METRICKÉ A NORMOVANÉ PROSTORY
|
|
- Julie Marková
- před 9 lety
- Počet zobrazení:
Transkript
1 PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY
2 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme značit x, tj. x = ( x 1, x 2,..., x n, kde xi R, i = 1, 2,..., n. V prostoru R n se definují operace násobení reálným číslem a a sčítání vztahy ax = a ( x 1, x 2,..., x n = ( ax1, ax 2,..., ax n, x + y = ( x 1, x 2,..., x n + ( y1, y 2,..., y n = = ( x 1 + y 1, x 2 + y 2,..., x n + y n. Jak víme z lineární algebry, množina R n s uvedenými operacemi tvoří vektorový prostor nad tělesem reálných čísel.
3 Pro vyšetřování limit v prostoru R n je třeba zavést pojem okolí bodu. K tomu potřebujeme pojem vzdálenosti dvou bodů. 1.2 Metrický prostor Definice 1. Necht je M množina. Funkci ρ : M M R nazveme metrikou, jestliže splňuje následující podmínky: (1 pro každé x M je ρ(x, x = 0; (2 pro každé x, y M, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé x, y, z M platí ρ(x, z ρ(x, y+ρ(y, z. Množinu M, na které je definována metrika, nazýváme metrický prostor. Pokud budeme chtít zdůraznit, že M je metrický prostor s metrikou ρ, budeme psát (M, ρ.
4 Definice 2. Necht je (M, ρ metrický prostor a x 0 M. Pro každé ε > 0 nazýváme množinu všech x M, pro která je ρ ( x, x 0 < ε okolím bodu x0 (přesněji otevřeným ε ovým okolím bodu x 0. ε ové okolí bodu x 0 budeme značit U ε ( x0. Množinu všech bodů x M, pro která je 0 < ρ ( x, x 0 < ε nazýváme prstencové okolí bodu x 0 a budeme jej značit P ε ( x0. Poznámka. Zřejmě platí: P ε ( x0 = Uε ( x0 \ { x0 }.
5 Příklad 1. Necht M je libovolná neprázdná množina. Definujme funkci ρ : M M R předpisem ρ(x, y = { 0 pro x = y 1 pro x y. Snadno se ukáže, že ρ je metrika na M. Pro ε > 1 a x 0 M je U ε ( x0 = M a Pε (x 0 = M \ {x 0 }. Pro ε 1 a každé x 0 M je U ε ( x0 = { x0 }, tedy jednobodová množina obsahující pouze bod x 0 a P ε (x 0 =. Takto definovaná metrika se nazývá diskrétní.
6 Definice 3. Necht (M, ρ je metrický prostor a X M. Bod a X se nazývá vnitřní bod množiny X, existuje-li okolí U ε (a X. vnější bod množiny X, existuje-li okolí U ε (a takové, že U ε (a X =. hraniční bod množiny X, má-li každé jeho okolí U ε (a neprázdný průnik s množinou X i s doplňkem M \ X.
7 Definice 4. Necht (M, ρ je metrický prostor. Množinu všech vnitřních bodů množiny X M nazýváme vnitřkem množiny X a značíme X. Množina X M se nazývá otevřená právě tehdy, je-li každý bod x X vnitřním bodem množiny X, tj. právě tehdy, když X = X. Definice 5. Necht (M, ρ a (M, σ jsou metrické prostory. Jestliže existují reálná čísla a a b, 0 < a b taková, že pro každé x, y M platí aρ(x, y σ(x, y bρ(x, y nazveme metriky ρ a σ ekvivalentní.
8 Věta 2. Necht jsou (M, ρ a (M, σ metrické prostory s ekvivalentními metrikami ρ a σ. Množina X M je otevřená v metrice ρ právě tehdy, když je otevřená v metrice σ. Věta 3. Necht je (M, ρ metrický prostor. Pak jsou a M otevřené množiny. Jestliže jsou X i M, kde i = 1, 2,..., N, otevřené množiny, je N množina X i otevřená. i=1 Věta 4. Vnitřek množiny X M je největší otevřená podmnožina X, tj. jestliže je Y X otevřená množina, pak Y X. X je sjednocení všech otevřených podmnožin Y množiny X.
9 Definice 6. Necht je (M, ρ metrický prostor a X M. Bod x M nazýváme hromadný bod množiny X právě tehdy, když každé prstencové okolí P ε (x obsahuje alespoň jeden bod množiny X. Množinu všech hromadných bodů množiny X budeme značit der X. Poznámka. Je-li x hromadný bod množiny X, pak každé okolí bodu x obsahuje nekonečně mnoho bodů množiny X. Definice 7. Necht (M, ρ je metrický prostor a X M. Pak množinu X = X der X nazýváme uzávěr množiny X.
10 Definice 8. Podmnožina X metrického prostoru (M, ρ se nazývá uzavřená právě tehdy, když obsahuje všechny své hromadné body, tj. právě když X = X. Věta 5. Necht (M, ρ je metrický prostor. Množina X M je uzavřená právě tehdy, když je M \ X otevřená. Množina X M je otevřená právě tehdy, když je množina M \ X uzavřená.
