Základy fuzzy logiky 1
|
|
- Otakar Procházka
- před 10 lety
- Počet zobrazení:
Transkript
1 A Tutorial Základy fuzzy logiky 1 George J. Klir Petr Osička State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu Palacky University, Olomouc, Czech Republic prepared for International Centre for Information and Uncertainty, Palacky University, Olomouc!!!! P. Osička (DAMOL) Základy fuzzy logiky října / 23
2 Cíl přednášky seznámit vás s motivací pro vznik fuzzy logiky pojmy fuzzy množina, pravdivostní stupeň podrobněji popsat struktury pravdivostních hodnot P. Osička (DAMOL) Základy fuzzy logiky října / 23
3 Neurčitost něco nevíme přesně, určitě, úplně. s neurčitostí se setkáváme v běžném životě i ve vědě existuje několik typů neurčitosti Příklad: nejistota je dána množina alternativ, nastat může jenom jedna. Neurčitost je v tom, že nevíme která existují (hod kostkou, ruleta...) různé teorie pro zpracování neurčitosti (pravděpodobnost, possibility theory) neurčitost se vyskytuje i v situacích, kdy nemáme dostatek zdrojů (výpočetní síla, data, apod) abychom situaci (systém, fenomén) zpracovali přesně. Příklad: statistické zpracování dat. organized simplicity disorganized complexity spektrum P. Osička (DAMOL) Základy fuzzy logiky října / 23
4 Vágnost typ neurčitosti související s používáním přirozeného jazyka neostře definované pojmy, které přesně nevymezují svůj význam Think of arm chairs and reading chairs and dining-room chairs, and kitchen chairs, chairs that pass into benches, chairs that cross the boundary and become settees, dentist s chairs, thrones, opera stalls, seats of all sorts, those miraculous fungoid growths that cumber the floor of arts and crafts exhibitions, and you will perceive what a lax bundle in fact is this simple straightforward term. In cooperation with an intelligent joiner I would undertake to defeat any definition of chair or chairishness that you gave me. H. G. Wells (First and Last Things, London, 1908) další příklady: mít vysoký tlak, být vysoký, rychle běžet, červená barva zákon vyloučeného třetího P. Osička (DAMOL) Základy fuzzy logiky října / 23
5 Paradoxy Na paradoxech lze demonstrovat důsledky použití aparátu pro přesné (ostře vymezené) výrazy na vágní výrazy. Pracujeme s vágním výrokem nebýt plešatý (NP). Můžeme předpokládat, že 1 Muž se vlasy není plešatý (výrok NP( ) je pravdivý). 2 Pokud muži, který není plešatý, vytrhneme jeden vlas, nestane se plešatým. (pokud je NP(x) pravdivý, pak je NP(x 1) také pravdivý). Sestrojíme posloupnost pravdivých tvrzení: Došli jsme k paradoxu: NP(180000), NP(179999), NP(179998),..., NP(0) elementární kroky jsou logicky správně (přepoklady 1 a 2) dojdeme k evidentně nesprávnému závěru (muž bez vlasů není plešatý) P. Osička (DAMOL) Základy fuzzy logiky října / 23
