou hodnotu. To je velká odchylka od látek kapalných i látek pevných. Všechny plyny se roztahují přibližně stejně a rovnoměrně. Zahřívá-li se plyn uzavřený v určité nádobě, nemůže se zvětšovat jeho objem, ale vzrůstá jeho tlak. Tento tlak je také lineární funkcí teploty podle vztahu p t = p 0. (1 + t) Veličina je opět pro všechny plyny stejná a nazývá se teplotní součinitel rozpínavosti. Pro velikost součinitele rozpínavosti platí Charlesův zákon: Všechny plyny se při zahřívání při stálém objemu rozpínají přibližně stejně a rovnoměrně. 3

4 Změna hustoty látek při zahřívání Až na malé výjimky látky zahříváním svůj objem zvětšují. Protože hmotnost těles se nemění, snižuje se tedy při zahřívání látek jejich hustota. t = 0. (1 - t) Tepelná výměna látek Spojíme dvě různě teplá tělesa. Částice obou těles neuspořádaně kmitají a narážejí na sebe. Částice teplejšího tělesa kmitají rychleji a uvádějí částice chladnějšího tělesa do rychlejšího pohybu. Předávají jim tedy vnitřní energii. Samy však tuto energii ztrácejí. Teplejší těleso tedy chladne, zatímco chladnější se ohřívá.. Tento proces ustane v momentě, kdy teploty obou těles budou stejné. 2. Teplo Dochází-li ke změně vnitřní energie jenom tepelnou výměnou, charakterizujeme velikost této změny vnitřní energie veličinou teplo. Teplo je určeno změnou vnitřní energie, která přechází z jednoho tělesa na druhé při tepelné výměně. Vnitřní energie tělesa se může měnit např. vykonáním práce (např. kování ocelové tyče, opakované ohýbání drátu, stlačování vzduchu při huštění pneumatiky kola, apod.) Ta část vnitřní energie, která může být vydána nebo přijata jako teplo nebo mechanická práce, se také nazývá tepelná energie. Teplo se značí... Q Základní jednotkou je joule [J]. Měrné teplo Máme.-li stejné množství různých látek (např. 1 kg), zjistíme, že se týmž teplem zahřejí různě. Tuto vlastnost látek určuje veličina měrné teplo. Měrné teplo (značka c) látky je určeno množstvím tepla, které musíme dodat 1 kg látky, abychom ji ohřáli o 1 K. Základní jednotkou měrného tepla je Pozn.: V uvedené jednotce můžeme klidně místo K použít C. Do velikosti se nic nezmění. Kovy mají poměrně malá měrná tepla, což usnadňuje jejich zpracování. Naopak voda má poměrně velké měrné teplo, což se v přírodě projevuje na podnebí při pobřežích oceánů. Pozn.: Místo pojmu měrné teplo se také někdy udává měrná tepelná kapacita. Jde vlastně o tutéž vlastnost látky. Výpočet tepla Q = m. c.(t 2 - t 1 ) Jestliže dochází k tepelné výměně mezi dvěma tělesy, pak platí rovnice: m 1. c 1. (t - t 1 ) = m 2. c 2. (t 2 - t)... kde t je výsledná teplota obou těles Tuto rovnici nazýváme tzv. kalorimetrickou rovnicí. 4

5 Měření tepla Pro měření tepla se používá přístroj, kterému se říká kalorimetr. Není to vlastně nic jiného než termoska, do jejíhož víčka je zasazen teploměr a míchačka. Důležité je, že to musí být těleso, u kterého nevznikají tepelné ztráty. Ukázkové příklady: Příklad 1: Určete, jaké množství tepla spotřebovala paní Znamenáčková na ohřátí 20 kg vody z 20 C na 100 C. Měrná tepelná kapacita vody je 4,2 kj/kg. C Řešení: m = 20 kg t 1 = 20 C t 2 = 100 C c = 4,2 kj/kg. C = J/kg. C Q =? [J] Q = m. c (t 2 - t 1 ) Q = (100-20) Q = J = 6,72 MJ Paní Znamenáčková spotřebovala 6,72 MJ tepla. Příklad 2: Horské jezírko má plochu 100 m 2 a průměrnou hloubku 1 m. Přes den v něm slunce zahřeje vodu na 16 C, v noci voda vychladne na 9 C. Kolik tepla voda v noci uvolní? Hustota vody je 1000 kg/m 3 a měrná tepelná kapacita vody je 4,2 kj/kg. C. Řešení: S = 100 m 2 h = 1 m t 1 = 16 C t 2 = 9 C = kg/m 3 c = 4,2 kj/kg. C = J/kg. C Q =? [J] Q = m. c. (t 2 - t 1 ) Q =. S. h. c. (t 1 - t 2 ) Q = (16-9) Q = J = 2,94 GJ Jezero uvolní v noci teplo o velikosti 2,94 GJ. Příklad 3: Jaký příkon musí mít topné těleso bojleru, ve kterém se 120 litrů vody ohřeje z 20 C na 85 C za 6 hodin?. Předpokládejme, že účinnost topného tělesa je 90 %. Hustota vody je kg/m 3, měrná tepelná kapacita vody je 4,2 kj/kg. C. Řešení: V = 120 l = 0,12 m 3 t 1 = 20 C 5

6 t 2 = 85 C t = 6 h = s = 90 % = 0,9 = kg/m 3 c = 4,2 kj/kg. C = j/kg. C P 1 =? [W] = P 2 /P 1 P 1 = P 2 / P 1 = W 2 /(. t) P 1 = Q 2 /(. t) P 1 = m. c. (t 2 - t 1 )/(. t) P 1 =. V. c. (t 2 - t 1 )/(. t) P 1 = , (85-20)/(0, ) P 1 = W (po zaokrouhlení) = 1,7 kw (po zaokrouhlení) Topné těleso musí mít příkon alespoň 1,7 kw. Zákon zachování energie Pro sdílení tepla platí zákon zachování tepla. Jedná se vlastně o zvláštní případ obecného zákona zachování energie: Při různých dějích v přírodě se přeměňuje energie jednoho druhu v energii jiného druhu. Energie však nevzniká ani nezaniká. Platnost zákona si uvědomoval už v polovině 18. století ruský učenec Lomonosov. Další zásluhy na objevení zákona měli německý lékař Mayer, německý fyzik Helmholtz a anglický fyzik Joule. Objevením zákona byla dokázána nemožnost existence stroje, který by pracoval bez dodání energie (perpetuum mobile). Zdroje tepla Nejdůležitějším zdrojem tepla pro naši Zemi je Slunce. Na Zemi dopadá asi jedna dvoubiliontina celkové energie slunečního záření. Část sluneční energie se v průběhu dlouhých let nahromadila ve formě chemické energie obsažené v ropě, uhlí, rašelině, dřevu, apod. Zdrojem tepla může být ale i např. geotermální energie (energie z nitra Země), jaderná energie apod. Výhřevnost (značka H) paliva je určena množstvím tepla, které vznikne při dokonalém spálení 1 kg paliva. Platí vzorec: Q = H. m Jednotkou výhřevnosti je [J/kg]. Sdílení (šíření) tepla Teplo se může sdílet vedením, prouděním nebo sáláním. Vedení tepla (kondukce) O vedení tepla hovoříme tehdy, jestliže se rozdíl teplot mezi stýkajícími se tělesy nebo mezi dvěma částmi téhož tělesa vyrovnává bez pohybu látky. Takto sdílet se může teplo mezi látkami ve všech skupenstvích. V látkách tuhých se však může teplo šířit pouze vedením. Látky, které dobře vedou teplo, se nazývají vodiče tepla. Dobrými vodiči tepla jsou např. kovy. Látky, které špatně vedou teplo, se nazývají tepelné izolanty. Patří mezi ně např. sklo, porcelán, dřevo, azbest, slída, plastické hmoty, apod. Špatnými vodiči tepla jsou i kapaliny a zvláště plyny. Proto jsou dobrými tepelnými izolanty látky pórovité, či látky obsahující vzduchové bublinky (srst, peří, vlněné látky, apod.). Sdílení tepla prouděním (konvence) 6