11 Věta 6. Necht je (M, ρ metrický prostor. Pak jsou množiny a M uzavřené. Jestliže jsou X a, a A, kde A je libovolná množina, uzavřené množiny. Pak je množina X = a A X a uzavřená. Jestliže jsou X i, i = 1, 2,..., N, uzavřené množiny, je množina N X = X i uzavřená. i=1 Věta 7. Necht (M, ρ je metrický prostor a X M. Pak platí: X je nejmenší uzavřená množina, pro kterou je X X, tj. je-li X Y a Y je uzavřená, pak X Y. X je průnik všech uzavřených množin Y takových, že X Y.
12 Definice 9. Necht je (M, ρ metrický prostor a X M. Hranicí množiny X nazýváme množinu X = X M \ X. Bod x X se nazývá hraniční bod množiny X. Definice 10. Necht je (M, ρ metrický prostor a X M je neprázdná. Průměrem množiny X nazýváme číslo diam(x = sup ρ(x, y. x, y X Je-li X =, klademe diam(x = 0. Množina X M se nazývá omezená, je-li diam(x <.
13 Věta 8. Podmnožina X metrického prostoru (M, ρ je omezená právě tehdy, když existuje y M a K R takové, že pro každé x X je ρ(y, x K. Definice 11. Vzdáleností dvou neprázdných podmnožin X a Y metrického prostoru (M, ρ nazýváme číslo dist(x, Y = inf x X y Y ρ(x, y.
14 1.2.1 Normovaný prostor Definice 12. Necht je V vektorový prostor nad tělesem R. Zobrazení ν : V R, pro které platí: ν(x 0 ν(x = 0 = x = 0 ν(ax = a ν(x ν(x + y ν(x + ν(y se nazývá norma. Vektorový prostor V, na kterém je definována norma se nazývá normovaný prostor. Jestliže chceme zdůraznit, že V je normovaný prostor s normou ν, budeme psát (V, ν.
15 Věta 9. Je-li (V, ν normovaný prostor, je (V, ρ, kde ρ(x, y = ν(x y, metrický prostor. Důkaz. Protože ν(0 = 0, je ρ(x, x = ν(x x = ν(0 = 0. Jestliže x y jsou libovolné dva prvky V, pak ρ(x, y = ν(x y = ν(y x = ρ(y, x 0. Pro každé tři prvky x, y, z V platí ρ(x, z = ν(x z = ν ( (x y+(y z ν(x y+ν(y z = ρ(x, y+ρ(y, z. Tedy ρ je metrika. Definice 13. Dvě normy ν 1 a ν 2 vektorového prostoru V se nazývají ekvivalentní, jestliže existují a, b R, 0 < a b, takové, že aν 1 (x ν 2 (x bν 1 (x. Poznámka. Je zřejmé, že metriky ρ 1 a ρ 2 generované ekvivalentními normami ν 1 a ν 2 jsou ekvivalentní.
16 Poznámka. Lze ukázat, že pro každé p 1 je ( n ν p (x = xi p i=1 1/p norma v prostoru R n a že tyto normy jsou ekvivalentní. Pro nás budou důležité normy ν 1, ν 2 a ν max = lim ν p. Pro tyto p normy platí ν 1 (x = n xi, i=1 ( n 2 1/2 ν 2 (x = i=1( xi, ν max (x = max ( x 1, x 2,..., x n. Dále budeme prostor R n považovat za metrický prostor s metrikou generovanou jednou z ekvivalentních norem ν 1, ν 2 nebo ν max.
17 Příklad 2. Necht je M R a B(M je vektorový prostor všech funkcí omezených na M. Ve vektorovém prostoru B(M ( lze zavést normu ν vztahem ν(f = sup f(x. x M V prostoru R n je norma ν 2 z příkladu 2 definována pomocí operace, která se nazývá skalární součin. Definice 14. Necht je V vektorový prostor nad tělesem R. Pak funkci (, : V V R, která má pro každé x, y, z V a a, b R vlastnosti: (ax + by, z = a(x, z + b(y, z, (x, y = (y, x, (x, x 0, (x, x = 0 x = 0 nazýváme skalární součin. Často se značí (x, x = x 2.
18 Příklad 3. Ve vektorovém prostoru R n definujeme skalární n součin vztahem (x, y = x i y i. i=1 Věta 10 (Schwarzova nerovnost Jestliže je V vektorový prostor se skalárním součinem, pak pro každé x, y V platí nerovnost (x, y 2 x 2 y 2. Přitom rovnost platí pouze tehdy, když x a y jsou lineárně závislé. Důkaz. Je-li y = 0, platí znak rovnosti. Necht y 0. Pro každé λ R platí 0 (x λy, x λy = x 2 2λ(x, y + λ 2 y 2. Přitom rovnost platí pouze tehdy, když x λy = 0, tj. když jsou jsou x a y (x, y lineárně závislé. Zvolme λ =. Pak z uvedené nerovnosti dostaneme y 2 0 x 2 2 z čehož plyne dokazovaná nerovnost. (x, y2 (x, y2 + y 2 y 2 = x 2 (x, y2 y 2,
19 Poznámka. Ze Schwarzovy nerovnosti plyne pro x, y 0, (x, y že 1 x y 1. Proto lze psát (x, y = cos ϕ, kde ϕ je x y úhel mezi vektory x a y. V případě R n je tedy úhel mezi dvěma nenulovými vektory x a y dán vztahem ( n ( n cos ϕ = x i y i x 2 i i=1 i=1 1/2 n yk 2. k=1 Věta 11. Jestliže je V vektorový prostor se skalárním součinem, je V normovaný prostor s normou definovanou vztahem ν(x = (x, x = x. Důkaz. Ověření vlastností normy je zřejmé. Snad až na nerovnost x + y x + y. Ta plyne ze Schwarzovy nerovnosti, nebot x + y 2 = (x + y, x + y = x 2 + 2(x, y + y 2 x x y + y 2 = ( x + y] 2.
