PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
|
|
- Helena Marešová
- před 6 lety
- Počet zobrazení:
Transkript
1 PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním) tvaru. Odtud odvodíme, že varieta distributivních svazů je lokálně konečná. Dále ukážeme, že konečný distributivní svaz je izomorfní svazu dolních podmnožin uspořádané nožiny jeho spojově nerozložitelnéch prvků. Odtud odvodíme, že konečný svaz je distributivní právě když je každý jeho spojově nerozložitelný prvek spojový prvočinitel. Nakonec ukážeme, že délka konečného distributivního svazu odpovídá velikosti množiny spojově nerozložitelnéch prvků tohoto svazu Svazové termy. Buď X := {x 1,x 2,...} (spočetná) množina proměnných. Svazový term definujeme induktivně takto: (1) Každá z proměnných x 1,x 2,... je svazovým termem. (2) Jsou-li p a q svazové termy, potom jsou také (p q) a (p q) svazové termy. V zápisu svazových termu budeme vynechávat závorky tam, kde nám to asociativita svazových operací dovolí. Například tedy budeme místo ((p 1 p 2 ) p 3 ) psát jen p 1 p 2 p 3. Symbolem T[X] označíme množinu všech svazových termů s proměnnými z množiny X. Složitost termu je hodnota zobrazení ρ: T[X] N definovaná induktivně takto: (1) ρ(x) = 1 pro všechna x X, (2) ρ(p q) = ρ(p q) = ρ(p)+ρ(q)+1, pro všechna p,q T[X]. Jsou-li všechny proměnné vyskytující se ve svazovém termu p prvky množiny {x 1,x 2,...,x n }, řekneme, že p je n-ární svazový term, což zapíšeme, podobně jako v případě číselných polynomů, symbolem p(x 1,...,x n ). Množinu všech n-árních svazových termů označíme T[x 1,...,x n ]. Interpretací (řádu n) termu p T[x 1,...,x n ] ve svazu A rozumíme n-ární operaci p A : A n A na množině A určenou předpisem a 1,...,a n p(a 1,...,a n ). Svazovou (n-ární) identitou rozumíme výraz p q, kde p,q jsou n-ární svazové termy. Řekneme, že třída svazů U splňuje svazovou identitu p q (což Přednáška se konala v Karlíně v seminární místnosti Katedry algebry, 5. listopadu
2 2 P. RŮŽIČKA zapisujeme p U q) jsou-li interpretace termů p,q ve svazu A shodné pro všechna A U. Symbolem p q (a podobně p U q) značíme, že q p q (a podobně q U p q). Tvrzení 5.1. Buď A svaz a p T[x 1,...,x n ]. Interpretace p A termu p ve svazu A je monotóní a idempotentní operace. Dále platí, že pro všechna p T[x 1,...,x n ]. x 1 x n p(x 1,...,x n ) x 1 x n, Důkaz. V obou případech indukcí podle složitosti termu Disjunktivně-konjunktivní tvar termů. Řekneme, že svazový term p je v disjunctivně-konjunktivním (resp. konjunktivně-disjunktivním) tvaru, existuje-li přirozené číslo n a konečné podmnožiny Y 1,...,Y n X takové, že n ( ) n ( ) p = Yi (resp. p = Yi ). i=1 Připomeňme, že symbolem D značíme varietu všech distributivních svazů. Věta 5.2. Pro každý svazový term p existují svazové termy s (resp. t) v disjunktivně-konjunktivním (resp. konjunktivně-disjunktivním) tvaru takový, že p D s D t. Důkaz. Buď p n-ární svazový term. Ukážeme, že existuje n-ární svazový term s v disjunktivně-konjunktivním tvaru takový, že p D s. Existenci n-árního svazovho termu t v konjunktivně-disjunktivním tvaru takového, že p D t bychom ukázali obdobně. Podle Věty 4.3 lze každý distributivní svaz vnořit do kartézské mocniny dvouprvkového svazu C 2. To znamená, že varieta distributivních svazů je svazem C 2 generovaná a tedy stačí sestrojit n-ární svazový term s v disjunktivně-konjunktivním tvaru takový, že p C2 = s C2. Pro každou n-tici a := a 1,...,a n C 2 n položme a definujme i=1 S(p) := { a 1,...,a n p C2 (a 1,...,a n ) = 1}, χ a := {i {1,2,...,n} a i = 1}, (5.1) s(x 1,...,x n ) := Z definice (5.1) je ihned vidět, že a S(p) i χ a p C2 (a 1,...,a n ) = 1 = a 1,...,a n S(p) = s C2 (a 1,...,a n ) = 1, a tedy p C2 s C2. Nechť naopak pro nějaké b := b 1,...,b n C n 2 platí, že s C 2 (b) = 1. Z definice (5.1) je potom vidět, že existuje a S(p) takové, že a b. Podle x i.
3 Konjuktivně disjunktivní termy, konečné distributivní svazy 3 Tvrzení 5.1 indukují svazové termy monotónní operace a tedy p C2 (b) = 1. Dostáváme tak i opačnou nerovnost s C2 p C2. Důsledek 5.3. Konečně generovaný distributivní svaz je konečný. Důkaz. Buď D distributivní svaz, který je generován konečnou množinou {d 1,...,d n }. Vzhledem k Větě 5.2 existuje pro každé c D n-ární svazový term s v disjunktivně-konjunktivním tvaru takový, že c = s(d 1,,d n ). Z definice (5.1) je vidět, že existuje nejvýše 2 2n takových termů. Svaz D má tedy nejvýše 2 2n prvků Struktura konečných distributivních svazů. Nenulový prvek s svazu A je spojově nerozložitelný pokud z rovnosti s = a b plyne, že s {a,b}. Symbolem J(A) označíme množinu všech spojově nerozložitelných prvků svazu A. Množina J(A) je přirozeně uspořádaná restrikcí uspořádání svazu A. Lemma 5.4. Každý nenulový prvek konečného svazu je spojením spojově nerozložitelných prvků. Důkaz. Buď A konečný svaz. Označme N množinu těch nenulových prvků svazu A, které nejsou spojením spojově nerozložitelných prvků. Pro spor předpokládejme, že je množina N neprázdná. Protože je svaz A konečný, má množina N minimální prvek, označme jej c. Prvek c je nenulový a jistě není spojově nerozložitelný. Proto ve svazu A existují prvky a, b < c takové, že c = a b. Z minimality prvku c v množině N plyne, že a = s 1 s k a b = t 1 t l pro nějaké spojově nerozložitelné s 1,...,s k a t 1,...,t l (všimněme si, že prvky a,b jsou nutně nenulové). Potom ale c = a b = s 1 s k t 1 t l, a tedy c je spojením spojově nerozložitelných prvků. To je ve sporu s předpokladem, že c N. Poznámka. Řeknem, že uspořádaná množina P splňuje podmínku konečnosti klesajícíh řetězců, je-li každý ostře klesající řetězec v P konečný. Snadno nahlédneme, že uspořádaná množina P splňuje podmínku konečnosti klesajících řetězců právě když má každá její neprázdná podmnožina minimální prvek. Pro svazy splňující podmínku konečnosti klesajících řetězců můžeme argumentovat stejně jako v důkazu Věty 5.4. Proto je každý nenulový prvek takového svazu spojením spojově nerozložitelných prvků. Přıklad 5.1. Buď X nekonečná množina. Položme A := {Y X Rozdíl X \Y je konečný}. Snadno nahlédneme, že je množina A uzavřena na konečná sjednocení a konečné průniky a tedy spolu s těmito operacemi tvoří svaz, označme jej A. Žádný prvek svazu A není spojově nerozložitelný.
4 4 P. RŮŽIČKA Nenulový prvek p svazu A je spojový prvočinitel pokud z nerovnosti p a b plyne, že p a nebo p b. Z definic je vidět, že každý spojový prvočinitel je spojově nerozložitelný. Naopak snadno nahlédneme, že prvky a,b,c M 3 jsou spojově nerozložitelné, ale žádný z nich není spojový prvočinitel. Lemma 5.5. Každý spojově nerozložitelný prvek distributivního svazu je spojovým prvočinitelem. Důkaz. Nechť A je distributivní svaz s J(A). Předpokládejme, že s a b pro nějaké a,b A. Z distributivity svazu A dostaneme, že s = s (a b) = (s a) (s b). Protože prvek s je spojově nerozložitelný, buďto s = s a (a tedy s a) nebo s = s b (a tedy s b). Proto je s spojovým prvočinitelem. Připomeňme, že dolní (resp. horní) podmnožina uspořádané množiny P je D P taková, že p d = p D (resp. H P taková, že d p = p H), pro všechna p P, d D (resp. d H). Pro libovolnou podmnožinu X uspořádané množiny P položíme X := {p P x X: p x}, X := {p P x X: x p}. Pro jednoprvkovou množinu X = {x} bude značit x (resp. x) místo {x} (resp. {x}). Symbolem D(P) (resp. H(P)) označíme množinu všech dolních (resp. horních) podmnožin uspořádané množiny P. Tyto množiny tvoří poduniverza svazu všech podmnožin P s operacemi průniku a sjednocení. Buď A konečný svaz. Definujme zobrazení α a β takto: (5.2) α: A D(J(A)) β: D(J(A)) A a {s J(A) s a} D D Symbolem 1 A budeme značit identické zobrazení A A. Pozorování 5.6. Jsou-li A, B svazy a α: A B bijekce taková, že a b právě když α(a) α(b), pro všechna a,b A, je α izomorfismus těchto svazů. To plyne ihned z toho, že svazové operace jsou definovány jako infimum a suprémum. Odtud plyne, že jsou-li α: A B a β: B A vzájemně inverzní bijekce zachovávající uspořádání, jsou obě tato zobrazení izomorfismy svazů A a B. Věta 5.7. Buď A konečný svaz. (1) Zobrazení α (resp. β) definované předpisem (5.2) zachovává průseky (resp. spojení) a βα = 1 A. Speciálně, zobrazení α je prosté a zobrazení β je na. (2) Je-li svaz A distributivní, jsou α a β vzájemně inverzní svazové izomorfismy. Důkaz. (1) Z defininice infima plyne, že s a b právě když s a a zároveň s b pro všechna a,b,s A. Odtud je vidět, že zobrazení α zachovává
5 Konjuktivně disjunktivní termy, konečné distributivní svazy 5 průseky. Naopak z Lemmatu 1.1. plyne, že (G H) = ( G) ( H), pro všechna G, H A. Proto zobrazení β zachovává spojení. Protože je svaz A konečný, je podle Lemmatu 5.4 každý jeho prvek spojením spojově nerozložitelných prvků tohoto svazu. Odtud plyne, že βα(a) = {s J(A) s a} = a, pro všechna a A. (2) Předpokládejme, že konečný svaz A je distributivní. Buď D dolní podmnožina uspořádané množiny J(A) a s J(A). Vzhledem k Lemmatu 5.5 a distributivitě svazu A je s spojovým prvočinitelem. Proto z s D plyne, že s d pro nějaké d D a tedy s D. Proto platí αβ(d) = {s J(A) s D} = D. Proto jsou α a β vzájemně inverzní bijekce. Protože zobrazní α zachovává průseky a β zachovává spojení, zachovávají obě tato zobrazení uspořádání. Vzhledem k Pozorování 5.6 jsou zobrazení α,β svazovými izomorfismy. Důsledek 5.8. Konečný distributivní svaz je izomorfní svazu všech dolních podmnožin uspořádané množiny jeho spojově nerozložitelných prvků. Všiměme si, že v důkazu části (2) Věty 5.7 jsme využili jen toho, že každý spojově nerozložitelný prvek svazu A je v tomto svazu spojovým prvočinitelem. Protože svaz všech dolních podmnožin uspořádané množiny je distributivní (je to podsvaz svazu všech podmnožin této množiny), dostáváme, že Důsledek 5.9. Konečný svaz je distributivní právě když je každý jeho spojově nerozložitelný prvek spojovým prvočinitelem. Připomeňme, že řetězcem míníme lineárně uspořádaný svaz. Délku konečného řetězce C pak definujeme jako C 1. Délkou d(a) konečného svazu A pak rozumíme největší délku řetězce v A. Tvrzení Pro konečný svaz A platí, že d(a) J(A). Je-li A distributivní, platí rovnost d(a) = J(A). Důkaz. Buď A konečný svaz a a 0 < a 1 < < a n řetězec v A. Podle Lemmatu 5.4 je každý prvek svazu A spojením spojově nerozložitelných prvků. Proto platí rovnost a i = ( a i J(A)) pro každé i = 0,1,...,n a tedy a 0 J(A) a 1 J(A) a n J(A). Odtud je vidět, že n J(A). Předpokládejme nyní, že svaz A je distributivní. Položme n := J(A) a uspořádejme prvky množiny J(A) do posloupnosti d 1,d 2,...,d n tak, že d i je minimální prvek množinyj(a)\{d 1,...,d i 1 }, pro každéi {1,2,...,n}. Z konstrukce této posloupnosti je vidět, že D i = {d 1,...,d i } jsou dolní podmnožiny uspořádané množiny J(A) pro všechna i = 0,1,...,n. Z Věty 5.7 plyne, že β(d 0 ) < β(d 1 ) < < β(d n )
6 6 P. RŮŽIČKA je řetěz délky n ve svazu A. Z Tvrzení 5.10 vidíme, že distributivní svazy délky n odpovídají vzájemně jednoznačně n-prvkovým uspořádaným množinám. Na Obrázku 1 jsou znázorněny všechny distributivní svazy délky 4. Červeně jsou vyznačeny jejich spojově nerozložitelné prvky.
7 Konjuktivně disjunktivní termy, konečné distributivní svazy 7 Obrázek 1. Distributivní svazy délky 4
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Booleovy algebry. Irina Perfilieva. logo
Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry
Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno
Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená
Co je to univerzální algebra?
Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Úlohy k procvičování textu o svazech
Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání
Základy teorie množin
1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé
Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0.
Kapitola 4 Booleovy algebry 4.1 Definice Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí x y = 1, x y = 0. Představu o
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37
Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole
Lineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje
Základy teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
Aplikovaná matematika I, NMAF071
M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Lineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
Úlohy k procvičování textu o univerzální algebře
Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Lineární algebra : Lineární zobrazení
Lineární algebra : Lineární zobrazení (6. přednáška František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 20. května 2014, 22:40 1 2 6.1 Lineární zobrazení Definice 1. Buďte P a Q dva lineární prostory
Věta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25
Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
průniku podmnožin, spojení je rovno sjednocení podmnožin a komplement je doplněk Obr. 5: Booleovy algebry
BOOLEOVY ALGEBRY Připomeňme si, že za Booleovu algebru považujeme každou algebru (B,,, 0, 1, ) s neprázdnou množinou B, binárními operacemi průsek, spojení, s prvky 0, 1 B a unární operací komplement,
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Výroková a predikátová logika - XI
Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
Hypergrafové removal lemma a Szemérediho
Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných
Matice lineárních zobrazení
Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze
Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1
Substituce Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 2 1 Algebra termů Předpokládáme, že je dán jazyk termů. L, definovali jsme množinu jeho Zavedeme některé užitečné
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
1. Množiny, zobrazení, relace
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
1 Základní pojmy. 1.1 Množiny
1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat
Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy
Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice
Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
4. Topologické vlastnosti množiny reálných
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině
Přednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Aplikovaná matematika 1 NMAF071, ZS
Aplikovaná matematika 1 NMAF071, ZS 2012-13 Milan Pokorný MÚ MFF UK Sylabus = obsah (plán) přednášky 1. Úvod: něco málo o logice, teorii množin, číslech a zobrazeních; posloupnosti 2. Funkce jedné reálné
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám
Algebra 2 slidy k přednáškám KMI/ALG2 Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. Vytvořeno za podpory projektu FRUP_2017_052: Tvorba a inovace výukových opor
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
3. přednáška 15. října 2007
3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení
Množiny, základní číselné množiny, množinové operace
2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),
Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních
6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x