7 Prouděním se šíří teplo hlavně v kapalinách a plynech. Zahřívaná část kapaliny nebo plynu zvětšuje svůj objem. Tím se zmenšuje hustota a zahřátá část látky podle Archimédova zákona podléhá většímu nadlehčování a stoupá vzhůru. Sdílení tepla prouděním je spojeno s pohybem zahřívané látky. Na proudění je založeno i větrání a vytápění místnosti. V přírodě má význam i proudění vody, které spolu s anomálií vody má příčinu v tom, že i za velkých mrazů voda v jezerech a rybnících nezamrzne až ke dnu. Sdílení tepla sáláním (tepelným zářením) Zahřatá tělesa vysílají tepelné záření. Toto záření se šíří přímočaře stejnou rychlostí jako záření světelné. Nepůsobí na naše oči, ale můžeme je zjistit tepelnými pocity. K takovémuto způsobu přenosu tepla není zapotřebí hmotné prostředí. Vyzařování tepla závisí na povrchu sálajícího tělesa a jeho teplotě. Černá a matná tělesa vyzařují teplo lépe než tělesa bílá a lesklá. Tento způsob sdílení tepla má velký praktický význam. 3. Teplo - procvičovací příklady 1. Jak velkou energii slunečního záření pohltí voda o objemu 1 m 3, zvýší-li se její teplota z 10 o 894 C na 20 o C? Hustota vody je kg/m 3, měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 42 MJ 2. V nádobě je voda o objemu 5,5 litru. Jaké teplo odevzdá voda tělesům ve svém okolí, ochladí-li se o 40 o C (a nezmrzne-li)? Hustota vody je kg/m 3, měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 924 kj Kolik tepla potřebujeme na ohřátí železné plotýnky elektrického vařiče, která má hmotnost 0,4 kg, z 20 o C na 200 o C? Měrná tepelná kapacita železa je 0,45 kj/kg. o C. OK 32,4 kj V nádobě je 5,0 kg vody o počáteční teplotě 80 o C. Jak velké teplo odevzdá voda svému okolí, ochladí-li se na 20 o C? Měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 1,3 MJ 5. Bylo smícháno 8 litrů vody o počáteční teplotě 60 o C s 10 litry vody o teplotě 81 o C. Kolik litrů vody 10 o C teplé bylo třeba přidat, abychom dostali směs 40 o C teplou? OK 19 litrů V nádrži je voda o objemu 300 litrů a o teplotě 10 o C. Přidáme vodu o teplotě 90 o 913 C, až dosáhne teplota vody 35 o C. Kolik litrů teplejší vody přidáme do nádrže? OK 136 litrů 7. Radiátorem ústředního topení prošlo za hodinu 180 litrů vody, která se ochladila o 32 o C. Určete teplo, které odevzdala. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, hustota vody je kg/m 3. OK 24,2 MJ Měděný odlitek o hmotnosti 15 kg odevzdal do okolí při ochlazování kj tepla. O kolik o C se ochladil? Měrná tepelná kapacita mědi je 0,383 kj/kg. o C. OK 240 C Jaké množství tepla se uvolní při vychladnutí 1 dm 3 hliníku z 30 o C na 20 o 891 C? Hustota hliníku je kg/m 3 a měrná tepelná kapacita hliníku je 0,9 kj/kg. o C. OK 24,3 kj 10. Voda o hmotnosti 1 kg odevzdá do okolí teplo 4,2 kj. O kolik stupňů Celsia poklesne její teplota? OK 1 C 896 7

8 11. Jaké teplo přijme voda, která vyplňuje bazén kryté plovárny o délce 100 m, šířce 6 m a hloubce 2 m, zvýší-li se teplota vody v bazénu z 10 o C na 25 o C? Hustota vody je kg/m 3, měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 75,6 GJ Měřením bylo zjištěno, že část povrchu Země o obsahu 1 m 2 pohltí při kolmém dopadu slunečních paprsků energii J za 1 sekundu. Jakou energii slunečního záření pohltí část povrchu Země o obsahu 1 km 2, dopadá-li sluneční záření na tuto plochu kolmo po dobu 1 hodiny? OK 4, MJ Vodu o objemu 1 litr nalijeme do železného hrnce o hmotnosti 500 g. Jaké teplo přijme hrnec s vodou, zvýší-li se jejich teplota z 15 o C na 100 o C? Hustota vody je kg/m 3, měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrná tepelná kapacita železa je 0,46 kj/kg. o C. OK 0,38 MJ 14. Jaké množství tepla je třeba na ohřátí 0,1 l glycerolu o 12 o C? Hustota glycerolu je kg/m 3 OK a měrná tepelná kapacita glycerolu je 2,43 kj/kg. o C. 3,7 kj 15. Elektrický bojler má objem 120 l. Kolik tepla spotřebujeme na ohřátí vody v něm z 20 o C na 85 o C? Vypočtené teplo vyjádřete v kilowatthodinách [kwh]. Hustota vody je kg/m 3 a měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 9,1 kwh 16. Určete teplo, které odevzdá těleso ze železa o hmotnosti 20 kg a teplotě 620 o 906 C, sníží-li se jeho teplota na 20 o C. Měrná tepelná kapacita železa je 0,46 kj/kg. o C. OK 5,5 MJ 17. V nádobě je voda o objemu 250 ml. Jaké teplo přijme tato voda, zvýší-li se její teplota o 60 o 898 C? Hustota vody je kg/m 3, měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 63 kj 18. Po smažení zůstalo ve fritovacím hrnci 1,8 kg oleje o teplotě 140 o 889 C. Měrná tepelná kapacita oleje je 2 kj/kg. o C. Kolik tepla se z oleje uvolnilo, než vychladl na pokojovou teplotu 20 o C? OK 432 kj 19. Do jaké výšky byste mohli zvednout vodu o hmotnosti 100 kg, kdybyste na to vynaložili stejnou energii jako na její ohřátí o 10 o C? Měrná tepelná kapacita vody je 4,2 kj/kg. o C, hodnota tíhového zrychlení je 10 m/s 2. OK 4,2 km Určete hmotnost vody, která při ochlazení z 63 o C na 37 o C odevzdala 600 kj tepla. Měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 5,5 kg Do vody o hmotnosti 800 g a o teplotě 12 o C byla ponořena platinová koule o hmotnosti 150 g, která byla před tím zahřáta v elektrické peci. Určete teplotu pece, stoupne-li teplota vody na 19 o C. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrná tepelná kapacita platiny je 0,13 kj/kg. o C. OK C 22. Na jakou teplotu se ohřeje voda o hmotnosti 0,4 kg a o počáteční teplotě 20 o 908 C, dodáme-li jí 30 kj tepla. Měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 38 C Do vody o objemu 350 litrů a o teplotě 80 o C nalijeme vodu o objemu 120 litrů a o teplotě 18 o C. Jakou teplotu má směs? 909 OK 64 C 8