6 Fuzzy množina zobecňuje pojem množina = ostře vymezená kolekce objektů, crisp množina Pro crisp množinu A v universu X (A X) je charakteristická funkce zobrazení A : X {0, 1} definované pro x X { 1 x A, tj. výrok x patří do A je pravdivý A(x) = 0 x / A, tj. výrok x patří do A není pravdivý Neostře vymezenou kolekci objektů definujeme tak, že umožníme objektům náležet do množiny ve stupních, tj. charakteristická funkce má tvar A : X L. Pro b L [ x patří do množiny A ve stupni b A(x) = b výrok x patří do A je pravdivý ve stupni b A nazýváme fuzzy množina. L je množina pravdivostních stupňů, často voĺıme [0, 1] P. Osička (DAMOL) Základy fuzzy logiky října / 23
7 Myšlenku více pravdivostních stupňů lze snadno použít i v matematické logice, pravdivostní funkci fuzzy množiny můžeme interpretovat jako predikát. Predikát = funkce, která přiřazuje objektům (nebo n-ticím objektů) pravdivostní stupeň. Příklady predikátů: vysoký-muž: Muži L. Použití: vysoký-muž(prof. Bělohlávek) = 1, vysoký-muž(dr. Outrata) = 0.5 podobné-barvy: Barvy Barvy L. Použití: podobné-barvy(bílá, černá) = 0, podobné-barvy(azurová, modrá) = 0.8 Predikáty lze pomocí logických spojek skládat do logických formuĺı: ϕ := Vysoky-muž(x) & Vysoky-tlak(x) Formule: muž x je vysoký a má vysoký tlak. V závisloti na tom, koho doplníme za x má formule nějakou pravdivostní hodnotu. (ozn. ϕ ) P. Osička (DAMOL) Základy fuzzy logiky října / 23
8 Řešení paradoxů NP(x) můžeme brát jako charakteristickou funkci crisp množiny muži, kteří nejsou plešatí Pokud je NP fuzzy množina s L = [0, 1], pak můžeme paradox vyřešit následovně: 1 Muž se vlasy není plešatý: NP(180000)=1. 2 Pokud vytrneme muži vlas, bude o malinko plešatější: pokud NP(x) = a, pak NP(x 1) = a Posloupnost NP(x) pro x = , ,..., 0: NP(180000)=1, NP(179999)= ,..., NP(0) = 0 P. Osička (DAMOL) Základy fuzzy logiky října / 23
9 Komparativní sémantika Kde vezmu hodnoty pravdivostních stupňů? Záleží na tom, jestli je byt-vysoky(franta) = 0.5 nebo byt-vysoky(franta) = 0.45? 1 Pravdivostní stupně mají komparativní význam 2 Konkrétní pravdivostní stupně získáme např. od odborníků a mohou být důležité v aplikacích (např. fuzzy regulátorech) Při volbě pravdivostních stupňů tedy záleží hlavně na tom, aby správně popisovaly konkrétní množinu (Např. byt-vysoky má vyšší pravdivostní stupeň pro někoho, kdo má 2m, než pro někoho, kdo má 170 cm) V konkrétních aplikacích (při zpracování fuzzy množin), lze pak stupně doladit tak, jak je pro danou aplikace vhodné. P. Osička (DAMOL) Základy fuzzy logiky října / 23
10 Množina pravdivostních stupňů Pro L existují rozumné požadavky, ze kterých vyplyne příslušná formalizace: 1. Chceme porovnávat pravdivost různých výroků Definice Uspořádaná množina je L,, kde A je množina a pro všechny x, y, z L platí x x (reflexivita) x y a y x implikuje x = y (antisymetrie) x y a y z implikuje x z (tranzitivita) a b c b d c a a b c d P. Osička (DAMOL) Základy fuzzy logiky října / 23
11 Množina pravdivostních stupňů 2. Úplná pravda je větší než všechny ostatní pravdivostní stupně, úplná nepravda je menší než všechny pravdivostní stupně Definice Uspořádaná množina L, je ohraničená pokud existují prvky 0, 1 takové, že 0 x pro všechna x L (0 je nejmenší prvek) x 1 pro všechna x L (1 je největší prvek) 1 b c 0 P. Osička (DAMOL) Základy fuzzy logiky října / 23