20 Definice 15. Podmnožina M R n s metrikou generovanou normou ν p se nazývá kompaktní, jestliže je omezená a uzavřená. Poznámka. Význam kompaktních množin pro matematickou analýzu bude zřejmý, až zavedeme pojem limity posloupnosti. Definice 16. Necht je V vektorový prostor a x, y V. Množina všech bodů z = x + (y xt, t 0, 1 se nazývá úsečka z bodu x do bodu y. Bod x je počáteční bod a y koncový bod této úsečky.
21 Definice 17. Podmnožina M vektorového prostoru V se nazývá konvexní, jestliže pro každé dva body x, y M leží celá úsečka z bodu x do bodu y v množině M, tj. pro každé t 0, 1 je x + (y xt M.
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Úvod základy teorie zobrazení
Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se
Home. Obsah. Strana 1 MATEMATIKA. Fullscreen PRO LETECKÉ. Tisk OBORY II. Konec
Kurzy celoživotního vzdělávání Fakulta dopravní ČVUT MATEMATIKA Strana 1 PRO LETECKÉ OBORY II PŘEHLED LÁTKY 1 Metrické a normované prostory 2 Posloupnosti v metrických prostorech 3 Reálné funkce více reálných
Projekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz
Texty k přednáškám z MMAN3: 3. Metrické prostory
Texty k přednáškám z MMAN3: 3. Metrické prostory 3. července 2012 1 Metrika na množině, metrický prostor Pojem vzdálenosti dvou reálných (komplexních) čísel, nebo bodů v rovině či prostoru je známý ze
Co je to univerzální algebra?
Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Matematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
1/15. Kapitola 2: Reálné funkce více proměnných
1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
i=1 λ ix i,λ i T,x i M}.Množinuvektorů
Velké prostory Anička Doležalová Abstrakt. Budeme si hrát s vektorovými prostory, které mají nekonečnou dimenzi. Cílemjesijetrochuosahatazískatzákladníintuici.Ktomunámposloužíhlavně prostory posloupností.
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
Necht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
Aplikovaná matematika I, NMAF071
M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační
K oddílu I.1 základní pojmy, normy, normované prostory
ÚVOD DO FUNKCIONÁLNÍ ANALÝZY PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2015/2016 PŘÍKLADY KE KAPITOLE I K oddílu I1 základní pojmy, normy, normované prostory Příklad 1 Necht X je reálný vektorový prostor a : X
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Lineární algebra : Lineární (ne)závislost
Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
Lineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
Přednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.
7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň
1 Základní pojmy 2. 2 Měření vzdálenosti, metrický prostor 2. 3 Okolí v metrickém prostoru 3. 4 Zobecněná koule 3
I. Metrické prostory Obsah 1 Základní pojmy 2 2 Měření vzdálenosti, metrický prostor 2 3 Okolí v metrickém prostoru 3 4 Zobecněná koule 3 5 Některé význačné body a množiny metrického prostoru 4 1 Základní
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
1. přednáška 1. října Kapitola 1. Metrické prostory.
1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných
LIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
TEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose.
TEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose. Kvůli těmto těžkostem se měření zúžilo jen na délku
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
PŘEDNÁŠKA 1 MNOŽINY ČÍSEL
PŘEDNÁŠKA 1 MNOŽINY ČÍSEL 1.1 Základní poznatky o množinách 2 Množinou budeme rozumět souhrn libovolných objektů. Množinu považujeme za určenou, je-li možno o každém objektu jednoznačně rozhodnout, zda
19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
OBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
Matematika. Kamila Hasilová. Matematika 1/34
Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
Úvod do funkcionální analýzy
Úvod do funkcionální analýzy Ladislav Lukšan Ústav informatiky AV ČR, Pod vodárenskou věží 2, 182 07 Praha 8 Technická universita v Liberci, Hálkova 6, 461 17 Liberec Tento text byl použit jako podklad
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel
KOMPLEXNÍ ČÍSLA A FUNKCE V předchozích částech byl důraz kladen na reálná čísla a na reálné funkce. Pokud se komplexní čísla vyskytovala, bylo to z hlediska kartézského součinu dvou reálných přímek, např.
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem
Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem
Věta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Princip rozšíření a operace s fuzzy čísly
Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic
Základy matematiky pro FEK
Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i