9 24. V jedné nádobě je voda o hmotnosti 200 g a o teplotě 20 o C, ve druhé nádobě je voda o stejné hmotnosti 200 g a o počáteční teplotě 80 o C. Chladnější vodu nalijeme do teplejší a důkladně promícháme. Jaká je výsledná teplota vody? Ztráty zanedbáváme. OK 50 C Hliníkové těleso o hmotnosti 1,0 kg a teplotě 10 o C bylo vloženo do kalorimetru, v němž byla voda o hmotnosti 0,5 kg a teplotě 70 o C. Po vyrovnání teplot byla naměřena teplota 52 o C. Z naměřených hodnot určete měrnou tepelnou kapacitu hliníku. Tepelné ztráty zanedbáváme. Měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 0,9 kj/kg. C Jaké teplo přijme led o hmotnosti 1 kg, zvýší-li se jeho teplota z -10 o C na 0 o 897 C? Měrná tepelná kapacita ledu je 2,1 kj/kg. o C. OK 21 kj 4. Změny skupenství látek O tom, v kterém skupenství se nalézá určitá látka, rozhoduje její teplota a tlak. Tání a tuhnutí Zahříváme-li pevnou látku, mění se při dosažení teploty tání v kapalinu. Naopak při ochlazování začne kapalina při teplotě tuhnutí přecházet v látku pevnou. Každá chemicky čistá krystalická látka taje i tuhne při určité teplotě. Látky beztvaré (amorfní) nemají určitou teplotu tání. Tání krystalických látek je způsobeno zvyšováním vnitřní energie částic, což následně způsobí jejich rychlejší pohyb a tedy jejich uvolnění z krystalické mřížky. Chemicky čistá krystalická látka, zahřátá na teplotu tání, nezvyšuje při dalším ohřívání svoji teplotu, dokud všechna látka neroztaje. Obdobně po celou dobu tuhnutí se teplota látky nemění. Měrné skupenské teplo tání Měrné skupenské teplo tání (značka l t ) je množství tepla, které musíme dodat jednomu kilogramu pevné krystalické látky zahřáté na teplotu tání, aby se změnila na kapalinu o téže teplotě. Pozn.: Skupenské teplo tání (značka L t ) je množství tepla, které musíme dodat pevné krystalické látce zahřáté na teplotu tání, aby se změnila na kapalinu o téže teplotě. Základní jednotkou měrného skupenského tepla je joule na kilogram [J/kg]. Množství tepla, nutného k přeměně tělesa z pevné látky o hmotnosti m, která je zahřáta na teplotu tání, v látku kapalnou, se nazývá skupenské teplo tání a vypočteme ho podle vzorce L t = m. l t Většina látek při tuhnutí svůj objem zmenšuje. Výjimku tvoří voda a několi dalších látek. Vypařování kapalin Kapaliny se vypařují na svém volném povrchu při jakékoliv teplotě. Vypařování lze urychlit: zvýšením teploty kapaliny odsáváním par vzniklých nad kapalinou zvětšením volného povrchu kapaliny Syté páry, kapalnění Je-li kapalina v uzavřené nádobě, páry nemohou unikat, jejich hustota a tlak se stále zvětšují. Při určité teplotě bude z kapaliny unikat právě tolik molekul, kolik se jich bude vracet zpět. Pára nad kapalinou se v tu chvíli nazývá sytá pára. Kapalina a její sytá pára jsou v tomto okamžiku v rovnováze. Sytá pára má při určité teplotě nad kapalinou určitý tlak. 9

10 Vypaří-li se všechna kapalina v nádobě a my dále budeme zvyšovat teplotu, vzniká tzv. pára přehřátá. Všechny plyny jsou silně přehřátými parami. Plyny lze za velmi nízkých teplot zkapalnět. Např. na zkapalnění kyslíku ho musíme ochladit až na teplotu -119 C. Var Zahříváme-li kapalinu, stoupá tlak jejích sytých par. Dosáhne-li tlak sytých par atmosférického tlaku, nastává var. Při varu se kapalina vypařuje nejen z povrchu, ale z celého jejího objemu. Zvýšením tlaku se teplota varu zvyšuje, naopak snížením talku se teplota varu snižuje. Tohoto jevu se využívá např. při konstrukci tzv. tlakových hrnců. Měrné skupenské teplo varu Měrné skupenské teplo varu určité látky (značka l v ) je určeno množstvím tepla, které musíme dodat jednomu kilogramu kapaliny zahřáté na normální teplotu varu, aby se změnila na páru o téže teplotě. Obdobně jako u tání zde platí vzorec: L v = m. l v Dojde-li ke kondenzaci (kapalnění) páry za stejných podmínek (teplota a tlak), jako byly při varu, je měrné skupenské teplo kondenzační rovno měrnému skupenskému teplu varu. Voda má značné měrné skupenské teplo varu. Tohoto jevu se využívá při vytápění domů, železničních vagónů, ale i při ochlazování. Např. v létě se kropí ulice vodou; po dešti se vždy ochladí; lidské tělo se ochlazuje vypařováním potu. Naopak vlivem tepla uvolněného při kapalnění vodních par se např. před deštěm zpravidla oteplí. Sublimace Sublimace je jev, při kterém se pevná látka mění přímo na plynnou. Např. mokré prádlo i za mrazu "uschne". Ve skutečnosti ale zmrzne a led se následně přemění na páru. Opačným jevem, tedy přeměnnou skupenství plynného na pevné, je desublimace. Vlhkost vzduchu a její měření Atmosférický vzduch obsahuje za každé teploty vodní páry, které způsobují jeho vlhkost. Absolutní vlhkost vzduchu je určena počtem kilogramů vodní páry v jednom metru krychlovém vzduchu. Platí tedy vzorec: Jednotkou absolutní vlhkosti vzduchu je kilogram na metr krychlový [kg/m 3 ]. Je-li vzduch za dané teploty vodními parami plně nasycen, má největší (maximální) vlhkost, kterou označujeme m. Údaj absolutní vlhkosti není vždy dostatečný. Např. za chladného rána v létě se nám vzduch zdá dosti vlhký, celá příroda je svěží. Avšak při téže absolutní vlhkosti v parném létě se nám vzduch zdá suchý, vše v přírodě usychá. Proto zavádíme pojem relativní vlhkost. Relativní (poměrná) vlhkost vzduchu je určena poměrem absolutní vlhkosti vzduchu a maximální absolutní vlhkosti m, která by byla možná za dané teploty. Platí tedy vzorec: Dokonale suchý vzduch (bez vodních par) má relativní vlhkost 0 %. Je-li vzduch parami nasycen, je jeho relativní 10