12 Množina pravdivostních stupňů 3. Kvantifikátory = symboly používané ve formuĺıch matematické logiky Universální kvantifikátor význam pro všechny : ϕ := ( x) Vysoky-tlak(x) Význam: pro všechna možná dosazení za x platí, že x má vysoký tlak, tj. všichni muži mají vysoký tlak Jak dostaneme pravdivostní hodnotu ϕ? vysoký-tlak(x) ϕ pro všechna dosazení za x chceme, aby ϕ bylo co největší možné největší pravdivostní stupeň menší než všechna vysoký-tlak(x) přirozeně vede na pojem infimum P. Osička (DAMOL) Základy fuzzy logiky října / 23
13 Infimum Definice Necht L, je uspořádaná množina a B L. Dolní kužel L L (B) množiny B vzhledem k A je L L (B) = {a L a b pro všechny b B}. Pokud má L L (B) největší prvek, nazýváme jej infimem B. Operaci nalezení infima říkáme průsek, označujeme. P. Osička (DAMOL) Základy fuzzy logiky října / 23
14 Množina pravdivostních stupňů Existenční kvantifikátor význam existuje alespoň jeden : ϕ := ( x) Vysoky-tlak(x) Význam: pro všechna možná dosazení za x platí, že alespoň jedno x má vysoký tlak, tj. existuje muž, který má vysoký tlak Jak dostaneme pravdivostní hodnotu ϕ? vysoký-tlak(x) ϕ pro všechna dosazení za x chceme, aby ϕ bylo co nejmenší možné nejmenší pravdivostní stupeň větší než všechna vysoký-tlak(x) přirozeně vede na pojem supremum P. Osička (DAMOL) Základy fuzzy logiky října / 23
15 Supremum Definice Necht L, je uspořádaná množina a B L. Horní kužel U L (B) množiny B vzhledem k A je U L (B) = {a L a b pro všechny b B}. Pokud má U L (B) nejmenší prvek, nazýváme jej supremem B. Operaci nalezení supremem říkáme spojení, označujeme. P. Osička (DAMOL) Základy fuzzy logiky října / 23
16 Konjunkce 4. Pravdivostní hodnoty složených formuĺı se počítají z pravdivostních hodnot jejích podformuĺı ϕ := Vysoky-muž(x) & Vysoky-tlak(x) Kolik je ϕ, kdyz vysoky-muž(x) = b, a vysoky-tlak(x) = c? Použijeme pravdivostní funkci, která odpovídá spojce & : L L L. ϕ nyní spočítáme jako b c. Definice (Pravdivostní funkce spojky &) Funkci považujeme za pravdivostní funkci spojky &, pokud pro všechna a, b, c L a b = b a (a b) c = a (b c) a 1 = a P. Osička (DAMOL) Základy fuzzy logiky října / 23
17 Implikace Pravdivostní funkce implikace : Chceme, aby dobře fungovalo pravidlo modus ponens Požadavky ve vícehodnotovém prostředí: 1 ϕ ( ϕ ψ ) ψ z ϕ a (ϕ ψ) odvod ψ 2 přitom ale chceme, aby modus ponens bylo silné pravidlo, tj. chceme aby pravdivostní hodnota ϕ ( ϕ ψ ) byla maximální možná Požadavky vedou na podmínku adjunkce: Pro všechna a, b, c L a b c právě když a b c P. Osička (DAMOL) Základy fuzzy logiky října / 23
18 Residuovaný svaz Definice (Svaz) Úplný svaz je spořádaná množina (L, ), ve které existují infima a suprema pro všechny podmnožiny L. Definice (Residuovaný svaz) Residuovaný svaz je algebra L = L,,, 0, 1,, taková, že (L,,, 0, 1) je ohraničený úplný svaz je komutitavní, asociativní a pro všechna a L platí a 1 = 1 a b c právě když a b c P. Osička (DAMOL) Základy fuzzy logiky října / 23