11 vlhkost 100 %. Nejpříznivější podmínky pro člověka jsou při teplotě 20 C. Relativní vlhkost se měří vlhkoměry (hygrometry). Hlavním měřícím prvkem v těchto přístrojích bývá odmaštěný lidský vlas. Ukázkové příklady: Příklad 1: Určete teplo, které musíme dodat 8,5 kg železa zahřátého na teplotu tání, aby roztálo, je-li měrné skupenské teplo tání železa 280 kj/kg. Řešení: m = 8,5 kg l t = 280 kj/kg = J/kg L t =? [J] L t = m. l t L t = 8, L t = J = 2,38 MJ Železu musíme dodat teplo o velikosti 2,38 MJ. Příklad 2: Led o hmotnosti 6,2 kg a o počáteční teplotě -25 o C se přeměnil za normálního tlaku na vodu teploty 0 o C (objemu V 2 ). Určete teplo, které soustava přijala od svého okolí během celého děje. Měrná tepelná kapacita ledu je 2,1 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg. Řešení: m = 6,2 kg t 1 = -25 C t 2 = 0 C c = 2,1 kj/kg. C = J/kg. C l t = 334 kj/kg = J/kg Q =? [J] Nejprve spočítáme teplo potřebné k ohřátí ledu z teploty -25 C na teplotu 0 C: Q 1 = m. c. (t 2 - t 1 ) Q 1 = 6, (0 - (-25)) = Q 1 = J Nyní spočítáme teplo potřebné k přeměně ledu na vodu o téže teplotě: L t = m. l t L t = 6, = L t = J Celkové dodané teplo odpovídá součtu vypočtených tepel: Q = Q 1 + L t Q = J J = J = 2,4 MJ (po zaokrouhlení) Soustava přijala od svého okolí teplo o velikosti asi 2,4 MJ. Příklad 3: Pára o hmotnosti 5,2 kg a o počáteční teplotě 100 o C zkondenzovala na vodu a ta se při postupném ochlazování změnila až na led o teplotě -25 o C. Jaké teplo se při tom uvolnilo? Měrná tepelná kapacita ledu je 2,1 kj/kg. o C, měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg, měrné skupenské teplo varu vody je kj/kg. Řešení: 11

12 m = 5,2 kg t 1 = 100 t 2 = -25 C c L = 2,4 kj/kg. C = J/kg. C c V = 4,2 kj/kg. C = J/kg. C l t = 334 kj/kg = J/kg l v = kj/kg = J/kg Q =? [J] Celkové teplo je tvořeno skupenským teplem L v uvolněným při kondenzaci páry, dále teplem Q 1 uvolněným při ochlazení vody z teploty 100 C na teplotu 0 C, pak teplem L t uvolněným při změně vody na led a nakonec teplem Q 2 uvolněným při ochlazení ledu z teploty 0 C na teplotu -25 C: Q = m. l v + m. c v. (t 1 - t 0 ) + m. l t + m. c L. (t 0 - t 2 ) Q = m. [l V + c V. (t 1 - t 0 ) + l t + c L. (t 0 - t 2 )] Po dosazení: Q = 5,2. [ (100-0) (0 - (-25))] Q = J = 16 MJ (po zaokrouhlení) Celkově se uvolnilo teplo o velikosti asi 16 MJ. 5. Změny skupenství látek - procvičovací příklady 1. Jaké teplo odvzdá svému okolí sytá vodní pára o hmotnosti 28 kg a teplotě 100 o C, zkapalní-li na vodu téže teploty? Měrné skupenské teplo varu vody je kj/kg. OK 63,3 MJ Ve vodě o hmotnosti 820 g a o počáteční teplotě 12 o C zkapalní vodní pára o hmotnosti 25 g a o počáteční teplotě 100 o C. Určete výslednou teplotu vody. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo varu vody je kj/kg. OK 31 C 3. Do vody o hmotnosti 3,5 kg a o teplotě 40 o C byl vložen led o hmotnosti 2,2 kg a o teplotě 0 o C. Určete hmotnost ledu, který roztaje. Předpokládáme, že tepelná výměna nastala jen mezi vodou a ledem. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg. OK 1,8 kg V chladničce se vyrobí za 2 hodiny led o hmotnosti 5,5 kg a o teplotě 0 o C z vody o počáteční teplotě 6 o C. Jak velké teplo bylo odbráno vodě chladicím zařízením? Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg. OK 1,96 MJ 5. Jak velký objem má voda, která vznikne, roztaje-li led o hmotnosti 1,1 kg? Hustota vody je kg/m 3 a hustota ledu je 900 kg/m 3. OK 1,1 dm Voda o hmotnosti kg má objem 1,1 m Jaký objem má led, který vznikne zmrznutím této vody, je-li hustota ledu 920 kg/m 3? OK 1,2 m 3 7. Ocelový odlitek o hmotnosti 260 kg má teplotu tání. Jaké skupenské teplo přijme k roztavení? Měrné skupenské teplo tání oceli je 258 kj/kg. OK 67,1 MJ

13 8. V tělese parního ústředního topení zkapalní za hodinu sytá pára o hmotnosti 2,9 kg a počáteční teplotě 100 o C na vodu, jejíž teplota se sníží na 75 o C. Jaké celkové teplo odevzdá soustava vytápěné místnosti? Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo varu vody je kj/kg. OK 6,86 MJ 9. Jak velké teplo dodá svému okolí voda o teplotě 0 o 925 C a o hmotnosti 145 g, která zmrzne na led o teplotě 0 o C? Měrné skupenské teplo tání ledu je 334 kj/kg. OK 48,4 kj 10. Jak velký objem má voda, která vznikne, roztaje-li led o objemu 1,1 dm 3 914? Hustota vody je kg/m 3 a hustota ledu je 900 kg/m 3. OK 0,99 litru 11. Voda o hmotnosti 2,4 kg a o teplotě 84 o C se ohřeje na teplotu 100 o C a přemění se na páru téže teploty. Určete teplo, které soustava přijala od svého okolí během celého děje. Měrná tepelná kapacita vody je 4,2 kj/kg. o C a měrné skupenské teplo varu vody je kj/kg. OK 5,6 MJ 12. Kus ledu o hmotnosti 3,0 kg a o teplotě -10 o C se má přeměnit na vodu o teplotě 25 o C. Jaké teplo přijme při tom led a následně vzniklá voda od svého okolí? Měrná tepelná kapacita ledu je 2,1 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg, měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 1,38 MJ Určete teplo, které musíme dodat 3,5 kg železa zahřátého na teplotu tání, aby roztálo, je-li měrné skupenské teplo tání železa 280 kj/kg. OK 980 kj 14. K ochlazení nápojů se použilo ledu o hmotnosti 1,3 kg a o teplotě 0 o C. Jak velké teplo odevzdaly chlazené nápoje ledu, jestliže všechen led roztál ve vodu o teplotě 0 o C. Měrné skupenské teplo tání ledu je 334 kj/kg. OK 434 kj Jaké teplo přijme voda o hmotnosti 5,6 kg a o teplotě 0 o C, je-li přivedena do varu a přemění se v sytou páru o teplotě 100 o C při normálním tlaku 100 kpa? Měrná tepelná kapacita vody je 4,2 kj/kg. o C a měrné skupenské teplo varu vody při normálním tlaku je kj/kg. OK 15 MJ 16. Do vody o hmotnosti 8,0 kg a o počáteční teplotě 64 o C byly vhozeny kousky ledu o celkové hmotnosti 2,8 kg a o počáteční teplotě 0 o C. Určete teplotu vody po roztání ledu. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg. OK 26,8 C 17. Ve vodě o hmotnosti 1,4 kg má roztát led o hmotnosti 260 g a o počáteční teplotě 0 o C. Jaká je nejnižší možná počáteční teplota vody? Měrná tepelná kapacita vody je 4,2 kj/kg. o C a měrné skupenské teplo tání ledu je 334 kj/kg. OK 14,8 C 18. Led o hmotnosti 4 kg a o počáteční teplotě -8 o C roztaje na vodu o teplotě 0 o C. Voda vzniklá z ledu se dále zahřeje na teplotu 100 o C a při této teplotě se vypaří při normálním tlaku 100 kpa na páru o teplotě 100 o C. Určete celkové teplo, které soustava přijala, ve všech třech dějích. Měrná tepelná kapacita ledu je 2,1 kj/kg. o C, měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg, měrné skupenské teplo varu vody je kj/kg. OK 12,1 MJ

14 19. Pára o hmotnosti 8 kg a o počáteční teplotě 100 o C zkondenzovala na vodu a ta se při postupném ochlazování změnila až na led o teplotě -15 o C. Jaké teplo se při tom uvolnilo? Měrná tepelná kapacita ledu je 2,1 kj/kg. o C, měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg, měrné skupenské teplo varu vody je kj/kg. OK 24,4 MJ 20. Led o hmotnosti 3,0 kg a o počáteční teplotě -20 o C se přeměnil za normálního tlaku na vodu teploty 0 o C (objemu V 2 ). Určete teplo, které soustava přijala od svého okolí během celého děje. Měrná tepelná kapacita ledu je 2,1 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg. OK 1,13 MJ 21. Jaké teplo přijme ocelový předmět o hmotnosti 180 kg a o teplotě tání o 924 C, jestliže roztaje a teplota taveniny se nezmění? Měrně skupenské teplo tání oceli je 260 kj/kg. OK 47 MJ Vodní pára o teplotě 100 o C zkapalní ve vodě o hmotnosti 1,2 kg a o počáteční teplotě 12 o C. Jak velkou hmotnost má vodní pára, jestliže teplota vody stoupne na 84 o C. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo varu vody je kj/kg. OK 156 g Led o hmotnosti 5,5 kg a o počáteční teplotě -15 o C se má přeměnit ve vodní páru o teplotě 100 o C. Určete teplo, které je třeba dodat. Měrná tepelná kapacita ledu je 2,1 kj/kg. o C, měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg, měrné skupenské teplo varu vody je kj/kg. OK 16,75 MJ 24. V tepelně izolované nádobě je voda o hmotnosti 4,2 kg a teplotě 16 o C. Vodu zahříváme a při teplotě 100 o C se hmotnost vody vypařováním sníží o 10 %. Jak velké celkové teplo při tom voda přijme? Vypařování při teplotách nižších než 100 o C a tepelné ztráty do okolí neuvažujeme. Měrná tepelná kapacita vody je 4,2 kj/kg. o C a měrné skupenské teplo varu vody je kj/kg. OK 2,43 MJ 25. Určete hmotnost ledu počáteční teploty 0 o C, který může roztát ve vodě o hmotnosti 4,7 kg a o počáteční teplotě 65 o C. Měrná tepelná kapacita vody je 4,2 kj/kg. o C a měrné skupenské teplo tání ledu je 334 kj/kg. OK 3,8 kg 26. Jak velké teplo dodá vodní pára o hmotnosti 5,5 kg a teplotě 100 o C svému okolí, jestliže zkapalní a vzniklá voda se ochladí na 0 o C. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo varu vody je kj/kg. OK 14,7 MJ Při kolika stupních bude vařit voda na Mont Everestu (8 847 m), když na každých 1000 m výšky klesne teplota varu vody asi o 2,9 o C? OK 74,3 C 28. V tepelně izolované nádobě je led o hmotnosti 2,5 kg a o teplotě 0 o C. Do nádoby přivádíme sytou vodní páru o teplotě 100 o C tak, že led roztaje a výsledná teplota vody je 0 o C. Určete hmotnost přivedené vodní páry. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg, měrné skupenské teplo varu vody je kj/kg. OK 0,31 kg 29. Za jeden den se při teplém počasí odpaří z lidského těla až 2,1 kg vody. Voda o hmotnosti 1 kg se za určité teploty přemění v páru téže teploty, přijme-li ze svého okolí přibližně teplo kj. Jak velké teplo odevzdá tělo na odpaření potu za jeden den? OK 4,83 MJ

15 30. V tepelně izolované nádobě je led o hmotnosti 1,2 kg a o teplotě 0 o C. Do nádoby přidáme vodu o teplotě 100 o C tak, že led v nádobě roztaje a výsledná teplota vody v nádobě je 0 o C. Určete hmotnost přidané vody. Měrná tepelná kapacita vody je 4,2 kj/kg. o C, měrné skupenské teplo tání ledu je 334 kj/kg. OK 0,95 kg Jak velké teplo je třeba dodat vodě o hmotnosti 5,6 kg a o teplotě 100 o C, aby se přeměnila v páru téže teploty? Měrné skupenské teplo vypařování vody je kj/kg. OK 12,9 MJ 32. Mokré prádlo má hmotnost 48 kg, z toho 10 % hmotnosti je voda. Jak velké teplo voda při vypaření přijala, jestliže na odpaření vody o hmotnosti 1 kg se za dané teploty potřebuje přibližně teplo kj? OK 11 MJ Těleso ze železa o hmotnosti 1,5 kg bylo ponořeno do vroucí vody a ohřálo se na teplotu 100 o C. Potom bylo vloženo do nádoby většího objemu naplněné ledovou drtí o teplotě 0 o C a ochlazeno na tuto teplotu. Určete hmotnost ledu, který při tom roztál. Předpokládáme, že tepelná výměna nastala jen mezi tělesem a ledem. Měrné skupenské teplo tání ledu je 334 kj/kg a měrná tepelná kapacita železa je 0,450 kj/kg. o C. OK 202 g 34. Voda o hmotnosti 470 g a o počáteční teplotě 75 o C se mísí s ledem o hmotnosti 55 g a o počáteční teplotě 0 o C. Po roztání ledu se teplota ustálila na 58 o C. Určete měrné skupenské teplo tání ledu. Měrná tepelná kapacita vody je 4,2 kj/kg. o C. OK 367 KJ/kg Tepelné motory Tepelný motor je zařízení, kterým se mění tepelná energie plynu nebo páry v energii mechanickou. Podle způsobu této přeměny dělíme tepelné motory na parní a spalovací. Dále dělíme tepelné motory podle konstrukce na pístové stroje, turbíny a reaktivní motory. U parních motorů se získává tepelná energie (pára) spalováním paliva (uhlí, topné oleje, plyn, aj.) v kotlích oddělených od vlastního stroje. Typickým strojem, patřícím do této kategorie, je parní stroj. Parní stroj 15

16 Parní stroj zkonstruoval roku 1784 James Watt. Jeho uvedení do provozu odstartovalo průmyslovou revoluci. Účinnost parního stroje je asi %, u parních lokomotiv asi 6-8 %. Parní turbína Zatímco v parním stroji se využívá jen tlaku páry, v turbínách se kromě tlaku využívá i kinetické energie páry. Parní turbínu vynalezl Sir Charles Parsons v roce Postupně byla zdokonalována a spolu se spalovacím motorem ve dvacátém století postupně nahradila parní stroj, který předčí účinností. Jedná se o točivý tepelný stroj, přeměňující kinetickou energii a tepelnou energii proudící páry na mechanický rotační pohyb přenášený na osu resp. hřídel stroje. Skládá se z jednoho, nebo několika postupně se zvětšujících lopatkových kol. Lopatková kola, která jsou součástí statoru stroje, se nazývají rozváděcí. Ta, která jsou spojena s rotující osou (resp. jsou umístěna na hřídeli) stroje, se nazývají oběžná a spolu s osou tvoří rotor. Pro zvýšení účinnosti bývají obvykle velké parní turbíny rozděleny na několik dílů - vysokotlaký a nízkotlaký, případně i středotlaké stupně. Mezi nimi může být i regenerátor páry, který znovu ohřeje expanzí zchladlou páru, čímž zvětší (za cenu dodání relativně malé energie) její objem. Parní turbína je využívána především v energetice pro pohon alternátorů (tepelná elektrárna, jaderná elektrárna), se kterým bývá mechanicky spojena společným hřídelem. Parní turbína se ale užívá i jako lodní pohon (parník, bitevní loď, jaderná ponorka). Tepelná účinnost parních turbín dosahuje až 35 %. Spalovací motory Spalovací motory jsou pístové (zážehové a vznětové) a spalovací turbíny. Zážehový motor je spalovací motor, u něhož je směs paliva a vzduchu ve válci zapálena (zažehnuta) elektrickou jiskrou, kterou obvykle vytvoří zapalovací svíčka. Tím se liší od vznětového motoru, kde dochází k samovznícení vstříknutého paliva díky teplotě stlačeného vzduchu. Pracují s nižším kompresním tlakem, nejvyšší točivý moment a výkon leží ve vyšších otáčkách, jejich chod je tichý a pravidelný. Pro správnou funkci zážehových spalovacích motorů je důležitá odolnost paliva proti samovznícení, kterou udává oktanové číslo. Oproti vznětovému motoru má však nižší účinnost. Zážehový motor čtyřdobý Čtyřdobý spalovací motor také nazýván čtyřtaktní motor nebo zkráceně jen čtyřtakt je pístový motor pracující na čtyřech pohybech pístu. První čtyřdobý spalovací motor, který využíval benzín, sestrojil v roce 1876 německý inženýr Nicolaus Otto. Ve srovnání, v té době s dominujícím parním strojem, byl menší, lehčí a postupem času i tišší, čistší a především účinnější, byť dosažení spolehlivosti parního stroje trvalo mnoho dalších desítek let. Vynález spalovacího motoru dal impuls odbytu a zpracování ropy. V prvních deseti letech jeho existence se ho prodalo deset tisíc kusů. 16

17 Pracovní fáze čtyřdobého motoru 1. Sání píst se pohybuje směrem do dolní úvrati (DÚ), přes sací ventil je nasávána pohonná směs. 2. Komprese píst se pohybuje směrem do horní úvrati (HÚ). Oba ventily jsou uzavřené. Nasátá směs zmenšuje svůj objem, zvětšuje tlak a teplotu. Těsně před horní úvratí je směs zapálena elektrickou jiskrou 3. Expanze oba ventily jsou uzavřené. Směs paliva a vzduchu zapálená elektrickou jiskrou shoří. V pracovním prostoru válce se prudce zvýší teplota i tlak vzniklých plynů. Ty expandují a během pohybu pístu směrem dolů konají práci. 4. Výfuk píst se pohybuje směrem do HÚ. Výfukový ventil je otevřený. Spaliny z pracovního prostoru válce jsou vytlačovány do výfukového potrubí. Zážehový čtyřdobý motor se využívá převážně v osobních automobilech. Zážehový motor dvojdobý Dvoudobý spalovací motor je pístový spalovací motor, jehož pracovní cyklus proběhne za jednu otáčku klikové hřídele. Na rozdíl od čtyřdobého spalovacího motoru obstarávají přívod zápalné směsi místo ventilů píst a kanály. Píst při svém pohybu otevírá a zavírá kanály. U novějších motorů ovládá sání pod píst šoupátkový rozvod nebo klapky. Mazání u zážehového dvoudobého motoru je prováděno olejem rozpuštěným v palivu. Tlakové oběhové mazání, používané u čtyřdobých motorů, nelze použít, protože na pracovním cyklu se podílí i dolní plocha pístu. Proti čtyřdobým motorům jsou díky jednodušší konstrukci lehčí a obvykle mají při stejných otáčkách vyšší měrný výkon (daný dvojnásobným počtem pracovních cyklů na jednu otáčku), ale nižší účinnost danou tím, že komprese anebo expanze musejí být zkráceny, aby mohla proběhnout výměna paliva a výfukových plynů v pracovním prostoru. Proto velmi záleží na tvaru, délce a průměru výfuku, který velmi ovlivňuje vyplachování spalovacího prostoru čistou směsí. V současné době jsou ale na ústupu právě pro svou nižší účinnost a hlavně pro znečištění, způsobené olejem v palivu. Pracovní fáze dvojdobého motoru 17

18 4. Sání a komprese Píst se pohybuje od dolní úvratě směrem k horní úvrati. V klikové skříni vzniká podtlak a tím se nasaje do klikové skříně zápalná směs. Během pohybu pístu nahoru se uzavírá výfukový a přepouštěcí kanál. Směs v prostoru nad pístem (byla připravena dříve během druhé fáze) se stlačuje, nastává komprese a pod pístem probíhá důsledkem podtlaku sání. 2. Expanze a výfuk Těsně před horní úvratí přeskočí jiskra, nastává zážeh a expanze. Expanzí je píst tlačen z horní úvratě do úvratě dolní. Spodní hrana pístu uzavírá sací kanál. Směs v klikové skříni se pohybem pístu stlačuje. Při dalším pohybu pístu otevírá pravá horní hrana pístu výfukový kanál a vzápětí na to otevírá horní hrana pístu i přepouštěcí kanál a stlačená směs začne vytlačovat zbytky zplodin a dostává se do prostoru nad píst. Vznětový motor Vznětový motor, běžně také nazývaný dieselový motor, naftový motor, Dieselův motor či zkráceně jen diesel, je nejvýznamnějším dnes používaným druhem spalovacího motoru. Jedná se o motor, kde se chemická energie vázaná v palivu mění na mechanickou energii ve formě otáčivého pohybu hnacího hřídele stroje. Byl vynalezen Rudolfem Dieselem a zdokonalen Charlesem Ketteringem. Vznětový motor pracuje obvykle jako čtyřdobý spalovací motor nebo jako dvoudobý spalovací motor (například lodní motory). Na rozdíl od zážehových motorů je do něj palivo dopravováno odděleně od vzduchu. Palivo je do spalovacího prostoru motoru dopravováno speciálním vysokotlakým čerpadlem a vysokotlakým potrubím. Jak funguje vznětový motor Do spalovacího prostoru se nejprve nasává vzduch (sání) při tlaku 0,08-0,085 MPa. Po uzavření sacího ventilu se nasátý vzduch stlačuje (komprimuje), píst se pohybuje směrem k horní úvrati, jeho teplota roste na C a tlak stoupá na cca 3 až 4 MPa. Před horní úvratí je tryskou do válce vstříknuta čerpadlem pod tlakem (10-20 MPa) přesně odměřená dávka paliva (obvykle nafta, či stlačený zemní plyn), která je jemně rozprášena. Palivo začne hořet samovznícením ve vzduchu ohřátém kompresí. Tlak ve spalovací prostoru stoupne na 5-8 MPa, teplota dosáhne C. Ve fázi expanze je pak vzniklý tlak převeden na mechanickou práci, (adiabatický děj). V poslední fázi (výfuk) se otevírá výfukový ventil a spaliny jsou vytlačeny do výfuku, (izobarický děj). Palivo se může vstřikovat do válce (přímý vstřik), ale z důvodu tvrdého chodu se u menších motorů často vstřikuje do předkomůrky (komůrkové motory). Tím se utlumí rázy a někdy zlepší spalování, ale ztráty prouděním plynů a zvětšením spalovacího prostoru snižují termodynamickou účinnost motoru. Vznětové motory pohánějí dopravní stroje (plavidla, lokomotivy, automobily, zemědělské stroje). V posledních letech roste jejich význam u osobních automobilů. Svého času sloužily i v letecké dopravě. Vznětové motory se využívají pro pohon strojů, které nemají pevný přívod elektrického proudu, případně jako pohon elektrických generátorů (diesel agregáty). Velký význam mají u speciálních stavebních a zemědělských strojů a u vojenských mobilních mechanismů. 18

19 Velké (lodní či lokomotivní) motory bývají konstruovány jako víceválcové s uspořádáním do V, a bývají pomaluběžné. Vznětový dvojdobý motor se kdysi používal jako lodní pohon v ponorkách. V Československu byl užíván u těžkých nákladních lokomotiv 781, dovezených ze SSSR, které ČSD hojně používaly ještě v 80. letech 20. století. Vlastní motor měl speciální systém bočních ventilů, výfuk, sání a komprese zde probíhaly naráz v jednom taktu za použití souproudého výplachu válců stlačeným vzduchem z turbodmychadla. Motory byly mimořádně hlučné, vyznačovaly se velkou kouřivostí a značnými vibracemi celého zařízení (kromě vlastní lokomotivy se značně otřásalo vše co se nacházelo v blízkém okolí tohoto těžkého stroje, hluk z trati bývalo slyšet na kilometry daleko). Dvoudobým vznětovým motorem byly také vybavovány některé druhy nákladních automobilů. Dnes se používá u velkých lodí, jako je např. Emma Maersk. Dieselové motory nemají katalyzátor a jejich výfukové plyny obsahují množství malých prachových částic vznikajících nedokonalým spalováním nafty. Proto jsou významným zdrojem znečištění ovzduší. 19

20 Obsah 1. Termika 2. Teplo 3. Teplo - procvičovací příklady 4. Změny skupenství látek 5. Změny skupenství látek - procvičovací příklady 6. Tepelné motory

F - Změny skupenství látek

F - Změny skupenství látek F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

F - Tepelné motory VARIACE

F - Tepelné motory VARIACE Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_

23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_ Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie) Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W) TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

F - příprava na 4. zápočtový test

F - příprava na 4. zápočtový test F - příprava na 4. zápočtový test Určeno pro studenty dálkového studia VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.

Více

V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska.

V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska. Teplo a vnitřní energie pracovní list Vnitřní energie Všechny tělesa se skládají z částic, které vykonávají neustálý a neuspořádaný pohyb a které na sebe navzájem silově působí. Částice uvnitř všech těles

Více

F8 - Změny skupenství Číslo variace: 1

F8 - Změny skupenství Číslo variace: 1 F8 - Změny skupenství Číslo variace: 1 1. K vypařování kapaliny dochází: při každé teplotě v celém jejím objemu pouze při teplotě 100 C v celém objemu kapaliny pouze při normální teplotě a normálním tlaku

Více

V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska.

V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska. Teplo a vnitřní energie pracovní list Vnitřní energie Všechny tělesa se skládají z částic, které vykonávají neustálý a neuspořádaný pohyb a které na sebe navzájem silově působí. Částice uvnitř všech těles

Více

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o 3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové SPALOVACÍ MOTORY Druhy spalovacích motorů rozdělení podle způsobu zapalování podle počtu dob oběhu podle chlazení - zážehové = zvláštním zdrojem (svíčkou) - vznětové = samovznícením - čtyřdobé - dvoudobé

Více

VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II.

VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II. VY_32_INOVACE_FY.15 SPALOVACÍ MOTORY II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Motory s vnitřním spalováním U těchto

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.20 Integrovaná střední

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování

Více

POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5

POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5 TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje MOTOROVÉ VOZIDLO STROJOVÝ SPODEK KAROSERIE POHÁNĚCÍ

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy:

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy: zapis_spalovaci_motory_208/2012 STR Gd 1 z 5 29.1.4. Zapalování Zajišťuje zapálení směsi ve válci ve správném okamžiku (s určitým ) #1 Zapalování magneto Bateriové cívkové zapalování a) #2 generátorem

Více

Pístové spalovací motory-pevné části

Pístové spalovací motory-pevné části Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Definice spalovacího motoru Název zpracovaného celku: Pístové spalovací motory-pevné části Spalovací motory jsou tepelné stroje,

Více

Vnitřní energie, práce, teplo.

Vnitřní energie, práce, teplo. Vnitřní energie, práce, teplo. Vnitřní energie tělesa Částice uvnitř látek mají kinetickou a potenciální energii. Je to energie uvnitř tělesa, proto ji nazýváme vnitřní energie. Značíme ji písmenkem U

Více

Molekulová fyzika a termika

Molekulová fyzika a termika Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika

Více

Řešení: Fázový diagram vody

Řešení: Fázový diagram vody Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo

Více

Termodynamika 1. UJOP Hostivař 2014

Termodynamika 1. UJOP Hostivař 2014 Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

VY_32_INOVACE_FY.14 SPALOVACÍ MOTORY

VY_32_INOVACE_FY.14 SPALOVACÍ MOTORY VY_32_INOVACE_FY.14 SPALOVACÍ MOTORY Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Spalovací motor je mechanický tepelný

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

TEPLO A TEPELNÉ STROJE

TEPLO A TEPELNÉ STROJE TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Procesy ve spalovacích motorech

Procesy ve spalovacích motorech Procesy ve spalovacích motorech Spalovací motory přeměňují energii chemicky vázanou v palivu na mechanickou práci. Výkon, který motory vytvářejí, vzniká přeměnou chemické energie vázané v palivu na teplo

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.18 Integrovaná střední

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Kalorimetrická rovnice, skupenské přeměny

Kalorimetrická rovnice, skupenské přeměny Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

10. Práce plynu, tepelné motory

10. Práce plynu, tepelné motory 0. Práce plynu, tepelné motory Práce plynu: Plyn uzavřený v nádobě s pohyblivým pístem působí na píst tlakovou silou F a při zvětšování objemu koná práci W. Při zavedení práce vykonané plynem W = -W, lze

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

13 otázek za 1 bod = 13 bodů Jméno a příjmení: 13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V).