19 Příklady residuovaných svazů Často používanými residuovanými svazy jsou svazy s nosičem L = [0, 1]. L,,, 0, 1 tvoří úplný svaz, kde a b = max(a, b) a a b = min(a, b). Operace multiplikace a residua jsou v něm definovány: a b = max(a + b 1, 0), a b = min(1 a + b, 1) (Lukasiewitzova struktura) { 1 a b a b = min(a, b), a b = (Gödelova struktura) b a > b { 1 a b a b = a b, a b = (produktová struktura) b/a a > b P. Osička (DAMOL) Základy fuzzy logiky října / 23
20 Příklady residuovaných svazů Definice (t-norma) Zobrazení t : [0, 1] [0, 1] [0, 1] je t-norma, když pro všechna x, y, z [0, 1] platí: T (x, y) = T (y, x) T (T (x, y), z) = T (x, T (y, z)) x y implikuje T (x, z) T (y, z) T (x, 1) = x Lze použí jako v residuovaném svazu, pokud je t-norma zleva spojitá, tj. lim t(a n, b) = t( lim a n, b) n n Pak totiž existuje unikátní operace tak, že ( a ) tvoří adjungovaný pár. P. Osička (DAMOL) Základy fuzzy logiky října / 23
21 Základní vlastnosti residuovaných svazů Věta (Základní vlastnosti, ) V každém residuovaném svazu L platí pro všechna x, y L: 1 y 1 y 2 implikuje x y 1 x y 2, 2 x (x y) y, 3 x y je největší prvek {z x z y} 4 x y p.k. x y = 1, 5 x x = 1, x 1 = 1, 0 x = 1, 6 1 x = x, 7 x y x, 8 x 0 = 0, P. Osička (DAMOL) Základy fuzzy logiky října / 23
22 Průnik a sjednocení fuzzy množin Průnik fuzzy množin A, B L X je fuzzy množina A B, definovaná (A B)(x) = A(x) B(x). Sjednocení fuzzy množin A, B L X je fuzzy množina A B (A B)(x) = A(x) B(x). P. Osička (DAMOL) Základy fuzzy logiky října / 23
23 Podmnožiny Pro fuzzy množiny A, B L X je stupeň, ve kterém je A podmnožinou B, definován Crisp varianta: S(A, B) = x X(A(x) B(x)) A B právě když A(x) B(x) pro všechna x X Je vidět, že A B právě když S(A, B) = 1 P. Osička (DAMOL) Základy fuzzy logiky října / 23
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,
Matematická logika. Miroslav Kolařík
Matematická logika přednáška devátá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. Obsah 1 Úvod do fuzzy logiky 2 Úvod do aplikací fuzzy logiky 3 Výroková
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Jak je důležité být fuzzy
100 vědců do SŠ 1. intenzivní škola Olomouc, 21. 22. 6. 2012 Jak je důležité být fuzzy Libor Běhounek Ústav informatiky AV ČR 1. Úvod Klasická logika Logika se zabývá pravdivostí výroků a jejím přenášením
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Aplikovaná matematika I, NMAF071
M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Přednáška 2: Formalizace v jazyce logiky.
Přednáška 2: Formalizace v jazyce logiky. Marie Duží marie.duzi@vsb.cz Úvod do teoretické informatiky (logika) Dva základní logické systémy: Výroková logika a predikátová logika. řádu. Výroková logika
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
George J. Klir State University of New York (SUNY) Binghamton, New York 13902, USA
A Tutorial Vícehodnotové logiky George J. Klir Radim Bělohlávek State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu Palacky University, Olomouc, Czech Republic prepared
Okruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
1 Základní pojmy. 1.1 Množiny
1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat
M - Výroková logika VARIACE
M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N.