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V). 1) a) Tepelné jevy v životě zmenšení objemu => zvětšení tlaku => PRÁCE PLYNU b) V 1 > V 2 p 1 < p 2 p = F S W = F. s S h F = p. S W = p.s. h W = p. V 3) W = p. V Práce, kterou může vykonat plyn (W), je

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Termika (Fyzika zajímavě) Pachner Úvodní obrazovka Obsah učebnice (vlevo) Seznamy a přehledy (tlačítka dole) Teorie Zajímavosti Osobnosti Úlohy Pokusy Pojmy Animace Lišta s nástroji (vpravo nahoře) Poznámky

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

F - Elektrická práce, elektrický výkon, účinnost

F - Elektrická práce, elektrický výkon, účinnost F - Elektrická práce, elektrický výkon, účinnost rčeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VAIACE Tento dokument byl kompletně vytvořen, sestaven

Více

Z ûehovè a vznïtovè motory

Z ûehovè a vznïtovè motory 2. KAPITOLA Z ûehovè a vznïtovè motory 2. V automobilech se používají pístové motory. Ty pracují v určitém cyklu, který obsahuje výměnu a spálení směsi paliva se vzdušným kyslíkem. Cyklus probíhá ve čtyřech

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých

Více

Termomechanika cvičení

Termomechanika cvičení KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace

Více

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika

Více

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9. 1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY

IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY vynález parního stroje a snaha o zvýšení jeho účinnosti vedly k podrobnému studiu tepelných dějů, při nichž plyn nebo pára konají práci velký význam pro

Více

(mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3

(mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3 zapis_spalovaci 108/2012 STR Gc 1 z 5 Spalovací Mění #1 energii spalovaného paliva na #2 (mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3 dopravních

Více

Měření měrného skupenského tepla tání ledu

Měření měrného skupenského tepla tání ledu KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření měrného skupenského tepla tání ledu Úvod Tání, měrné

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021.

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/01.0021. Stroje na dopravu kapalin Čerpadla jsou stroje, které dopravují kapaliny a kašovité

Více

Teplota. fyzikální veličina značka t

Teplota. fyzikální veličina značka t Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

LOPATKOVÉ STROJE LOPATKOVÉ STROJE

LOPATKOVÉ STROJE LOPATKOVÉ STROJE Předmět: Ročník: Vytvořil: Datum: STROJÍRENSTVÍ ČTVRTÝ BIROŠČÁKOVÁ I. 22. 11. 2013 Název zpracovaného celku: LOPATKOVÉ STROJE LOPATKOVÉ STROJE Lopatkové stroje jsou taková zařízení, ve kterých dochází

Více

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník

Více

LOGO. Změny skupenství

LOGO. Změny skupenství Změny skupenství Látka existuje ve třech skupenstvích Pevném Kapalném Plynném Látka může přecházet z jednoho skupenství do druhého. Existují tedy tyto změny skupenství: Změny skupenství plyn sublimace

Více

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty Energie Chemická Elektrická Tlaková POHONNÉ JEDNOTKY SPALOVACÍ MOTOR ELEKTROMOTOR HYDROMOTOR Mechanická energie Ztráty POHONNÉ JEDNOTKY - TRANSFORMÁTOR ENERGIE 20013/2014 Pohonné jednotky I. SCHOLZ 1 SPALOVACÍ

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

Základy molekulové fyziky a termodynamiky

Základy molekulové fyziky a termodynamiky Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou

Více

Příklady k zápočtu molekulová fyzika a termodynamika

Příklady k zápočtu molekulová fyzika a termodynamika Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další

Více

19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES

19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES 19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES ROZDĚLENÍ SPLAOVACÍCH MOTORŮ mechanická funkčnost pístové nebo rotační Spalovací motor pracuje

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce

Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce Tepelné stroje z pohledu základního kursu fyziky. Poznámky k přednášce osnova. Idealizované tepelné cykly strojů s vnitřním spalováním, Ottův cyklus, Dieselův cyklus, Atkinsonův cyklus,. Způsob výměny

Více

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m 1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Teplo v příkladech I

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Teplo v příkladech I Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Teplo v příkladech

Více

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení... 34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická

Více

Ústav automobilního a dopravního inženýrství PODPORA CVIČENÍ. Ing. Jan Vančura Ústav automobilního a dopravního inženýrství FSI VUTBR

Ústav automobilního a dopravního inženýrství PODPORA CVIČENÍ. Ing. Jan Vančura Ústav automobilního a dopravního inženýrství FSI VUTBR PODPORA CVIČENÍ 1 Sací systém spalovacího motoru zabezpečuje přívod nové náplně do válců motoru. Vzduchu u motorů vznětových a u motorů zážehových s přímým vstřikem paliva do válce motoru. U motorů s vnější

Více

12. Tepelné stroj 12.1 Přeměna tepelné energie na práci Izotermické rozpínání plynu Adiabatické rozpínání plynu kruhovým dějem

12. Tepelné stroj 12.1 Přeměna tepelné energie na práci Izotermické rozpínání plynu Adiabatické rozpínání plynu kruhovým dějem 1. Tepelné stroj 1.1 Přeměna tepelné energie na práci Mají-li plyny vysoký tlak a teplotu převládá v celkové vnitřní energii energie kinetická. Je-li plyn uzavřený ve válci s pohyblivým pístem, pak při

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 06_6_ Změny skupenství látek Ing. Jakub Ulmann 6 Změny skupenství látek 6.1 Tání 6.2 Tuhnutí 6.3 Změna

Více

Archimédův zákon, vztlaková síla

Archimédův zákon, vztlaková síla Variace 1 Archimédův zákon, vztlaková síla Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vztlaková síla,

Více

3.2 Látka a její skupenství

3.2 Látka a její skupenství 3.2 Látka a její skupenství Skupenství látky a jejich změny sublimace PEVNÁ LÁTKA tání desublimace tuhnutí PLYN vy pa řo vá ní KAPALINA zka pal ňo vá ní Látka a změna vnitřní energie Změna vnitřní energie

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným

Více

FYZIKA 6. ročník 2. část

FYZIKA 6. ročník 2. část FYZIKA 6. ročník 2. část 23_Hmotnost tělesa... 2 24_Rovnoramenné váhy.... 3 25_Hustota... 4 26_Výpočet hustoty látky... 4 27_Výpočet hustoty látky příklady... 6 28_Výpočet hmotnosti tělesa příklady...

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

b) Máte dvě stejná tělesa, jak se pozná, že částice jednoho se pohybují rychleji než částice druhého?

b) Máte dvě stejná tělesa, jak se pozná, že částice jednoho se pohybují rychleji než částice druhého? TEPLO OPAKOVÁNÍ a) Co jsou částice a jak se pohybují? b) Máte dvě stejná tělesa, jak se pozná, že částice jednoho se pohybují rychleji než částice druhého? c) Co je vnitřní energie? d) Proč se těleso při

Více