4 4. týden 4.1 supremum a infimum množiny Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? Příklad 4.2 Zkuste uhádnout sup M, inf
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Výroková logika dokazatelnost
Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
Výroková logika. Sémantika výrokové logiky
Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL
Aplikovaná matematika 1 NMAF071, ZS
Aplikovaná matematika 1 NMAF071, ZS 2012-13 Milan Pokorný MÚ MFF UK Sylabus = obsah (plán) přednášky 1. Úvod: něco málo o logice, teorii množin, číslech a zobrazeních; posloupnosti 2. Funkce jedné reálné
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
George J. Klir. State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu
A Tutorial Advances in query languages for similarity-based databases George J. Klir Petr Krajča State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu Palacky University,
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
Fuzzy logika. Informační a znalostní systémy
Fuzzy logika Informační a znalostní systémy Fuzzy logika a odvozování Lotfi A. Zadeh (*1921) Lidé nepotřebují přesnou číslem vyjádřenou informaci a přesto jsou schopni rozhodovat na vysoké úrovni, odpovídající
Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20
Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
1 Úvod do matematické logiky
1 Úvod do matematické logiky Logikou v běžném slova smyslu rozumíme myšlenkovou cestu, která vede k určitým závěrům. Logika je také formální věda, která zkoumá způsob vyvozování závěrů. Za zakladatele
1. Matematická logika
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 1. Matematická logika Základem každé vědy (tedy i matematiky i fyziky) je soubor jistých znalostí. To, co z těchto izolovaných poznatků
Logika, výroky, množiny
Logika, výroky, množiny Martina Šimůnková 23. srpna 2017 Učební text k předmětu Matematická analýza pro studenty FP TUL Jazyk matematiky Budeme používat dva jazyky: jazyk matematiky a běžně používaný jazyk.
Predikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
λογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
Bakalářská matematika I
do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška šestá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1
Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
1. Predikátová logika jako prostedek reprezentace znalostí
1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 3 Predikátový počet Uvažujme následující úsudek.
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
Úvod do výrokové a predikátové logiky
Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování
4.9.70. Logika a studijní předpoklady
4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Večerní kurzy matematiky Letní studentská konference Tudy Cesta Nevede
Večerní kurzy matematiky Letní studentská konference Tudy Cesta Nevede 1 Výroková logika výroky:a,b pravdivost výroku: 0 nepravda, 1 pravda logické spojky: A negace A A B konjunkce A B disjunkce A B implikace
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37
Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Logika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o...
Logika 5 Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1 Logika je věda o.... slovech správném myšlení myšlení Otázka číslo: 2 Základy
přednáška 2 Marie Duží
Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,
Premisa Premisa Závěr
Studijní text Argumentace Jak to v komunikaci přirozeně děláme, jak argumentujeme? Leden má 31 dní, protože je prvním měsícem roku. Vím, že nelze nekomunikovat. Tzn. každý člověk komunikuje. A Petr je
Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci)
..! POSSIBILISTIC Laboratoř pro analýzu INFORMATION: a modelování dat Vědecký tutoriál, část I A Tutorial Vilém Vychodil (Univerzita Palackého v Olomouci) George J. Klir State University of New York (SUNY)
I. Úvodní pojmy. Obsah
I. Úvodní pojmy Obsah 1 Matematická logika 2 1.1 Výrok,logickéoperátory,výrokovéformuleaformy... 2 1.2 Logickávýstavbamatematiky... 3 1.2.1 Základnímetodydůkazůmatematickýchvět..... 3 1.2.2 Negacevýroků.....
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci petr.salac@tul.cz jiri.hozman@tul.cz 26.9.2016 Fakulta přírodovědně-humanitní a pedagogická
VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá..
VÝROKOVÁ LOGIKA Teorie: Logika je vědní obor zabývající se studiem různých forem vyjadřování a pravidel správného posuzování. (Matematická logika je součástí tohoto vědního oboru a ve velké míře užívá
I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x
Úvod do TI - logika 1. přednáška. Marie Duží
Úvod do TI - logika 1. přednáška Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Učební texty: http://www.cs.vsb.cz/duzi Courses Introduction to Logic: Informace pro studenty Učební texty: Kapitoly: Úvod
platné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
Výroková logika. p, q, r...
Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože
Výroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
Výroková a predikátová logika - XI
Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul
Predikátová logika dokončení
Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen
Základy matematiky pro FEK
Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice
Marie Duží
Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
Úvod do logiky (PL): sémantika predikátové logiky
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sémantika predikátové logiky doc. PhDr. Jiří
Marie Duží
Marie Duží marie.duzi@vsb.cz Učební texty: http://www.cs.vsb.cz/duzi Tabulka Courses, odkaz Mathematical Učební texty, Presentace přednášek kursu Matematická logika, Příklady na cvičení + doplňkové texty.
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
Matematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy
Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale